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Abstract-The creative process of team design can he rapid 
and powerful when focused, yet complex designs, such as 
spacecrafi. can slow and quench the essential elements of 
this process. Concurrent Engineering techniques partially 
address this problem, but a fuller realization of their benefits 
require an approach centering on the human aspects of 
teamwork. ICEMakerTM is a Microsofi Excel@ based 
software tool that facilitates closer-to-ideal collaboration 
within teams employing the new Integrated Concurrent 
Engineering (ICE) methodology. ICE is a generic approach 
that emphasizes focused collaborative design in a single- 
room context. and is now employed at several aerospace 
organizations to increase the productivity of design teams 
defining complex early development-phase products. By 
way of introduction, this paper describes the basic elements 
of ICE needed to understand ICEMaker and its application. 
We present the design approach, philosophy, and client- 

server architecture of the ICEMaker system, as well as a 
simplified user scenario. NASA's Jet Propulsion 
Laboratory (JPL) has recently adopted ICEMaker for its 
primary early-phase space mission and system advanced 
project design team, Team-X. We describe Team-X's 
experience with ICEMaker and report on the lessons 
learned, and qualitative product improvements, resulting 
fiom JPL's implementation of ICEMaker. 
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1. INTRODUCTION 

The creative process of team design can he rapid and 
powerful when focused, yet complex, designs such as 
spacecraft can slow and quench the essential elements of 
this process. Long-winded calculations and fmdmg data 
become rate-determining steps for evolving and exploring 
design alternatives: a half-day roundtable event becomes a 
multi-week hierarchy of design meetings delayed hy 
relatively isolated progression of the slowest design 
elements. Concurrent Engineering techniques partially 
address these problems. but the full potential of computers 
to automate calculation and centralize databases has yet to 
be realized because computer usage tends to disperse teams 
back to their offices and discourages the unimpeded verbal 
communication. social context, and collective judgments 
that make focused single-room collaborations so pow,erful. 

ICEMaker is a software system designed to increase the 
productivity of multidisciplinary technical teams engaged in 
the design or analysis of complex products 111. 
Specifically, ICEMaker has been designed to ease the 
transition from traditional collaborative design and analysis 
methods to new, more productive, Integrated Concurrent 
Engineering (ICE) methods. Two key features of ICE are 
critical to understanding ICEMaker as they dictate 
important requirements that ICEMaker was developed to 
support: 

i. Team collaboration, including design and analysis, 
is done in real-time sessions in which conversation and 
quantitative computer-aided engineering are 
concurrent. This is in contrast to traditional methods in 
which teams separate meetings from quantitative 
engineering in a meet-work-meet mode of 
collaboration. 

ii. Computer tools on separate team member 
workstations are linked together to allow the 
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quantitative engineering process to keep pace with 
qualitative discussions. 

Hence, ICEMaker is a system that ties computer-based 
design models or computer-aided design (CAD) tools 
together in such a way that engineers can use their tools to 
do quantitative analysis and design in real-time. during 
collaborative sessions. This real-time collaborative process 
is at the heart oflCE. 

2. THE ICE PARADIGM 
Integrated Concurrent Engineering (ICE) is a real-time 
collaborative process in which a multidisciplinary team 
discusses a design or analysis problem while concurrently 
conducting quantitative, computer-based calculations. 
Documented examples of ICE systems include TRW’s 
Integrated Concept Design Facility (ICDF) [2], JPL’s 
Project Design Center [3], Boeing’s Concurrent Integrated 
Engineering Laboratory (CJEL) [4], and UTC‘s Integrated 
Concurrent Engineering Center (ICEC) [5]. In this paper 
we will review the basic elements of the ICE concept 
needed to understand the design philosophy and purpose of 
ICEMaker. Another paper by one of the authors (Sercel, 
[ 6 ] )  provides a more complete description of the ICE 
method, gives the reader more information on how to 
rapidly deploy ICE, and discusses a recent case study of its 
application in industry. 

