
Vol. 8-3669

ICEMakerTM: An Excel-Based
Environment for Collaborative Design

Kevin L.G. Parkin . Joel C. Sercel , Michael J. Liu , Daniel P. Thunnissen
Division of Engineering and Applied Science

California Institute of Technology
Pasadena. CA 91 125

(626) 395-4785
ha19000@caltech.edu, sercel@caltech.edu, mikej_liu@hotmail.com, dthunnis@caltech.edu

Abstract-The creative process of team design can he rapid
and powerful when focused, yet complex designs, such as
spacecrafi. can slow and quench the essential elements of
this process. Concurrent Engineering techniques partially
address this problem, but a fuller realization of their benefits
require an approach centering on the human aspects of
teamwork. ICEMakerTM is a Microsofi Excel@ based
software tool that facilitates closer-to-ideal collaboration
within teams employing the new Integrated Concurrent
Engineering (ICE) methodology. ICE is a generic approach
that emphasizes focused collaborative design in a single-
room context. and is now employed at several aerospace
organizations to increase the productivity of design teams
defining complex early development-phase products. By
way of introduction, this paper describes the basic elements
of ICE needed to understand ICEMaker and its application.
We present the design approach, philosophy, and client-

server architecture of the ICEMaker system, as well as a
simplified user scenario. NASA's Jet Propulsion
Laboratory (JPL) has recently adopted ICEMaker for its
primary early-phase space mission and system advanced
project design team, Team-X. We describe Team-X's
experience with ICEMaker and report on the lessons
learned, and qualitative product improvements, resulting
fiom JPL's implementation of ICEMaker.

TABLE OF CONTENTS

2. THE ICE PARADIGM ...,_._.__._

4. hlPLEMENTATION AT JPL

ACKNOWLEDGEMENTS ... ,..___ .___ ._
REFERENCES

1. INTRODUCTION

The creative process of team design can he rapid and
powerful when focused, yet complex, designs such as
spacecraft can slow and quench the essential elements of
this process. Long-winded calculations and fmdmg data
become rate-determining steps for evolving and exploring
design alternatives: a half-day roundtable event becomes a
multi-week hierarchy of design meetings delayed hy
relatively isolated progression of the slowest design
elements. Concurrent Engineering techniques partially
address these problems. but the full potential of computers
to automate calculation and centralize databases has yet to
be realized because computer usage tends to disperse teams
back to their offices and discourages the unimpeded verbal
communication. social context, and collective judgments
that make focused single-room collaborations so pow,erful.

ICEMaker is a software system designed to increase the
productivity of multidisciplinary technical teams engaged in
the design or analysis of complex products 111.
Specifically, ICEMaker has been designed to ease the
transition from traditional collaborative design and analysis
methods to new, more productive, Integrated Concurrent
Engineering (ICE) methods. Two key features of ICE are
critical to understanding ICEMaker as they dictate
important requirements that ICEMaker was developed to
support:

i. Team collaboration, including design and analysis,
is done in real-time sessions in which conversation and
quantitative computer-aided engineering are
concurrent. This is in contrast to traditional methods in
which teams separate meetings from quantitative
engineering in a meet-work-meet mode of
collaboration.

ii. Computer tools on separate team member
workstations are linked together to allow the

' C-7803-7651-X/03/$17.00Q2003 IEEE
IEEEAC paper U 1564, Updated Jmuary 25,2003

1

mailto:ha19000@caltech.edu
mailto:sercel@caltech.edu
mailto:mikej_liu@hotmail.com
mailto:dthunnis@caltech.edu

Vol. 8-3670

quantitative engineering process to keep pace with
qualitative discussions.

Hence, ICEMaker is a system that ties computer-based
design models or computer-aided design (CAD) tools
together in such a way that engineers can use their tools to
do quantitative analysis and design in real-time. during
collaborative sessions. This real-time collaborative process
is at the heart oflCE.

2. THE ICE PARADIGM
Integrated Concurrent Engineering (ICE) is a real-time
collaborative process in which a multidisciplinary team
discusses a design or analysis problem while concurrently
conducting quantitative, computer-based calculations.
Documented examples of ICE systems include TRW’s
Integrated Concept Design Facility (ICDF) [2], JPL’s
Project Design Center [3], Boeing’s Concurrent Integrated
Engineering Laboratory (CJEL) [4], and UTC‘s Integrated
Concurrent Engineering Center (ICEC) [5]. In this paper
we will review the basic elements of the ICE concept
needed to understand the design philosophy and purpose of
ICEMaker. Another paper by one of the authors (Sercel,
[6]) provides a more complete description of the ICE
method, gives the reader more information on how to
rapidly deploy ICE, and discusses a recent case study of its
application in industry.

