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Tracer diffusion in active suspensions
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We study the diffusion of a Brownian probe particle of size R in a dilute dispersion of active Brownian particles

of size a, characteristic swim speed U, reorientation time g, and mechanical energy k, 7y = ¢, UO2 T /6, where
¢, is the Stokes drag coefficient of a swimmer. The probe has a thermal diffusivity Dp = kgT /¢p, where kgT
is the thermal energy of the solvent and ¢p is the Stokes drag coefficient for the probe. When the swimmers
are inactive, collisions between the probe and the swimmers sterically hinder the probe’s diffusive motion. In

competition with this steric hindrance is an enhancement driven by the activity of the swimmers. The strength
of swimming relative to thermal diffusion is set by Pe; = Upa/Dp. The active contribution to the diffusivity
scales as Pef for weak swimming and Pe; for strong swimming, but the transition between these two regimes is
nonmonotonic. When fluctuations in the probe motion decay on the time scale t, the active diffusivity scales as
kT /¢p: the probe moves as if it were immersed in a solvent with energy k, 7 rather than kg7 .

DOI: 10.1103/PhysRevE.95.052605

I. INTRODUCTION

Diffusive and rheological properties of active suspensions
are important for understanding many biological systems and
processes, such as transport within cells. Active Brownian
particles (ABPs), which move with a self-propulsive velocity
U, and randomly reorient with a characteristic time scale tg,
provide a minimal model for active suspensions; even the
precise mechanism of their autonomous motion need not be
specified. The motion of these active particles, or “swimmers,”
affects not only material properties (e.g., viscosity) but also the
motion of passive constituents, such as nutrients or signaling
proteins that may be important for cell survival.

In a passive suspension where particles lack the ability
to self-propel, it is well known that “collisions” between a
probe and the bath particles sterically hinder the long-time
diffusive motion of a probe; the effective long-time diffusivity
is less than the isolated Stokes-Einstein-Sutherland (SES)
value [1,2]. By contrast, experiments have confirmed that
colloidal tracers (both Brownian and non-Brownian) in active
bacterial suspensions undergo enhanced diffusive motion at
long times due to bath activity. This is observed not only
in liquid cultures, but also in porous media and on agar
surfaces [3-5]. As aresult, recent theoretical and experimental
investigations have been motivated to understand the character
of this enhanced diffusive motion and to provide models that
describe this behavior [6-15]. For example, Kasyap et al.
[10] developed a mean-field hydrodynamic theory to describe
the effects of binary interactions between point tracers and
ellipsoidal bacterial swimmers. This theory predicts a net
enhancement of tracer diffusivity arising from the fluid flow
induced by the swimming bacteria, which was shown to be
a nonmonotonic function of a Péclet number relating the
strength of bacterial advection to the Brownian motion of
the tracer. Experiments have also observed a nonmonotonicity
in the Péclet number when varying the size of the tracer
particle [16]. Other theory and experiments propose that the
enhancement to the diffusivity is linear in the “active flux” due
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to the swimmers’ autonomous motion [6—9], and that, in close
contact, entrainment of tracers in the swimmers’ flow field is
primarily responsible for this enhancement [13,14].

Here we show that these same qualitative features are recov-
ered without considering hydrodynamic interactions (HI)—the
enhanced diffusivity of passive particles may be understood as
aresult of the activity of the bath particles and excluded volume
interactions alone. This does not mean the HI are not important,
only that their effect is quantitative, not qualitative. We use a
Smoluchowski-level analysis to model the active suspension
and compute the long-time diffusivity of a passive probe
using generalized Taylor dispersion theory and expansions in
orientational tensor harmonics [2,17,18]. The derivation and
complete expressions for the active diffusivity of the probe are
given in the Appendix; here we focus on limiting behaviors.
Additionally, we show that these excluded volume interactions
have important implications for experimental measurements
of activity-enhanced diffusion: steric hindrance to passive
diffusion is in competition with active enhancement, and both
effects must be considered when designing and analyzing
experiments.