Table 1. The Five ICE Principles Checklist 
t I 

1. 

2 .  Network-Linked Tools 

A well-defined set of Standard Infomation Products I 
Adapted to eliminate manual reformatting of inputs 
and outputs 
Facilitate nearly instant quantitative engineering 

3. Well-understood Procedures for Real-time 
Collaboration 

Concurrent quantitative engineering and 
qualitative conversation 

4. A standmg Multidisciplinary Team skilled in the tools 
and methods 

A Facilig supporting the hardware, sofhvare, and 
human resources 

5. 

Principle I-Standard Information Products. The first 
principle of ICE is to recognize that the work product of 
technical professionals, including engineers and scientists, 
is information. The job of such technical professionals can 
he understood as converting one type of information, for 
example requirements. into another type of information, for 
example design specifications. Organizations made up of 
technical professionals can he viewed as possessing 
competencies, whereby there exist classes of information 
that the professionals within the organization can 
predictably and consistently produce. We refer to these 
classes of information as Standard Information Products. 
Organizations possess unique competencies reflecting the 
expertise of their staff and hence possess unique sets of 
Standard Information Products that they can reliably 
produce. Examples of Standard Information Products in the 
domain of spacecraft systems and missions include 
telecommunications link budgets, spacecraft thermal 
analyses, structural designs, and mission delta-V estimates. 
Organizations working in other fields have completely 
different Standard Information Products. 

An important criterion for ICE is that an organization 
systematically identifies and defines its Standard 
Information Products. Without defining a standard set of 
products, it is impossible to systematize the process and 
gain productivity benefits fiom the application of ICE. By 
contrast, once an organization has carefully defmed a set of 
standard information products, it has taken the fust step in 
defining a systematic process to best capitalize on its human 
and computational resources and increase productivity. 
This is the first step in moving 60m an ad-hoc process, and 
is in some ways analogous to the transition of hardware 
production fiom pre-industrial cottage industries, to 
systematic industrial process during the industrial 
revolution. In our case, the product is not hardware, but 
complex information products. 

Principle 2-Network-Linked Tools. The vast majority of 
engineers and scientists use quantitative design or analysis 
tools io their day-to-day work. These tools include 
mathematical models, computer-aided design (CAD) 
systems, databases, productivity applications such as 
spreadsheets and mathematics packages, and many other 
types of software. Such software increases individual user 
productivity but frequently induces severe productivity 
bottlenecks at the points of input and output. These 
bottlenecks come in many forms hut include tool-specific 
data formatting needs, extensive graphical user interface 
(GUI) based tool setuu reauirements. or data translation 
~I . .  
needs in which design parameters developed by other team 

By way of background, a methodoky which implements mmben be manually into a different 
ICE includes a checklist of Five ICE Principles, listed in technical through but 
Table 1, that define the ICE methodology and provide an mathematical operations, Fomately, most of these 
objective way to assess the degree to which an organization bonlenecks are easily using modem I. r-r 

systems that make use of standard application programming 
interfaces (APIs), file wrappers, and scripting languages. 

IS using ILL 
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intellectual activity with similarities to those of medical 
operating rooms, aircraft control rooms, or spacecraft 
operational control centers. As with these other activities it 
is critical that all team members have distinct roles and 
know certain practiced procedures. 

1CEMaker is an example of a particularly simple such 
software system. 