Table 1. The Five ICE Principles Checklist
t I

1.

2 . Network-Linked Tools

A well-defined set of Standard Infomation Products I
Adapted to eliminate manual reformatting of inputs
and outputs
Facilitate nearly instant quantitative engineering

3. Well-understood Procedures for Real-time
Collaboration

Concurrent quantitative engineering and
qualitative conversation

4. A standmg Multidisciplinary Team skilled in the tools
and methods

A Facilig supporting the hardware, sofhvare, and
human resources

5.

Principle I-Standard Information Products. The first
principle of ICE is to recognize that the work product of
technical professionals, including engineers and scientists,
is information. The job of such technical professionals can
he understood as converting one type of information, for
example requirements. into another type of information, for
example design specifications. Organizations made up of
technical professionals can he viewed as possessing
competencies, whereby there exist classes of information
that the professionals within the organization can
predictably and consistently produce. We refer to these
classes of information as Standard Information Products.
Organizations possess unique competencies reflecting the
expertise of their staff and hence possess unique sets of
Standard Information Products that they can reliably
produce. Examples of Standard Information Products in the
domain of spacecraft systems and missions include
telecommunications link budgets, spacecraft thermal
analyses, structural designs, and mission delta-V estimates.
Organizations working in other fields have completely
different Standard Information Products.

An important criterion for ICE is that an organization
systematically identifies and defines its Standard
Information Products. Without defining a standard set of
products, it is impossible to systematize the process and
gain productivity benefits fiom the application of ICE. By
contrast, once an organization has carefully defmed a set of
standard information products, it has taken the fust step in
defining a systematic process to best capitalize on its human
and computational resources and increase productivity.
This is the first step in moving 60m an ad-hoc process, and
is in some ways analogous to the transition of hardware
production fiom pre-industrial cottage industries, to
systematic industrial process during the industrial
revolution. In our case, the product is not hardware, but
complex information products.

Principle 2-Network-Linked Tools. The vast majority of
engineers and scientists use quantitative design or analysis
tools io their day-to-day work. These tools include
mathematical models, computer-aided design (CAD)
systems, databases, productivity applications such as
spreadsheets and mathematics packages, and many other
types of software. Such software increases individual user
productivity but frequently induces severe productivity
bottlenecks at the points of input and output. These
bottlenecks come in many forms hut include tool-specific
data formatting needs, extensive graphical user interface
(GUI) based tool setuu reauirements. or data translation
~I . .
needs in which design parameters developed by other team

By way of background, a methodoky which implements mmben be manually into a different
ICE includes a checklist of Five ICE Principles, listed in technical through but
Table 1, that define the ICE methodology and provide an mathematical operations, Fomately, most of these
objective way to assess the degree to which an organization bonlenecks are easily using modem I. r-r

systems that make use of standard application programming
interfaces (APIs), file wrappers, and scripting languages.

IS using ILL

2

Vol. 8-3671

intellectual activity with similarities to those of medical
operating rooms, aircraft control rooms, or spacecraft
operational control centers. As with these other activities it
is critical that all team members have distinct roles and
know certain practiced procedures.

1CEMaker is an example of a particularly simple such
software system.

Principle 3-Procedures for Real-time Collaboration. ICE
methods represent a very different way of working for
technical teams. For those used to working in traditional
ways. these changes can be a challenging transition. It is
not obvious to most engineers how to conduct a
collaboration session in such a way that the quantitative
analysis is properly interspersed with qualitative discussion.
or how to regulate the whole activity for maximum
productivity. In addition, practical experience with ICE
methods sweests that team members need to intersperse

1. ties to ubiquitous and simple-to-use engineering
tools such as Microsoft Excel

provide a shared database that any team
browse, search, and link to design parameters

2,

The reader should he keenly aware that ICEMaker and the
ICE process are not synonymous. The ICE process can use
any of several commercial software tool-linkiig and
database-sharing software systems. However. whatever
system is chosen should support ICE concepts and therefore
must meet the simple set of requirements outlined in Table
2. ICEMaker is particularly well suited to early-stage
conceptual-level design processes in which design models
are instantiated in spreadsheets or other tools that work with
tab-delimited text files. ICE can also be implemented for
later-stage design work that involves more complex data-
linking and database-sharing systems.

