Simon, Barry and Zlatoš, Andrej (2005) Higher-order Szegő theorems with two singular points. Journal of Approximation Theory, 134 (1). pp. 114-129. ISSN 0021-9045. doi:10.1016/j.jat.2005.02.003. https://resolver.caltech.edu/CaltechAUTHORS:20170512-073745126
![]() |
PDF
- Submitted Version
See Usage Policy. 210kB |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20170512-073745126
Abstract
We consider probability measures, dμ = w(θ)^(dθ)_(2π) + dμ_s, on the unit circle, ∂D, with Verblunsky coefficients, {αj}_(j=0)^∞. We prove for θ_1 ≠ θ_2 in [0,2π) that ∫[1-cos(θ-θ_1)][1-cos(θ-θ_2)]log w(θ)^(dθ)_(2π > -∞if and only if ∑_(j=0)^∞ │{(δ-e^(-iθ2))(δ-e^(-iθ1))α}_j^2 +|α_j|^4 < ∞,where δ is the left shift operator (δβ)_j = β_(j+1). We also prove that ∫(1-cosθ)^2 log w (θ)^(dθ)_(2π) > - ∞ if and only if ∑_(j=0)^∞|α_(j+2) - 2α_(j+1) + α_j|^2 + |αj|^ 6 <∞.
Item Type: | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||||||||
ORCID: |
| ||||||||||||
Additional Information: | © 2005 Elsevier Inc. Received 16 September 2004, Accepted 9 February 2005, Available online 7 April 2005. Communicated by Leonid Golinskii We thank S. Denisovand S. Kupin for telling us of their joint work [3]. | ||||||||||||
Subject Keywords: | Orthogonal polynomials on the unit circle; Szegő theorem | ||||||||||||
Issue or Number: | 1 | ||||||||||||
DOI: | 10.1016/j.jat.2005.02.003 | ||||||||||||
Record Number: | CaltechAUTHORS:20170512-073745126 | ||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20170512-073745126 | ||||||||||||
Official Citation: | Barry Simon, Andrej Zlatoš, Higher-order Szegő theorems with two singular points, Journal of Approximation Theory, Volume 134, Issue 1, May 2005, Pages 114-129, ISSN 0021-9045, https://doi.org/10.1016/j.jat.2005.02.003. (http://www.sciencedirect.com/science/article/pii/S0021904505000456) | ||||||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||
ID Code: | 77390 | ||||||||||||
Collection: | CaltechAUTHORS | ||||||||||||
Deposited By: | Ruth Sustaita | ||||||||||||
Deposited On: | 12 May 2017 23:55 | ||||||||||||
Last Modified: | 15 Nov 2021 17:30 |
Repository Staff Only: item control page