II. MECHANICAL MODEL

Consider a passive Brownian particle of size R moving
through a bath comprised of a Newtonian solvent of viscosity
n, and a dispersion of ABPs of size a, swim speed Uy,
and reorientation time tg. This reorientation time may be
the Brownian reorientation time, or a characteristic tumbling
time of a swimmer. The origin of fluctuations in swimmer
orientation is unimportant; at long times (¢ > tg), it may be
effectively modeled by a diffusive process. In the absence
of the probe, the swimmers undergo both a thermal and an
active random walk, where the thermal walk is characterized
by the SES diffusivity D,, and the random walk due to
their self-propulsion is characterized by a swim diffusivity
DS¥im —= U2t /6. We define the mechanical activity of the
bath as the Stokes drag times the swim diffusivity: k,T; =
LoD, just as kgT = ¢, D, [19,20]. The volume fraction
of swimmers is ¢ = 47m3n°°/3, where n® is the uniform
number density of swimmers far from the probe. The probe has
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a thermal diffusivity Dp = kT /p, and the probe-swimmer
pair has a relative thermal diffusivity D™ = D, + Dp. The
competition between swimming and Brownian motion is
governed by the swim Péclet number: Pe; = UyR./D™ =
UyR/D, = Upa/Dp, and R. = R+ a is the center-to-
center separation distance of the probe and swimmer upon
contact.

In the absence of activity, the (passive) bath particles
hinder the probe’s motion due to steric interactions [1]. For
dilute suspensions, the active contribution to the diffusivity is
(D*Y = (DM — DpI(1 — ), where (D) is the effective
diffusivity of the probe, and ¢, = ¢(R./ a)? /2 measures the
number of swimmers colliding with the probe (which can be
much larger than the actual volume fraction ¢ for large probes).
The diffusivity of a probe in a suspension of inactive swimmers
is DpI(1 — ¢,). When the probe and ABP are the same size,
Pact = 2¢, and the steric reduction is 1 — 2¢, a well-known
result in the absence of HI. (With full HI, the reduction is
1 —2.1¢ [1].) Both the effective and active diffusivities are
isotropic.

We can predict D** with simple scaling arguments. The
kinematic definition of the diffusivity is D*' = N(U’)’t,
where U’ is the magnitude of the probe’s velocity fluctuations
due to collisions with the swimmers, T is the time scale
over which these fluctuations become decorrelated, and N
is the number of swimmers colliding with the probe. Upon
collision, a swimmer pushes the probe with its propulsive
swim force F*“™ = ¢,U,, while the solvent resists this
motion via the probe’s Stokes drag. Thus, the magnitude of
velocity fluctuations is U’ ~ ¢,Uy/¢p. (When the probe is
small compared to the swimmers, the velocity fluctuations
scale with the swim speed, U’ ~ Uy.) On average the probe
will experience N ~ n® R? collisions, where R? is the volume
occupied by a swimmer-probe pair. Hence,

a7

~

2
Dt~ nOORC3 <§_u> []02 7, R >
cp

n®R}Ut, R<a. (1)

The time scale t differs depending on the dominant physical
process governing the decorrelation and can take one of three
values: (i) the diffusive time tp = RZ /D™, (ii) the advective
time T,qy = R/ Uy, and (iii) the reorientation time tg.