Principle 3-Procedures for Real-time Collaboration. ICE 
methods represent a very different way of working for 
technical teams. For those used to working in traditional 
ways. these changes can be a challenging transition. It is 
not obvious to most engineers how to conduct a 
collaboration session in such a way that the quantitative 
analysis is properly interspersed with qualitative discussion. 
or how to regulate the whole activity for maximum 
productivity. In addition, practical experience with ICE 
methods sweests that team members need to intersperse 

1. ties to ubiquitous and simple-to-use engineering 
tools such as Microsoft Excel 

provide a shared database that any team 
browse, search, and link to design parameters 

2, 

The reader should he keenly aware that ICEMaker and the 
ICE process are not synonymous. The ICE process can use 
any of several commercial software tool-linkiig and 
database-sharing software systems. However. whatever 
system is chosen should support ICE concepts and therefore 
must meet the simple set of requirements outlined in Table 
2. ICEMaker is particularly well suited to early-stage 
conceptual-level design processes in which design models 
are instantiated in spreadsheets or other tools that work with 
tab-delimited text files. ICE can also be implemented for 
later-stage design work that involves more complex data- 
linking and database-sharing systems. 

- 
time in design sessions with time between design sessions. 
Finallv. the ICE Drocess has been likened to an intensive 

Table 2. ICE Process Requirements Placed on ICEMaker 
b 

Principle 4-Standing Multidisciplinary Team. Given the 
need for clear team procedures and roles, integrated. 
tailored software, and well-defined Standard Information 
Products, it should he clear that an engineer, analyst, or 
scientist cannot simply step into an ICE environment and 
work productively on day one. Training or experience is 
required with the specific software tools, team procedures. 
and even to understand what the team is there to produce. 
Sercel has found that the team should be a standing group 
well-trained with a common perspective and approach to 
provide maximum productivity. 

Principle 5-Available, Applicable, Facility. The team must 
have a place to work that provides the appropriate 

3. Allow team members to easily send and receive design 
parameters directly from models or CAD tools 

Provide an open architecture to allow other tools such 
as CAD systems to tie into a shared database 

5. Provide a fast send-and-request process for outputting 
to and inputting from the shared database tolfrom 
design models or tools 

4. 

6. Support hut do not limit the team to a rational 
engineering parameter naming convention 

environment including a conference table, networked 
computer workstations, and a projection station capable of 
showing work results. This facility can he either real or 
virtual, as experiments and practical experience show that 
ICE methods can be applied remotely with the proper video 
conferencing system. It has also been shown that team 
members wing  to apply ICE methods in their own offices 
almost inevitably fail to produce repeatable, measurable 
productivity gains. The significance of the facility is that it 
facilitates team building and team dynamics in ways that 
separate offices or cubicles cannot. 

3. THE ICEMAKER SOFTWARE 

This section describes the philosophies that guided the 
development of ICEMaker into a client-server system, and 
put into context the roles that ICEMaker and its 
functionality play in the design process. 

Design Objectives and Approach 

The ICEMaker design objectives arose from the authors‘ 
observation of the strengths and weaknesses of previous in- 
house software used for ICE collaboration at Caltech and 

Tho I C F M n b v  norion Philnmnhv JPL. Fundamentally, it was felt that the software should I_”p.. . “7., 
facilitate the digital Bide of ICE collaboration as invisibly as 
possible. partly to avoid the drawbacks of the previous 
software, 

ICEMaker is designed as a simple Way to implement ICE 
allowing users to easily link engineering parameters 
between rule-based design tools such as those instantiated in 

was wriaen to: 

spreadsheets or parametric CAD SystemS. ICEMaker aids Facilitate the team process of decomposing a design 
the rapid application of ICE principles to new or existing problem into modules. Hereon we will refer to 
projects, fulfilling the criteria in Table 2, resulting in a modules as ‘design subsystems‘, or simply 
quick transition and robust basis for subsequent use with ‘subsystems’ 
complex designs. 

1. 

3 
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2. Embody the design calculations, databases, and 
knowledge of a subsystem within the software in a way 
that can easily be witten, accumulated, stored, adapted 
from earlier projects, and used as a tool 

Integrate the team process of assigning tasks. design, 
and data responsibilities with the software process of 
linking modules together via the data Inputs and 
Outputs for each subsystem 

Facilitate quick, easy, traceable, and understandable 
data exchange between subsystems 

3. 

4. 