-
time in design sessions with time between design sessions.
Finallv. the ICE Drocess has been likened to an intensive

Table 2. ICE Process Requirements Placed on ICEMaker
b

Principle 4-Standing Multidisciplinary Team. Given the
need for clear team procedures and roles, integrated.
tailored software, and well-defined Standard Information
Products, it should he clear that an engineer, analyst, or
scientist cannot simply step into an ICE environment and
work productively on day one. Training or experience is
required with the specific software tools, team procedures.
and even to understand what the team is there to produce.
Sercel has found that the team should be a standing group
well-trained with a common perspective and approach to
provide maximum productivity.

Principle 5-Available, Applicable, Facility. The team must
have a place to work that provides the appropriate

3. Allow team members to easily send and receive design
parameters directly from models or CAD tools

Provide an open architecture to allow other tools such
as CAD systems to tie into a shared database

5. Provide a fast send-and-request process for outputting
to and inputting from the shared database tolfrom
design models or tools

4.

6. Support hut do not limit the team to a rational
engineering parameter naming convention

environment including a conference table, networked
computer workstations, and a projection station capable of
showing work results. This facility can he either real or
virtual, as experiments and practical experience show that
ICE methods can be applied remotely with the proper video
conferencing system. It has also been shown that team
members wing to apply ICE methods in their own offices
almost inevitably fail to produce repeatable, measurable
productivity gains. The significance of the facility is that it
facilitates team building and team dynamics in ways that
separate offices or cubicles cannot.

3. THE ICEMAKER SOFTWARE

This section describes the philosophies that guided the
development of ICEMaker into a client-server system, and
put into context the roles that ICEMaker and its
functionality play in the design process.

Design Objectives and Approach

The ICEMaker design objectives arose from the authors‘
observation of the strengths and weaknesses of previous in-
house software used for ICE collaboration at Caltech and

Tho I C F M n b v norion Philnmnhv JPL. Fundamentally, it was felt that the software should I_”p.. . “7.,
facilitate the digital Bide of ICE collaboration as invisibly as
possible. partly to avoid the drawbacks of the previous
software,

ICEMaker is designed as a simple Way to implement ICE
allowing users to easily link engineering parameters
between rule-based design tools such as those instantiated in

was wriaen to:

spreadsheets or parametric CAD SystemS. ICEMaker aids Facilitate the team process of decomposing a design
the rapid application of ICE principles to new or existing problem into modules. Hereon we will refer to
projects, fulfilling the criteria in Table 2, resulting in a modules as ‘design subsystems‘, or simply
quick transition and robust basis for subsequent use with ‘subsystems’
complex designs.

1.

3

Vol. 8-3672

2. Embody the design calculations, databases, and
knowledge of a subsystem within the software in a way
that can easily be witten, accumulated, stored, adapted
from earlier projects, and used as a tool

Integrate the team process of assigning tasks. design,
and data responsibilities with the software process of
linking modules together via the data Inputs and
Outputs for each subsystem

Facilitate quick, easy, traceable, and understandable
data exchange between subsystems

3.

4.

5. Provide a self-explanatory starting point to begin
navigating each subsystem, for the benefit of those
unfamiliar with it

Leave human-suited tasks to humans by refraining from
automating away processes that should incorporate the
personal values of the user

6.

To fulfill these objectives a Microsoft Excel based approach
was chosen, whereby a design subsystem is encompassed
within a workbook file. Microsoft Excel is understood,
used by, and on the desktop of most engint-rrs. In addition,
it has its own scripting language, Visual Basic for
Applications (VBA), which is versatile and widely used.
The spreadsheet approach is ideal for 'quick and dirty'
calculations as well as more involved analysis using the
built-in scientific functions and Analysis ToolPaks. For
more involved calculations, Excel has commercially
available add-ons to interface with scientific applications
including Mathematicam, Matlab@, and LabViewTM. Other
software, such as Visual Basic and SolidWorksa, can
interface directly uith Excel or read Excel workbook files.
Lastly. Excel's built-in dynamic link library (DLL) calling
routines allow the use of DLLs that are custom-written, for
example, in C++ or Fortran.