III. ACTIVE DIFFUSIVITY

(i) When the decorrelation time 7 = tp = Rf /D™, the
probe’s fluctuations are induced by the swimming bath
particles, but the fluctuations are sufficiently weak (Pe; < 1)
that they decay on the time scale of Brownian diffusion. The
scaling argument predicts D*' ~ Dp Pe?qﬁact, and the detailed
calculations give

D™ = 2 DpPel¢pyci, 2)

as one would expect for Taylor dispersion: the linear-response
diffusivity scales as Pef, (or UOZ). Kasyap et al. [10] found
that the hydrodynamically driven diffusivity of a point tracer
scales as Peg’/ 2 /Uotr /a when swimming is weak, which is
also quadratic in Uy. We predict that D' ~ Pef for all a/R,
but curiously we find no explicit dependence on tg, although
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FIG. 1. Active diffusivity of the probe as a function of the ratio
of the pair-diffusion time to the advection time Pe; = tp /Ty =
UyR./D™, where U, is the swim speed, R, is the center-to-center
separation distance of the probe and swimmer upon contact, and
D™ is the relative thermal diffusivity of the probe-swimmer pair.
The ratio 7p/7x indicates the strength of Brownian motion relative
to the reorientations of the swimmers. The active diffusivity is
nondimensionalized by the probe’s SES diffusivity Dp times the
active volume fraction ¢, = (4n/3)n°°RL2,a/2, where a is the
swimmer size and n* is the number density of swimmers.

such a dependence is evident in Fig. 1; we address this in point
(iii) below.

(ii) When swimming is strong compared to Brownian
motion, the appropriate time scale is T = 1,qy = R,/ Up. The
swimmers are bombarding the probe so rapidly that the
resulting fluctuations become decorrelated on the time it takes
for swimmers to traverse the distance R,.. The scaling analysis
(1) predicts D*' ~ DpPeshoey ~ Upagact, and the detailed
Smoluchowski approach gives

D>t — 1 an(2+\/2TD/TR>¢ ..
33 14+ 2tp/tr )¢

The probe’s diffusivity is now linear in the swim speed U
(or linear in Pey), as expected from Taylor dispersion theory.
Kasyap et al. [10] find that D*' ~ n®a3Upa (because the
tracers have no size in their analysis, the only geometric length
scale is the swimmer size a), but their result is independent
of 7. The transition from diffusive to advective behavior is
shown in Fig. 1.

In this limit, the run length of a swimmer, £ = Uytg, is large
compared to the pair size R., and a swimmer collides with
the probe before it is able to traverse its full run length. The
swimmer pushes the probe with force ¢, Uy, butitis only able to
move it a distance of O(a) on average. One might think that the
swimmer should be able to push the probe the contact length
R., but the no-flux boundary condition allows the swimmer to
slide along the probe’s surface, and thus the average distance of
apush is only O(a). Just as in the diffusion-controlled regime,
the result is insensitive to the swimmer-probe size ratio a/R.
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It manifests only in ¢,, which simply becomes ¢ for point
tracers. Finally, we note that the ratio of the other two time
scales tp/tr has no bearing on the scaling of the diffusivity
in this limit—it can only change the result by a factor of 2.

However, tp/tg significantly affects the behavior in the
diffusion-dominated regime and the location of the transition
from diffusive to advective behavior. When tp /7t < 1, reori-
entations are slow and the transition occurs for Pe; ~ O(1), as
one would expect. However, as reorientations become faster
(tp /g increases), the transition occurs at much higher values
of Pe; (see Fig. 1). In the athermal limit of no translational
diffusion (rp — 00), the transition to strong swimming is
governed by the reorientation Péclet number Peg = 1,4y /75 =
R./¢ ~ O(1) rather than the swim Péclet number Pe,.

(iii)) When Brownian motion is weak compared to the
swimmers’ reorientations, the decorrelation time is set by
the reorientation time: T = tg. The scaling arguments predict
D ~ (ko Ty /Cp)act, OF D™ ~ DSVimg, for small probes. The
result of the Smoluchowski analysis is in agreement:

act __ kSTS 5
D™ = ( & Rcd)acb “4)

Note that there is no dependence on kgT .