5. Provide a self-explanatory starting point to begin 
navigating each subsystem, for the benefit of those 
unfamiliar with it 

Leave human-suited tasks to humans by refraining from 
automating away processes that should incorporate the 
personal values of the user 

6. 

To fulfill these objectives a Microsoft Excel based approach 
was chosen, whereby a design subsystem is encompassed 
within a workbook file. Microsoft Excel is understood, 
used by, and on the desktop of most engint-rrs. In addition, 
it has its own scripting language, Visual Basic for 
Applications (VBA), which is versatile and widely used. 
The spreadsheet approach is ideal for 'quick and dirty' 
calculations as well as more involved analysis using the 
built-in scientific functions and Analysis ToolPaks. For 
more involved calculations, Excel has commercially 
available add-ons to interface with scientific applications 
including Mathematicam, Matlab@, and LabViewTM. Other 
software, such as Visual Basic and SolidWorksa, can 
interface directly uith Excel or read Excel workbook files. 
Lastly. Excel's built-in dynamic link library (DLL) calling 
routines allow the use of DLLs that are custom-written, for 
example, in C++ or Fortran. 

The Client-Server Architecture and Communications 

Modularity is accomplished using Excel workbooks as 
modules, which we call subsystems. Communication 
between subsystems is accomplished using a client-server 
architecture as shown in Figure I ,  in which a server 
mediates data exchange between clients (subsystems). In 
the original version of ICEMaker, the server was also an 
Excel workbook, executing macros to perform 
communication functions; however. this has been 
superceded in subsequent versions by a much faster 
standalone Visual Basic application, discussed shortly. 

Initially, blank subsystems are generated by the server, 
possessing just the functionality necessary for exchanging 
data with the server. Communication is achieved via 
intermediate workbook files that are exchanged via a 
common file system. This method has two very appealing 
features: First. workbooks are easily generated, opened, 
and saved by VBA commands. Second, the actual data 
exchange is handled by the operating systems of the 
computers involved, instead of by a custom-added 
communication capability for Excel. It is also worth 
mentioning that the on-screen buttons and VBA code of the 
subsystems is written in such a way that they fimction on 
any platform that runs Excel, and therefore subsystems can 
communicate cross-platform as long as the computers 
involved have reaUwrite access to the project folder. 
The ICEMaker folder structure, shown in Figure 2, can be 
located at any level within a file system. The root folder is 
named after the project (Project Chaos). When multiple 
revisions of a project are generated a revision number can 
be added to this folder name (Project Chaos - rev B). The 
root folder has two subfolders: Client Subsystems and 
Project Server. The Client Subsystems folder contains all 
subsystem workbooks for the project, and they are unable to 
communicate with the server without being in this folder. 
Though somewhat restrictive. this ensures that an up-to-date 
collection of all essential project files are maintained 
centrally, allowing easy archiving of design variations. 
Withm the Client Subsystems folder the Incoming subfolder 
is used for sending intermediate data workbooks from the 
server to the clients. The Template subfolder stores a blank 

ISubsystem AI 

(Subsystem B 
/ \ 

(Subsystem Ct--(selver~Subsystem NI 

Subsystem D 
(Implemented I" CAD package 

instead d E%& Wokkbook) 

Subsystem E 
(c(lmputatiana1ly intensive, 
uses ext-al fundion calls1 

Figure 1 - The Client-Server Architecture 
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$3 Project Chaos 
Ei Client Subsystems 

Incoming 
Template 

E Incoming 
0 Project Server 

Server Info Requests 
Subsystem Input Requests 
Subsystem Outputs 

Figure 2 - The ICEMaker Project Folder Structure 
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Main Window 
I ICEMaker Clients Window 

Figure 3 - The ICEMaker Server User Interface 

template subsystem workbook used by the server to create 
new subsystem workbooks. The project server and 
associated data files are stored in the Project Server folder. 
The Incoming subfolder has further suhfoiders that deal 
with different types of data transfer from the subsystems to 
the server. Collectively. the Incoming subfolder of the 
Client Subsystems and Project Server folders handles both 
directions of client-server communication. 