The Client-Server Architecture and Communications

Modularity is accomplished using Excel workbooks as
modules, which we call subsystems. Communication
between subsystems is accomplished using a client-server
architecture as shown in Figure I , in which a server
mediates data exchange between clients (subsystems). In
the original version of ICEMaker, the server was also an
Excel workbook, executing macros to perform
communication functions; however. this has been
superceded in subsequent versions by a much faster
standalone Visual Basic application, discussed shortly.

Initially, blank subsystems are generated by the server,
possessing just the functionality necessary for exchanging
data with the server. Communication is achieved via
intermediate workbook files that are exchanged via a
common file system. This method has two very appealing
features: First. workbooks are easily generated, opened,
and saved by VBA commands. Second, the actual data
exchange is handled by the operating systems of the
computers involved, instead of by a custom-added
communication capability for Excel. It is also worth
mentioning that the on-screen buttons and VBA code of the
subsystems is written in such a way that they fimction on
any platform that runs Excel, and therefore subsystems can
communicate cross-platform as long as the computers
involved have reaUwrite access to the project folder.
The ICEMaker folder structure, shown in Figure 2, can be
located at any level within a file system. The root folder is
named after the project (Project Chaos). When multiple
revisions of a project are generated a revision number can
be added to this folder name (Project Chaos - rev B). The
root folder has two subfolders: Client Subsystems and
Project Server. The Client Subsystems folder contains all
subsystem workbooks for the project, and they are unable to
communicate with the server without being in this folder.
Though somewhat restrictive. this ensures that an up-to-date
collection of all essential project files are maintained
centrally, allowing easy archiving of design variations.
Withm the Client Subsystems folder the Incoming subfolder
is used for sending intermediate data workbooks from the
server to the clients. The Template subfolder stores a blank

ISubsystem AI

(Subsystem B
/ \

(Subsystem Ct--(selver~Subsystem NI

Subsystem D
(Implemented I" CAD package

instead d E%& Wokkbook)

Subsystem E
(c(lmputatiana1ly intensive,
uses ext-al fundion calls1

Figure 1 - The Client-Server Architecture

4

$3 Project Chaos
Ei Client Subsystems

Incoming
Template

E Incoming
0 Project Server

Server Info Requests
Subsystem Input Requests
Subsystem Outputs

Figure 2 - The ICEMaker Project Folder Structure

Vol. 8-3673

Main Window
I ICEMaker Clients Window

Figure 3 - The ICEMaker Server User Interface

template subsystem workbook used by the server to create
new subsystem workbooks. The project server and
associated data files are stored in the Project Server folder.
The Incoming subfolder has further suhfoiders that deal
with different types of data transfer from the subsystems to
the server. Collectively. the Incoming subfolder of the
Client Subsystems and Project Server folders handles both
directions of client-server communication.

The Server

ICEMaker Server, developed using Visual Basic and Visual
C++, is a standalone application that runs on any 32-bit
version of Microsoft Windows”. Each running copy of the
server is associated with a single ICEMaker project and
processes all data sent by that project’s client workbooks.
An ICEMaker project cannot be associated simultaneously
with more than one running copy of the server. The server
GUI consists of two primary windows: the main window,
titled ICEMaker Server, and the ICEMaker Clients window,
both shown in Figure 3. The main window displays a log of
server events: warnings and error messages are highlighted
in the log to distinguish them fiom less significant
informational messages.

The ICEMaker Clients window, also shown in Figure 3.
contains panes labeled Publish and Subscribe displaying the
time that each subsystem last sent or requested parameters,
respectively. The user switches between panes by clicking
the tabs at the bottom of the window. Whenever a
subsystem sends or requests parameters, the time shown is
updated and the subsystem name is highlighted;

highlighting makes it easier for the user to determine which
subsystems have recently sent or requested parameters. By
right-clicking within the window, the user can access a
shortcut menu containing commands to remove all
highlighting and to rename or remove a client.

The main window also provides menu commands to create
new client workbooks (by copying and customizing a
generic ‘-template“ workbook for specific subsystems), and
to export all parameters to an Excel worksheet or tab-
delimited text file. The exported file (Figure 4) lists the
values of all parameter fields (Name, Value, Unit, and
Comment) and indicates which subsystems, if any, currently
send or request each parameter.