Suppose that the swimmers and probe are large enough
so that Brownian motion is not important, but the swimmers’
reorientation time is relatively fast. The probe receives many
small active kicks of size kT, from the swimmers, which are
dissipated by the Stokes drag ¢p. Thus, the diffusivity looks
like what one would expect from a stochastic “Brownian”
process, where the energy is kT rather than kzT'. In the limit
when the probe is very small, (k;Ts/¢p)(R/R.) — UgrR/é,
Pact — @, and the active diffusivity is simply the swim
diffusivity times the volume fraction of swimmers: D*' =
D™ As a swimmer hops in one direction, an equal volume
of solvent is displaced in the opposite direction.

Because the probe receives many small kicks from the
swimmers, its motion is governed by a Langevin equation, 0 =
—¢pU+ F swim where U is the probe velocity and the swim-
mers exert a fluctuating force with zero mean (F**'™) = 0 and
autocorrelation (FSVM(p) FsVim(t")) = 2k, T,cpI8(t —t') for
times long compared to tz. The mean-squared displacement
follows as ([Ax(£)]?) = 2(k, T, /¢p)tI for the diffusivity of a
particle immersed in such an active medium.

In this “continuum limit,” the probe acts as a thermometer
that measures the swimmers’ activity k;7;. When £/R. — 0,
active suspensions have a well-defined “temperature” through
their activity ky7; [21] because the motion looks like a
stochastic Brownian process. When £/R. >> 1, as is the case
in the strong swimming regime, the definition of temperature
breaks down because the swimmers no longer move the
probe a distance ¢, they only push it a distance a between
reorientations. Thus, the swimmers do not ‘“share” their
activity fully with the probe; the appropriate shared quantity
in this limit is Peg.

Figure 2 shows D*' as a function of tp/tx for vari-
ous values of D*im/D™ = (tp/tg)/t2, ~ k;Ty/kpT. For
Tp/TR — 00, we recover the continuum-like scaling for any
value of kT, / kg T. Even though intuition might suggest that
the diffusivity should be dominated by thermal kicks when
kT, < kT, itis important to remember that it is the solvent,
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FIG. 2. Active diffusivity of the probe nondimensionalized by
(ksT,;/¢p)(R/R. ). as a function of the ratio of the diffusion time
to the swimmer reorientation time 7p/tg = Rf /TR D™ for various
values of the mechanical to thermal energy, kT, / kg T, where k, T, =
La U(% TR / 6.

not the bath particles, that gives the probe thermal kicks. The
swimmers can only give kicks of size k;7;. The finite size
of the swimmers replaces a volume of solvent, thus reducing
the number of thermal kicks the probe receives. The O(@,c)
change in the probe diffusivity is actually negative when
kyT; < kpT (see the inset of Fig. 3): steric hinderance exceeds
active enhancement.
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FIG. 3. Active diffusivity of the probe nondimensionalized by
Ujag. as a function of Pe; = 7p/Tugy = UpR./D™. The ratio
TR/ Taav = UopTr/R. = /R, reflects the speed of reorientation rel-
ative to advection. The inset shows the total O(¢,.) change in the
probe’s diffusivity, nondimensionalized by Dp@,., where Dp is the
bare diffusivity of the probe.
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An interesting feature predicted by the detailed theory is a
nonmonotonic dependence of D** on both tp /7 and Pey, as
seen in Figs. 2 and 3, respectively. As Pe; increases, thermal
diffusion slows and swimming becomes more important, SO we
transition from diffusive to advective behavior. This transition
does not occur monotonically with Pe; because Peg = 7,4y /7r
also influences the dynamics. Imagine a scenario in which tp
and ti are fixed and R > a, but we adjust the swimmers’
speed (perhaps by altering the amount of available fuel). When
the swimmers move slowly, Brownian motion dominates:
Dt = D' /(Upapaer) ~ Pe,. When the swim speed is large,
advection dominates and D2t is constant. When tp ~ Tagy,
neither wins out and the reorientations are allowed to influence
the dynamics. Finite Brownian motion keeps the swimmers
close to the probe after a collision, and slow reorientation
allows the swimmer to collide with the probe again rather than
run off, thus the diffusivity is slightly higher than the advective
scaling. When reorientations are too fast, this peak disappears.
This is corroborated by Fig. 2, which reveals that D* is only
nonmonotonic when k;T; < kgT. The nonmonotonicity still
occurs when 7p ~ g, but Brownian motion is only strong
enough to compete with activity if the thermal energy of the
solvent exceeds the activity of the bath.