The Server 

ICEMaker Server, developed using Visual Basic and Visual 
C++, is a standalone application that runs on any 32-bit 
version of Microsoft Windows”. Each running copy of the 
server is associated with a single ICEMaker project and 
processes all data sent by that project’s client workbooks. 
An ICEMaker project cannot be associated simultaneously 
with more than one running copy of the server. The server 
GUI consists of two primary windows: the main window, 
titled ICEMaker Server, and the ICEMaker Clients window, 
both shown in Figure 3. The main window displays a log of 
server events: warnings and error messages are highlighted 
in the log to distinguish them fiom less significant 
informational messages. 

The ICEMaker Clients window, also shown in Figure 3. 
contains panes labeled Publish and Subscribe displaying the 
time that each subsystem last sent or requested parameters, 
respectively. The user switches between panes by clicking 
the tabs at the bottom of the window. Whenever a 
subsystem sends or requests parameters, the time shown is 
updated and the subsystem name is highlighted; 

highlighting makes it easier for the user to determine which 
subsystems have recently sent or requested parameters. By 
right-clicking within the window, the user can access a 
shortcut menu containing commands to remove all 
highlighting and to rename or remove a client. 

The main window also provides menu commands to create 
new client workbooks (by copying and customizing a 
generic ‘-template“ workbook for specific subsystems), and 
to export all parameters to an Excel worksheet or tab- 
delimited text file. The exported file (Figure 4) lists the 
values of all parameter fields (Name, Value, Unit, and 
Comment) and indicates which subsystems, if any, currently 
send or request each parameter. 

The Client 

The ICEMaker client encapsulates subsystems as Excel 
workbooks, capable of communicating with each other via 
the server. The client workbook is generated by the server, 
and is ‘born‘ with the necessary worksheets, GUI, and 
communication routines already in place. The 
communication routines O,@,O, shown in Figure 5, are 
written in VBA. initiated via buttons on the GUI, and 
indirectly communicate with the server via intermediate 
worksheet files. The workbook initially consists of four 
worksheets: Main, Inputs, Outputs, and Project Status. 

The Main sheet 0, in Figure 5, is initially blank and is a 
staaing point from which a user unfamiliar with the 
subsystem can begin to navigate its calculations. For simple 
subsystems this might become a summary sheet of main 

5 



Vol. 8-3674 

Figure 4 - A worksheet produced by the Export All Parameters menu command 

calculation results. More involved subsystems might 
construct this page as an index to other worksheets that 
contain major sub-calculations or component databases. As 
subsystem calculations grow. the owner adds extra 
worksheets as needed for sub-calculations, databases, 
design knowledge, and so on. The ease of adapting and 
expanding subsystem calculations with project needs is one 
of the most powerful aspects of ICEMaker. 

The Inputs sheet Q requires a subsystem to explicitly 
declare data from other subsystems as parameters, and 
standardizes the location and way in which parameters are 
declared. It contains columns labeled From Subsystem, 
Name, Value, Units, and Comments; hence the data in a row 
constitutes a parameter. The parameter name is the key 
field and must be unique. In projects with many parameters 
this naturally leads to standardization of the parameter name 
structure to include context information, clarifying what the 
parameter is, and making the name easier to guess by 
someone who needs it. A parameter value can be requested 
from the server by entering just the name on the fvst blank 
row of the Inputs sheet and pressing a Request button. If a 
parameter of that name has already been sent to the server 
6om another subsystem, the server fills in the remaining 
fields, otherwise, the server registers the parameter as 
wanted. Importantly, supplement;uy information about 
where a value is calculated and what it represents is 

6 

conveyed by the Subsystem, Units, and Comments fields. 
The latter of these can be used to indicate the method that 
generated the value, such as ‘educated guess’ or ‘calculated 
via method X’, or a degree of confidence such as ‘take with 
a pinch of salt’. 