The Client

The ICEMaker client encapsulates subsystems as Excel
workbooks, capable of communicating with each other via
the server. The client workbook is generated by the server,
and is ‘born‘ with the necessary worksheets, GUI, and
communication routines already in place. The
communication routines O,@,O, shown in Figure 5, are
written in VBA. initiated via buttons on the GUI, and
indirectly communicate with the server via intermediate
worksheet files. The workbook initially consists of four
worksheets: Main, Inputs, Outputs, and Project Status.

The Main sheet 0, in Figure 5, is initially blank and is a
staaing point from which a user unfamiliar with the
subsystem can begin to navigate its calculations. For simple
subsystems this might become a summary sheet of main

5

Vol. 8-3674

Figure 4 - A worksheet produced by the Export All Parameters menu command

calculation results. More involved subsystems might
construct this page as an index to other worksheets that
contain major sub-calculations or component databases. As
subsystem calculations grow. the owner adds extra
worksheets as needed for sub-calculations, databases,
design knowledge, and so on. The ease of adapting and
expanding subsystem calculations with project needs is one
of the most powerful aspects of ICEMaker.

The Inputs sheet Q requires a subsystem to explicitly
declare data from other subsystems as parameters, and
standardizes the location and way in which parameters are
declared. It contains columns labeled From Subsystem,
Name, Value, Units, and Comments; hence the data in a row
constitutes a parameter. The parameter name is the key
field and must be unique. In projects with many parameters
this naturally leads to standardization of the parameter name
structure to include context information, clarifying what the
parameter is, and making the name easier to guess by
someone who needs it. A parameter value can be requested
from the server by entering just the name on the fvst blank
row of the Inputs sheet and pressing a Request button. If a
parameter of that name has already been sent to the server
6om another subsystem, the server fills in the remaining
fields, otherwise, the server registers the parameter as
wanted. Importantly, supplement;uy information about
where a value is calculated and what it represents is

6

conveyed by the Subsystem, Units, and Comments fields.
The latter of these can be used to indicate the method that
generated the value, such as ‘educated guess’ or ‘calculated
via method X’, or a degree of confidence such as ‘take with
a pinch of salt’.

Similarly to the Inputs sheet. the Outputs sheet E3 requires a
subsystem to explicitly declare data calculated within the
subsystem workbook that is used by other subsystems. It
contains columns labeled Name, Value, Units, and
Comments. A parameter can be sent to the server by
entering a name and any data in any other fields, and
pressing a Send button. In combination, the Inputs and
Outputs sheets represent the connectivity of the tool with
the other subsystems via the server. Within the workbook,
calculations reference input values 6om the Inputs sheet,
and output values are referenced by the Outputs sheet.

The Project Storm sheet 0 provides an alternative menu-
based method for requesting and agreeing to provide new
parameters, instead of entering parameter names directly
onto Inputs and Outputs. It is used mostly at the parameter
auctioning stage. and initially has no data. Pressing the
Refresh Data From Server button 0 populates the sheet
with all the parameters held by the server. These
parameters are categorized into two columns: Parameters
Wanted and Parameters Available. When someone

Vol. 8-3675

...

... ...

....

requests a parameter that is not provided by anyone, the
server registers the parameter as wanted, and it appears on
the left. Parameters that are provided by any subsystem are
categorized as available. on the right. Drop-down lists
allow the selection of a parameter, either to provide or
request. Pressing button @ or 0 adds that parameter to the
corresponding Inputs or Oiitpiits worksheet. and then
communicates that change to the server. For example, if the
Power subsystem (shown) agrees to provide the parameter
named 'Number, cyc/es, enfire / f e - Orbiter' then the

.... 0

'"'Q

......... Q

parameter moves to the Parameters Available category, on
the right. By agreeing to provide this parameter, Power is
obligated to calculate values. specify units and comments,
and Send them. It has exclusive control of those fields until
the parameter is released by removing the corresponding
row from Outputs and pressing Send.
Use Case

There are two main phases to producing a design
concurrently between team members. In the first phase, an
initial idea is decomposed into subsystems, and data

@

@

0

Figure 5 - Relations Between Major Software Functions and The GUI
7

Vol. 8-3676

relationships between the subsystems are formed. In the
second phase, representative data values are exchanged
between subsystems using the previously established data
relationships.

We describe these two phases here for a generic project
stating from scratch. Steps are modified or omitted in
situations where prior experience of a project or project type
exists. For example, spacecraft designs are typically
decomposed into the same subsystems from one design to
the next, with perhaps one or two changes of niche areas
directly relating to the mission specialization, and have
similar data relationships between subsystems even for very
different types of spacecraft. In these cases the project
decomposition can be skipped, as well as most of Phase 1.