Kasyap et al. [10] find the same phenomenon in their
treatment. When the diffusion is hydrodynamic in origin and
advection dominates, the tracer follows a straight trajectory
along fluid streamlines. Weak Brownian motion allows the
tracer to sample more trajectories, and the odd symmetry
of the bacterium’s dipolar flow field results in an increased
correlation in probe motion. When Brownian motion is
strong, the probe’s motion decorrelates and the diffusivity
decreases. Thus the diffusivity decreases nonmonotonically
with increasing Brownian motion (i.e., as one moves from
right to left in Fig. 3). Patteson et al. [16] see something
similar in experiments by varying the probe size, which is
equivalent to varying Pe; when all other parameters are fixed.
They scale D™ by n®L3UyL, where L is the total bacterium
length. They find that this scaled diffusivity first increases
with probe size as approximately R and then decreases to
a plateau. Our scaling analysis predicts that D3 is linear
in probe size when diffusion dominates, and independent of
probe size when advection dominates. In between, when the
appropriate time scale is g, D% scales as 1/R, thus capturing
the nonmonotonicity. The peak in D is predicted around
Pe; ~ 5 in our study and in [10], but it is found experimentally
around Pe; ~ O(10%); the source of such a large discrepancy
is not known. Lastly, we note that the inset of Fig. 3 shows
that this nonmonotonicity is obscured by the steric hindrance,
reinforcing the importance of considering excluded-volume
interactions in active suspensions.

Another common model, used by Mifio et al. [7] to describe
enhanced diffusion of tracers in bacterial suspensions, says that
the active enhancement is proportional to the advective flux of
the active particles: D = Dp + BJ,, where J, = n®Uj in
our notation, similar to what we find for strong swimming.
Lin et al. [11] predict that 8 scales as the body size to
the fourth power for squirmers, but subsequent theoretical
derivations indicate that 8'/# also depends on the swimmer’s
hydrodynamic dipole moment, particle size, system geometry,
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swimming efficiency, etc. As in [10], these studies do not
take the swimmers to be thermally active. Additionally, they
argue that the size of the tracer particle does not affect
[7], and thus excluded-volume effects are generally neglected.
This is valid when the tracer particles are always far enough
away from the bacteria that the size effects in the Faxén
expression for their velocity are negligible, which is consistent
with theoretical models that assume the bacteria to be simple
hydrodynamic dipoles (which is only true in the far field
[22,23]). In simulations by Ishikawa er al. [15], it was observed
that point tracers diffuse more freely than tracers of finite size
in suspensions of squirmers. They also argue that the effect is
small, and thus they do not quantify the effect systematically
as a function of tracer size.

For this 8 model, our Smoluchowski theory predicts g =
(27 /9v3)R2a*[(2 + /2tp )/ (1 + /2Tp/Tr)]. The ability
of the swimmer to randomly reorient is not required for this
enhancement to the diffusivity, as argued in [8]. In contrast to
some of these experimental studies, our result depends on the
size of the tracer particle. In the system of Jepson ef al. [6],
the tracers are nonmotile E. Coli in a suspension of motile E.
Coli with equivalent spherical dimension ¢ = 1.4 um. From
their experimental parameters, we predict 8 = 3.22a*-6.45a*.
To match the experimentally found value of g = 7.1 um*,
our theory predicts that the E. Coli would have an equivalent
spherical dimension of a = 1.02-1.22 pm.