Similarly to the Inputs sheet. the Outputs sheet E3 requires a 
subsystem to explicitly declare data calculated within the 
subsystem workbook that is used by other subsystems. It 
contains columns labeled Name, Value, Units, and 
Comments. A parameter can be sent to the server by 
entering a name and any data in any other fields, and 
pressing a Send button. In combination, the Inputs and 
Outputs sheets represent the connectivity of the tool with 
the other subsystems via the server. Within the workbook, 
calculations reference input values 6om the Inputs sheet, 
and output values are referenced by the Outputs sheet. 

The Project Storm sheet 0 provides an alternative menu- 
based method for requesting and agreeing to provide new 
parameters, instead of entering parameter names directly 
onto Inputs and Outputs. It is used mostly at the parameter 
auctioning stage. and initially has no data. Pressing the 
Refresh Data From Server button 0 populates the sheet 
with all the parameters held by the server. These 
parameters are categorized into two columns: Parameters 
Wanted and Parameters Available. When someone 
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... 

... ... 

.... 

requests a parameter that is not provided by anyone, the 
server registers the parameter as wanted, and it appears on 
the left. Parameters that are provided by any subsystem are 
categorized as available. on the right. Drop-down lists 
allow the selection of a parameter, either to provide or 
request. Pressing button @ or 0 adds that parameter to the 
corresponding Inputs or Oiitpiits worksheet. and then 
communicates that change to the server. For example, if the 
Power subsystem (shown) agrees to provide the parameter 
named 'Number, cyc/es, enfire / f e  - Orbiter' then the 

.... 0 .... 

'"'Q 

......... Q 

parameter moves to the Parameters Available category, on 
the right. By agreeing to provide this parameter, Power is 
obligated to calculate values. specify units and comments, 
and Send them. It has exclusive control of those fields until 
the parameter is released by removing the corresponding 
row from Outputs and pressing Send. 
Use Case 

There are two main phases to producing a design 
concurrently between team members. In the first phase, an 
initial idea is decomposed into subsystems, and data 

@ ................. 

@ ................ 

0 .............. 

Figure 5 - Relations Between Major Software Functions and The GUI 
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relationships between the subsystems are formed. In the 
second phase, representative data values are exchanged 
between subsystems using the previously established data 
relationships. 

We describe these two phases here for a generic project 
stating from scratch. Steps are modified or omitted in 
situations where prior experience of a project or project type 
exists. For example, spacecraft designs are typically 
decomposed into the same subsystems from one design to 
the next, with perhaps one or two changes of niche areas 
directly relating to the mission specialization, and have 
similar data relationships between subsystems even for very 
different types of spacecraft. In these cases the project 
decomposition can be skipped, as well as most of Phase 1. 

Phase I-Forming the parametric model: 
1.  Choose a team member to administrate the ICE process. 

Usually this member is designated the Process Leader 
or System Engineer. 

2.1. Brainstorm idea as a team, forming a list of the 
disciplines and expertise involved. 

2.2. Decompose the concept into subsystems, forming 
interfaces according to tradition or the “simplest 
interface” rule. 

2.3. Set up project folders and generate named 
subsystem workbooks for each subsystem. 

2.4. Usually a Mission, Project, a d o r  Systems 
subsystem is established to manage top-level 
mission figures of merit such as cost. lifetime, and 
(scientific or monetary) return. The System 
Engineer usually operates this subsystem. 

Team discusses information required from each other 
and forms data relationships. 
3.1. Flowing down from the initial project 

requirements, individual team members list 
information needed to define a system that meets 
the given requirements. 

3.2. Each piece of needed information is given a name, 
often according to a naming convention, and 
entered into the Inputs sheet of the subsystem that 
needs it, to become a wanted parameter. 

3.3. All subsystems Refiesh Data From Server, and 
the Process Leader or System Engineer runs down 
the Parameters Wanted category of the Project 
Statllr sheet verbally ‘auctioning off the 
parameters to the subsystems most suited to 
provide them. 