Phase I-Forming the parametric model:
1. Choose a team member to administrate the ICE process.

Usually this member is designated the Process Leader
or System Engineer.

2.1. Brainstorm idea as a team, forming a list of the
disciplines and expertise involved.

2.2. Decompose the concept into subsystems, forming
interfaces according to tradition or the “simplest
interface” rule.

2.3. Set up project folders and generate named
subsystem workbooks for each subsystem.

2.4. Usually a Mission, Project, a d o r Systems
subsystem is established to manage top-level
mission figures of merit such as cost. lifetime, and
(scientific or monetary) return. The System
Engineer usually operates this subsystem.

Team discusses information required from each other
and forms data relationships.
3.1. Flowing down from the initial project

requirements, individual team members list
information needed to define a system that meets
the given requirements.

3.2. Each piece of needed information is given a name,
often according to a naming convention, and
entered into the Inputs sheet of the subsystem that
needs it, to become a wanted parameter.

3.3. All subsystems Refiesh Data From Server, and
the Process Leader or System Engineer runs down
the Parameters Wanted category of the Project
Statllr sheet verbally ‘auctioning off the
parameters to the subsystems most suited to
provide them.

3.4. Subsystems agree to provide parameters, in turn
needmg more information, which may or may not
already be provided in the Parameters Available
category. By agreeing to provide a parameter, a
subsystem assumes responsibility to calculate that
value and is assigned exclusive control of it by the
server: the parameter then moves to the
Parameters Available category.

2. Initial idea

3 .

3.5. The total Parameters Wanted initially snowball.
Steps 3.2 to 3.4 are repeated until the system
‘converges’ and there are no more parameters
remaining in the Purameters Wanted category.
This represents the state where the data
relationships are fully joined between subsystems
with no disconnects. These data relationships can
be tabulated by the sewer. as shown in Figure 4.

Blank Subsystems are transformed into design tools by
constructing calculations and databases relevant to the
subsystem role and needed to fulfill data
responsibilities.
Without attempting calculation, each subsystem enters
initial educated guesses as values in their Oirtpirts and
Sends.

4.

5.

Phme 2- ‘Steady state’ data exchange:
1. With the necessary parameters established, calculations

in place, and initial guessed values in the system, a fust
iteration occurs. In a process akm to Newton iteration,
the subsystems Request, perform necessary
calculations, and Send, iteratively until the major
system quantities stabilize (converge). For a spacecraft
design, major system quantities might he total mass,
power consumption, or cost, and could he located in the
Mission subsystem.
The System Engineer makes top-level design decisions
or modifies requirements, and another iteration is
performed. The process continues, and variants of the
design are considered and characterized as d e t a i n e d
by the System Engineer, eventually constituting a
thorough examination of the design variations or ’trade
space’.

2.

4. IMPLEMENTATION AT JPL
ICEMaker has recently been adopted by Team-X at NASA
JPL. JPL is NASA’s lead center for robotic exploration of
the solar system. Team-X is JPL‘s advanced project design
team. The primary purpose of Team-X is twofold to
improve the quality of and reduce the time in completing
JPL mission concepts through a study process with
dedicated facilities, equipment, procedures, and tools [7],
[SI. Team-X enables mission principal investigators and
their design teams to plan new mission proposals efficiently.
Team-X consists of 16 different subsystem (discipline)
experts, a team leader, and a documentalist. Table 3
summarizes the different subsystems represented in Team-
X. Each subsystem expert has a computer workstation to
assist in his or her subsystem design. The team leader
coordinates and leads the study and is the customer’s
primary contact before, during, and after study sessions.
The team follows the integrated concurrent engineering
(ICE) method discussed earlier. The documentalist
establishes electronic files, records significant technical
discussions, and ensures that study results are properly
documented. Team-X products are mission design
feasibility studies and reviews. A study lasts one to two

8

Vol. 8-3677

weeks and results in a 30-80 page report that includes
equipment lists, mass and power budgets. system and
subsystem descriptions, and a projected mission cost
estimate.