As previously proposed, this advective flux model ignores
the steric hinderance of the passive suspension, which should
be accounted for by

Deﬁ‘z l)P(l _¢act)+:31a' (5)

The steric hinderance is especially important when swimming
is weak (Fig. 3). Experimentally, one should measure the bare
diffusivity of a tracer, and then the change in diffusivity among
nonmotile swimmers to recover the effective particle size R,
from Batchelor’s theory [1]. Knowing R, the average swim
speed, the reorientation time, and the bare particle diffusivities,
one can calculate the active diffusivity from our theory and then
compare to experimental measurements.

We presented a micromechanical model for the effective
diffusivity of a passive particle embedded in a suspension of
ABPs. Using a generalized Taylor dispersion approach, and
employing an expansion in orientational tensor harmonics, we
found an exact analytical expression for the effective diffusiv-
ity of a Brownian probe for arbitrary particle sizes, swimmer
activity, and time scales. Our theory agrees qualitatively
with previous experimental and theoretical investigations of
enhanced diffusion in active suspensions, and it can be used to
explore regimes of parameter space not typically considered
in most experiments. It highlights several key features of
diffusion in active suspensions: (i) the diffusion of a tracer
is nonmonotonic in a Péclet number comparing swimming to
thermal diffusion, (ii) steric hindrance of tracer motion is in
competition with the enhancement due to bath activity, and
(ii1), when fluctuations of the tracer’s motion decorrelate on
the same time scale as the swimmers’ reorientations, the bath
mimics a homogeneous solvent with energy k7.
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FIG. 4. Depiction of the model system. There is a Brownian probe
of size R immersed in a dispersion of ABPs with size a at number

density n*°. The ABPs swim in a direction g with speed Uj, and they
reorient with a characteristic time tz.
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APPENDIX A: AVERAGE PROBE MOTION

The dynamics of the suspension are described by a
Smoluchowski equation for P({x;},{q;},?), the conditional
probability of finding particle i at position x;, with orientation
q; at time ¢. The braces indicate a dependence on the position
and orientation of each particle in the suspension. When the
suspension is sufficiently dilute, only the pairwise interactions
between the probe and a single swimmer matter, and one
may write a Smoluchowski equation for the joint probability
distribution, P»(z,r,q;t), where z is the position of the probe,
r is the position of the swimmer relative to the probe, and q
is the orientation of the swimmer relative to the probe (see
Fig. 4):

dPy(z,r.q;1) . : . ;
o AV Ve (2 = 1)+ Ve 7 =0,
(A1)
where
J{ :—DPVZP2+DPVrP2, (AZ)
j;:quPZ_DaVrPZ’ (A3)
J§ = —‘L’I;lVRPQ, (A4)

and Vi = g x V, is the rotational operator. Again, we have
neglected HI in this study.

When computing the effective diffusivity of the probe, we
must track the average single-particle motion due to collisions
with bath particles. To accomplish this, one averages the pair-
level equation over all possible positions and orientations of
the swimmer relative to the probe. This yields an equation for
P\ (z;1), the probe’s single-particle probability distribution:

P

0% v, (i) =0,

o7 (AS5)

PHYSICAL REVIEW E 95, 052605 (2017)

where we have made use of the divergence theorem and the
condition that there is no relative translational flux at contact or
infinity. The angular brackets denote an ensemble average over
all possible relative configurations of the swimmer relative to
the probe—over dr dgq. It is easier to work in Fourier space,
and as such we take a Fourier transform with respect to the
coordinate z to give
P . e

where the carets denote the Fourier transform of their corre-
sponding quantities in physical space, and k is the Fourier wave
vector, which has the interpretation of the inverse wavelength
for the probe’s fluctuations. The ensemble-averaged flux of the
probe in Fourier space is

(le) = —ikDpﬁ] — Dpf/ V,ﬁgdrdq.

