
To Reuse or Not To Reuse
Jim Estipona, California Institute of Technology

Measuring Software Reuse: Principles, Practices,
and Economic Models by Jeffrey 5. Poulin, Addison
Wesley Longman, Reading, Mass., 1997, ISBN 0-201-
634 13-9,195 pp., $38

This book gives you the tools to start quantify-
ing the benefits obtained from developing and
using reusable software. Poulin argues that ”busi-
ness decisions drive reuse.”Thus, to encourage man-
agement support for reuse and measure the degree
to which software is being reused, a metric must be
available that is

+ uniformly understood across different soft-
ware systems,

+ practical enough to start and maintain mea-
surement through different stages of the software
life cycle, and

+ able to collect data simply.
Poulin presents a variety of metrics drawn from

papers and economic models. He does a good job
of pointing out the lack of clear definitions in many
of the published experience reports that address
what should be measured as reuse. Unless this is first
clearly defined, the figures reported are useless.
Poulin includes his own metrics suite-the “Reuse
Metric Starter Set”(or Poulin and Caruso Reuse and
Return on Investment Metric$-that you can use to
quantify software reuse. He also proposes some spe-
cific figures for use with this suite, including new-
code error rate, cost of fixing an error, relative cost
for writing reusable software, relative cost for using
reusable software, and cost for new code.

QUESTIONABLE QUIRKS
In defining reusable software as code developed

”someplace else,” Pou li n convenient I y excludes

reuse of software within an organization, instead
calling such recycled code just “good program-
ming.”With the advent of object orientation, which
inherently encourages reuse, this definition seems
too arbitrary.

The book focuses mainly on structured pro-
gramming practices. 00 people may find that some
familiar terms, like abstract data type (ADT), do not
coincide with how Poulin uses them. In particular,
he seems to suggest that ADTs are generally small
and domain independent. In 00, however, ADTs can
be large and occur on any of several levels, includ-
ing the application level.

In Chapter 7, ”Measuring Software Reusability,”
Poulin suggests that software complexity or size is
inversely proportional to software usability. This
would seem to contradict the use of frameworks or
foundation class libraries in OOP, whether you mea-
sure complexity using McCabe’s Cyclomatic
Complexity or Halstead’s Software Science metrics.
Foundation classes and frameworks are some of the
largest and most complicated components in soft-
ware, yet anyone who programs in C++ would be
unlikely to claim low levels of reuse for them.

REUS€ R€SOURC€
Overall, Poulin provides a readable account of

measuring software reuse and estimating i t s cost
and benefits. Further, he seeks to define what does
and doesn’t constitute reuse, then offers tools for
gauging i t s effectiveness in your organization. Of
particular interest i s the Frakes and Terry Reuse
Level Metric, which allows measurement of inter-
nal reuse. Finally, the book‘s extensive references
and bibliography offer a solid starting point for fur-
ther research into reuse. .:.

Narrow economic Analysis of India’s Software Industry
Don Shafer, Cirrus Logic

India’s Software Industry: State Policy, software industry in India? Heeks is an excellent
Liberalisation, and Industrial Development by economist and geoeconomist and his book re-
Richard Heeks, Sage Publications, Thousand Oaks, flects this. He is neither a computer scientist nor a
Calif, 1996, ISBN 0-8039-9265-3,397~~. software specialist; thus, while he elucidates ex-

port law, import economics, and the business of
establishing a software industry, he provides no
concrete information on life cycles, how and why
specific software products are produced, or the

India’s Software lndustry addresses one very
specific question: How has liberalization of gov-
ernmental policy affected the development of the

November/December 1998 ,j&. I E E E Software 1 2 5