The Project Design Center (PDC) is the dedicated facility
for Team-X design sessions. The different subsystem
computer workstations in the PDC are connected to one
another via a local area network (LAN). Microsoft Excel is
the primary design tool used by the different subsystem
experts at their workstations. Certain subsystem experts
require additional software to assist in their design: for
example, the Structures expert uses SolidWorksw 2000 for
configuration analysis. From 1996 to January 2001, Team-
X used Macintosh computers for all subsystem
workstations. The Macintosh version of Excel at that time
included the “publish and “subscribe” functions that could
pass data among LAN members. When Team-X switched
to personal computers (PCs) in January 2001, a crude set of
dummy worksheets and Visual Basic macros were added to
each of the subsystem tools to pass data since the version of
Excel for PCs did not support the “publish and “subscribe“
functions. Problems with data exchange in Team-X became
significant enough during 2001 that the team leader and
several subsystem experts began looking into a possible
replacement for the dummy worksheets and Visual Basic
macros.

ICEMaker was presented to Team-X as a solution in the fall
of 2001. From December 2001 to May 2002 several Team-
X members began a thorough implementation and testing of
ICEMaker with the Team-X tools. ICEMaker clients were
created for each of the subsystems listed in Table 3. Each
subsystem tool was inserted into its respective client.
Implementing ICEMaker involved two major steps:
updating the Team-X parameter set to a new naming
convention and linking this parameter set to the rest of the
tool. Approximately 2000 unique parameters are passed
among Team-X members. The parameter naming
convention used by Team-X is:

Attribute, attribute modifier -
Product, product modifier

Many Team-X parameters were simple enough that they did
not require the full parameter convention described. Below
are some examples that the power subsystem passed to other
Team-X members:

Assumptions, cost - Power

Mass, CBE dry - Solar array, per wing
with substrate

Efficiency - Solar cell

Number - Batteries, primary

The parameter export capability of ICEMaker Sewer was
used to look for disconnects between the parameters
requested and sent from one subsystem to another. The
bulk of the implementation time was dedicated to linking
the parameters on the Inputs and Outputs sheet to the rest of
the tool for each subsystem. Testing the integrated Team-X
- ICEMaker system began with hvo subsystems and was
expanded subsystem hy subsystem. It should he
acknowledged that several of the features and
improvements in ICEMaker Sewer. described earlier, were
due to requests from members of Team-X discovered during
this testing period. The official switch to ICEMaker
occurred in May 2002, and it has heen used successfully
since.

As of August 2002, ICEMaker has also been licensed to
United Technology Research Center (East Hartford, CT),
Boeing Satellite Systems - CIEL Laboratory (El Segundo,
CA), NASA Glenn Research Center - Design Center
(Cleveland, ’ OH), and the California State University,
Northridge - Design, Analysis & Simulation Laboratory
(Northridge, CA).

Table 3. Team-X subsystems
Attitude control
Command data systems
Configuration
cost
Ground systems
Instruments
Mission design
Power
Program management
Propulsion
Science
Structures
Systems engineering
Telecommunications - System
Telecommunications - Hardware
Thermal control

5. CONCLUSIONS
As of August 2002. Team-X has completed approximately
20 studies using ICEMaker. Team-X members took on
average one month to become comfortable with ICEMaker.
There have been some minor implementation issues with
Team-X hut these have heen addressed or circumvented.

At present, Team-X measures its performance by customer
satisfaction. Customer satisfaction is based on a number of
factors, including the quality, timeliness, and cost of a
design study. Prior to adopting ICEMaker. Team-X already
adhered to the ICE methodology, and so there was no
significant decrease in the number of man-hours required
for a design, and hence the cost remained about the same.
However, the System Engineer has reported a marked

9

increase in the quality of design studies produced using
ICEMaker, and hence customer satisfaction has increased.
These increases are subjective and have not yet been studied
quantitatively.

In particular. the quality of design studies has improved
because sharing data is faster and easier than with the
previous system, enabling more in-depth study of design
issues. The ability of the System Engineer to display
information. such as parameter lists, has led to a greater
degree of flexibility in leading the design effort. Unlike
Team-X’s earlier soha re , ICEMaker bas enabled real-time
studies with groups at other locations, further increasing the
flexibility of their design process.

In summary, there have been fewer data exchange problems
using ICEMaker than the previous system. New parameters
and clients were successfully added on the fly during a
session. The successful implementation of ICEMaker at
JPL has demonstrated that ICEMaker can have a positive
impact, even for organizations previously employing ICE
methodologies.