The last term in the above expression shows that the collisional
effects on probe motion are governed by the average gradient
in the pair-level probability distribution. To determine the
distribution of the bath particles relative to the probe, it is
useful to define a structure function, g(k,r,q;t), such that

Py(k,r.q;t) = g(k,r.q;1)Py(k; 1). (A8)

(A6)

(AT)

To find the long-time diffusivity of the probe, we take a
small-wave vector expansion of the structure function,

g =go(r.q;t)+ik-d(r,q;t) + O(K>),

where d = (Vg)r—o is the fluctuation field.
The average flux of the probe is

(flT) = P (DP// V.go(r.q;t)drdq

— Dpik - [1 —// V,d(r,q;t)drdq]). (A10)

The first term gives the average probe speed as it moves through
the suspension:

(Uy) = Dp/ /ngo(r,q;t)dqd&
r=R.

(A9)

(Al1)

The O(k) bracketed term represents the probe dispersion, and
defines the effective diffusivity:

(D™ = Dp [1 — / / nd(r.q;t)dq dS], (A12)
r=R.

which follows from Eq. (A10) by the divergence theorem. The
vector n is the outward pointing unit normal vector of the
probe. Because we are considering steric effects, the surface
integral is computed over the exclusion region around the
probe-swimmer contact distance: r = R,.

APPENDIX B: MICROSTRUCTURE
GOVERNING EQUATIONS

To determine the structure functions, we write the pair-level
Smoluchowski equation in Fourier space:

3f’2 . 2 2 2 2
—=+ik-J{+V.-(J7 —J1)+ Ve J5 =0,

o B1)
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which can be simplified using the definition of g:

dg A P .
a—fpl +g8_l +lk |:—lkDp +DP/V,gdr]P1
+V, - [Uwgg — D'V, gl Py
+ik-V,gP —15'VigP = 0. (B2)

Making use of the governing equation for P, and taking
the system to be at steady state, the Smoluchowski equation
reduces to

V,-[Uogg — D™V, gl +2Dpik - V,g — 15 Vg =0,
(B3)

with boundary conditions of no-flux at particle contact and
uniform probability distribution at infinity:

n-[Uygg — D™'V,g + Dpikgl =0, r=R., (B4)

g~n*®, r— oo (B5)

We expand the function gy and the fluctuation field d in
terms of orientational tensor harmonics,

go(r.q:t) =GOt +q - GVr;1)
+(qq —31): GPr;H+---,  (BO)

dr.g;t) =dO@;t)+q-dV;1)
+(qq — 31) :d®@:)+---, (B
and make the closures G® = 0,d® = 0. We take the zeroth
and first orientational moments of Eq. (B3), scale the coordi-

nate r by R,, and divide through by n°° R?/D™! to obtain four
coupled PDEs:

V - [Pe,GV — VG =0, (B8)
n-[Pe,GY —VGP1=0, r=1, (B9)
GO ~1, r— oo, (B10)
Pe; - ~0 ) 2
2 3IG -vGY | +y*G" =0, (B11)
Pe, - 0 )
3 =169 -vGgV|=0, r=1, (B12)
GV ~0, r— oo, (B13)
V - [Pe,dV — Vd? —e1GP1 =0, (B14)
n- [Pesd(” —vd© — %IG(‘))] =0, r=1, (BI5)
d9 ~0, r— oo, (B16)
Pe, 0 (M M 2401)
Pe;, 0 M _ € 7am
el —1d9 —vd —EIG =0,r=1, (BIY)
dV ~0, r— oo, (B19)
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where € = 2a/R.. The natural dimensionless groups that
arise in scaling the equations are the swim Péclet num-
ber Pe; = UyR./D™ and the rotational parameter y2 =
2tp/tr. The effective diffusivity will be determined entirely
by d©.