3.4. Subsystems agree to provide parameters, in turn 
needmg more information, which may or may not 
already be provided in the Parameters Available 
category. By agreeing to provide a parameter, a 
subsystem assumes responsibility to calculate that 
value and is assigned exclusive control of it by the 
server: the parameter then moves to the 
Parameters Available category. 

2. Initial idea 

3 .  

3.5. The total Parameters Wanted initially snowball. 
Steps 3.2 to 3.4 are repeated until the system 
‘converges’ and there are no more parameters 
remaining in the Purameters Wanted category. 
This represents the state where the data 
relationships are fully joined between subsystems 
with no disconnects. These data relationships can 
be tabulated by the sewer. as shown in Figure 4. 

Blank Subsystems are transformed into design tools by 
constructing calculations and databases relevant to the 
subsystem role and needed to fulfill data 
responsibilities. 
Without attempting calculation, each subsystem enters 
initial educated guesses as values in their Oirtpirts and 
Sends. 

4. 

5. 

Phme 2- ‘Steady state’ data exchange: 
1. With the necessary parameters established, calculations 

in place, and initial guessed values in the system, a fust 
iteration occurs. In a process akm to Newton iteration, 
the subsystems Request, perform necessary 
calculations, and Send, iteratively until the major 
system quantities stabilize (converge). For a spacecraft 
design, major system quantities might he total mass, 
power consumption, or cost, and could he located in the 
Mission subsystem. 
The System Engineer makes top-level design decisions 
or modifies requirements, and another iteration is 
performed. The process continues, and variants of the 
design are considered and characterized as d e t a i n e d  
by the System Engineer, eventually constituting a 
thorough examination of the design variations or ’trade 
space’. 

2. 

4. IMPLEMENTATION AT JPL 
ICEMaker has recently been adopted by Team-X at NASA 
JPL. JPL is NASA’s lead center for robotic exploration of 
the solar system. Team-X is JPL‘s advanced project design 
team. The primary purpose of Team-X is twofold to 
improve the quality of and reduce the time in completing 
JPL mission concepts through a study process with 
dedicated facilities, equipment, procedures, and tools [7], 
[SI. Team-X enables mission principal investigators and 
their design teams to plan new mission proposals efficiently. 
Team-X consists of 16 different subsystem (discipline) 
experts, a team leader, and a documentalist. Table 3 
summarizes the different subsystems represented in Team- 
X. Each subsystem expert has a computer workstation to 
assist in his or her subsystem design. The team leader 
coordinates and leads the study and is the customer’s 
primary contact before, during, and after study sessions. 
The team follows the integrated concurrent engineering 
(ICE) method discussed earlier. The documentalist 
establishes electronic files, records significant technical 
discussions, and ensures that study results are properly 
documented. Team-X products are mission design 
feasibility studies and reviews. A study lasts one to two 

8 
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weeks and results in a 30-80 page report that includes 
equipment lists, mass and power budgets. system and 
subsystem descriptions, and a projected mission cost 
estimate. 

The Project Design Center (PDC) is the dedicated facility 
for Team-X design sessions. The different subsystem 
computer workstations in the PDC are connected to one 
another via a local area network (LAN). Microsoft Excel is 
the primary design tool used by the different subsystem 
experts at their workstations. Certain subsystem experts 
require additional software to assist in their design: for 
example, the Structures expert uses SolidWorksw 2000 for 
configuration analysis. From 1996 to January 2001, Team- 
X used Macintosh computers for all subsystem 
workstations. The Macintosh version of Excel at that time 
included the “publish and “subscribe” functions that could 
pass data among LAN members. When Team-X switched 
to personal computers (PCs) in January 2001, a crude set of 
dummy worksheets and Visual Basic macros were added to 
each of the subsystem tools to pass data since the version of 
Excel for PCs did not support the “publish and “subscribe“ 
functions. Problems with data exchange in Team-X became 
significant enough during 2001 that the team leader and 
several subsystem experts began looking into a possible 
replacement for the dummy worksheets and Visual Basic 
macros. 