ACKNOWLEDGEMENTS
We would like to thank Professor Fred Culick (Division of
Engineering and Applied Science, California Institute of
Technology); Matt Johnson, Bob Ohertn, Theodore
Sweetser, and Robert Moeller (Mission and Systems
Architecture Section, JPL); Ray Baker (Thermal and
Propulsion Engineering Section, JPL); and the many
individuals whose suggestions contributed to the
development of ICEMaker.

ICEMaker was developed for the Laboratory for Spacecraft
and Mission Design (LSMD) at the California Institute of
Technology in Pasadena, California. The two primary
sponsors of the LSMD during the development of
ICEMaker were JPL and TRW Space & Electronics
(Redondo Beach, California).

REFERENCES

[l] Presley, S. and Ne& J., “Implementing a Concurrent
Design Process ‘The Human Element is the Most Powerful
Part of the System’,” 2000 IEEE Aerospace Conference
Proceedings, March, 2000.

[2] Heim, J., et al., “TRW Process Improvements for Rapid
Concept Designs,” 1999 IEEE Aerospace Conference
Proceedings, March, 1999.

[3] Wall, S., “Reinventing the Design Process: Teams and
Models,” International Astronautical Federation Specialist
Symposium on Novel Concepts for Smaller, Faster and
Better Space Missions, Redondo Beach, CA, April 1999.

[4] Sanders, G., “The Shy’s the Limit for CIEL,” BSS
World, Vol. 3. Number 13, July 12.2002.

[SI Bap. R.. et al., “Collaborative Engineering in Integrated
Aircraft Power System Design,’. 2002 ASME Design
Engineering Technical Conferences and Computers and
Information in Engineering Conference Proceedings,
October, 2002.

[6] Sercel, J., “Integrated Concurrent Engineering (ICE): A
Case Study in Engineering Productivity Improvement,“ to
be presented at the 2003 IEEE Aerospace Conference, Big
Shy, MT, March 2003.

[7] Wall, S., ”Team Structures and Processes in the Design
of Space Missions.“ 1999 IEEE Aerospace Conference
Proceedings, March, 1999.

[XI Mark. G., “Extreme Collaboration,” Communications of
the ACM, Volume 45, Issue 6, June 2002.

10

Vol. 8-3679

BIOGRAPHIES
Kevin Parkin is a Graduaie
Student of Aeronautics at the
California Institute of
Technology. He holds an
undergraduate M.Phvs.
degree in Ph.vsics with Space
Science and Technologs from
the Universily of Leicester
(England), and an M.S. in
Aeronautics >om the
Calijoriiia Institute of
Technology. In his first year as a graduate student he
developed ICEMaker, later versions of which have been
adopted by Team-X at NASA JPL, several large aerospace
companies, and by SSPARC, an NRO-funded cansarfium
comprised of Caliech, MIi7 Stanford, and The Naval War
College. His current research interests include modeling
ihe feasibiliy and performance of advanced non-chemical
launch concepts, particular!^ microwave rockets and
related methods ofpropulsion.

Joei Sercel is rhe Director of
The Laboratoly f o r
Spaeecrafr and Mission
Design at Caltech. Sercel
recent!v lefr JPL where he
had a 15-sear career in
diverse oreas including space
technology development,
swtem engineering, s o f i a r e
development, and
management. In addition to
his work at JPL and Caliech,
Sercel is the founder of ICs Associaies. Through ICs
Associates, Dr. Sercel reaches professional development
courses in Inrepared Concurrent Engineering (ICE):
project planning and cast estimation; and Space System and
Mission Design. Dr. Sercel received his Ph.D. and
Marter's Degrees in Mechanical Engineeringfrom Cattech.
His undergraduate degree was in Engineering Physics

from the Universi@ of Ari-ona.

Michael Lilt received his
B.S. in Engineering and
Applied Science $om the
California Institute of
Technology in June 2002.
His undergraduate
coursework focused on areas
of computer science such as
3 0 graphics, computation
theon: and programming
languages. He created the
standalone version of ICEMaker Server in his senior year,
and is now continuing development work on ICEMakev as
an employee of SpreadsheetWorld, Inc. His current
programming interests include C++, XML. and the
Microsoji .NETplatfotm.

(JPL) in Pasadena, California, and is cuwentlp an
employee at User Technology Associates, Inc. in
conjunction with pursuing his Ph.D. He holds a B.S.E in
Aerospace Engineering f i om the Universiv of Michigan
(Ann Arbor) and an M.S. in Aerospace Engineering from
the Universiy of lllinois (Champaign-Urbana).

11