APPENDIX C: SCREENED HARMONIC SOLUTION

Equations (B8) and (B11) may be decoupled by taking the
divergence of (B11):

VIV -GV) -2}V -GV)=0, (CI)

where A2 = Pef /3 + y2. This is a Helmholtz equation for the
divergence of GV, so we can expand it in gradients of the

fundamental solution:
e—kr E_M
+ By - V< )
r r

—Ar
LAy vv(er >+ ©2)

V.-GV = ¢,

where the constants Ag, Bg,Co, ... are determined from the
boundary conditions. Because there is no tensorial order at the
boundaries, V - G® = Cye™" /r only. We then substitute into
Eq. (B8) and obtain a Poisson equation for the function G©:

—Ar

V26O = CyPe, & —. (C3)

which has the solution

C, CoPe; e

GV =cC+— C4
R F (C4)

This can be substituted into the governing equation for GV:

Pe,

v:G"Y — y2GY = 3 — VG, (C5)
which has the solution
m 1 e Pe, n

The boundary condition at infinity requires C; = 1 and the
contact conditions require C, = 0. Thus,

Pe?/3 e A(r—1)

G =1
+2(k+1)+y2 r

, (C7)

which is the same as the concentration profile of ABPs outside
a sphere. From here, one can then solve the equations for the
fluctuation field by the same method.
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The fluctuation field d©@ in terms of two undetermined coefficients is

B Pe? /9x4 o1 Pe o1
d(O) — - s —A(r=1[ = . —A S A= = =
n r2 2(A+1)+y26 r+r2 ¢ Aze r—i_r2
Pe? /32 1 Pe? 31 31 1
_ s 1 )e2=D — =242, C8
200+ 1)+ 2 (3A2+ ) e Thr T2 (€8)

where the coefficients A and B are coupled to the field d¥, which can be constructed with screened multipoles and linearity
arguments:

1 1 nn I nn I nn
a _ ) 2
! _€<Ce ' {7_?[<3r_3_r_3>+y<3r_2_r_2)+” r ]}
1 3 Pey VRN OV | nn 1 ,nn
- O3 - D) (35 - 5 ) 4222
2220+ D+ s a)t 2 )TN
1 2
L 7Yt I S L O A DY P A S L
20+ 1) + y? PR r2 r? r
1 “Ar—1) nn I nn 1 2nn 1 Pe; 1
+ 54 32 (3B -5+ v (32 -5
- rz 2 r 392\ 3
(2)\42 - y2)2 —A(r=1) nn 1 nn I nn
ol (32 ) a3 o D) 222
e 20+ D1 ¢ a3 TP ) A

N Pe (202 —y?)/30* .} 3 ooran(L sy, 11 _nn\ (3 N 1 (©9)
e r —)+=l=-—-—)- —+= )
20+ 1)+ y2 4)»2 r3 2\r r 422 2

The coefficients A, B, and C are determined by the no-flux boundary condition at »r = 1. We have a linear system of three
equations that may be solved to find algebraic expressions for d®:

(3o (52) () om0
Bl;es —C<2+Vi+ )3/ +V>+%(2’\2_7’2)<;+4i2+%+%+¥>
=G+3+ ﬁ(% - % + Azazco_ v Cigfjj:;j)y) o
—(9+ 91 +422 + A3)( - 9 + Az Az(kzco_ 2 Cxoéiij:;j;z) B CO(zl,\JZr .
P[ER ey ARen 60011 100

We solved this system of equations in MATHEMATICA to create the figures in this article. They may be solved by hand as well,
but the expressions are long and it is difficult to elucidate important physics from the full expressions.
The effective diffusivity is given by

(D = DP[I —n® f nd“”dS}, (C13)
r=R.
which, in terms of the undetermined coefficients, is
4r Pe?/ont P

DMy = Dpl{1 - Zen®R B— —— " (4 )= A—e O+ 1

(D) p{ 3R G+ Dty A+ -A— A+1)
Pe? /312 11>e§Jrl 3 .3 .1 Cl4)

200+ D +y2\3 22 42 T an 2]

2
When the bath particles are inactive, Pe; = 0, A = 0, B = 1/4, and we recover the classic result: (DY = DpI[1 — %(%) 1.
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