ICEMaker was presented to Team-X as a solution in the fall 
of 2001. From December 2001 to May 2002 several Team- 
X members began a thorough implementation and testing of 
ICEMaker with the Team-X tools. ICEMaker clients were 
created for each of the subsystems listed in Table 3. Each 
subsystem tool was inserted into its respective client. 
Implementing ICEMaker involved two major steps: 
updating the Team-X parameter set to a new naming 
convention and linking this parameter set to the rest of the 
tool. Approximately 2000 unique parameters are passed 
among Team-X members. The parameter naming 
convention used by Team-X is: 

Attribute, attribute modifier - 
Product, product modifier 

Many Team-X parameters were simple enough that they did 
not require the full parameter convention described. Below 
are some examples that the power subsystem passed to other 
Team-X members: 

Assumptions, cost - Power 

Mass, CBE dry - Solar array, per wing 
with substrate 

Efficiency - Solar cell  

Number - Batteries, primary 

The parameter export capability of ICEMaker Sewer was 
used to look for disconnects between the parameters 
requested and sent from one subsystem to another. The 
bulk of the implementation time was dedicated to linking 
the parameters on the Inputs and Outputs sheet to the rest of 
the tool for each subsystem. Testing the integrated Team-X 
- ICEMaker system began with hvo subsystems and was 
expanded subsystem hy subsystem. It should he 
acknowledged that several of the features and 
improvements in ICEMaker Sewer. described earlier, were 
due to requests from members of Team-X discovered during 
this testing period. The official switch to ICEMaker 
occurred in May 2002, and it has heen used successfully 
since. 

As of August 2002, ICEMaker has also been licensed to 
United Technology Research Center (East Hartford, CT), 
Boeing Satellite Systems - CIEL Laboratory (El Segundo, 
CA), NASA Glenn Research Center - Design Center 
(Cleveland, ’ OH), and the California State University, 
Northridge - Design, Analysis & Simulation Laboratory 
(Northridge, CA). 

Table 3. Team-X subsystems 
Attitude control 
Command data systems 
Configuration 
cost 
Ground systems 
Instruments 
Mission design 
Power 
Program management 
Propulsion 
Science 
Structures 
Systems engineering 
Telecommunications - System 
Telecommunications - Hardware 
Thermal control 

5. CONCLUSIONS 
As of August 2002. Team-X has completed approximately 
20 studies using ICEMaker. Team-X members took on 
average one month to become comfortable with ICEMaker. 
There have been some minor implementation issues with 
Team-X hut these have heen addressed or circumvented. 

At present, Team-X measures its performance by customer 
satisfaction. Customer satisfaction is based on a number of 
factors, including the quality, timeliness, and cost of a 
design study. Prior to adopting ICEMaker. Team-X already 
adhered to the ICE methodology, and so there was no 
significant decrease in the number of man-hours required 
for a design, and hence the cost remained about the same. 
However, the System Engineer has reported a marked 
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increase in the quality of design studies produced using 
ICEMaker, and hence customer satisfaction has increased. 
These increases are subjective and have not yet been studied 
quantitatively. 

In particular. the quality of design studies has improved 
because sharing data is faster and easier than with the 
previous system, enabling more in-depth study of design 
issues. The ability of the System Engineer to display 
information. such as parameter lists, has led to a greater 
degree of flexibility in leading the design effort. Unlike 
Team-X’s earlier soha re ,  ICEMaker bas enabled real-time 
studies with groups at other locations, further increasing the 
flexibility of their design process. 

In summary, there have been fewer data exchange problems 
using ICEMaker than the previous system. New parameters 
and clients were successfully added on the fly during a 
session. The successful implementation of ICEMaker at 
JPL has demonstrated that ICEMaker can have a positive 
impact, even for organizations previously employing ICE 
methodologies. 
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