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A class of models describing the collision of Regge poles and their associated Mandelstam branch cuts
is described, from which one concludes that Regge trajectories generally develop left-hand branch cuts as a
result of such collisions, and in terms of which the singularities in the / plane of the partial-wave amplitude
and the asymptotic behavior of the scattering amplitude can be discussed.

I. INTRODUCTION

T is believed to be true that Regge cuts as well as

Regge poles occur in physical scattering amplitudes.!

In particular, it is believed that at least some of these

cuts can be thought of as generated by Regge poles,

and that the branch point a.(¢) of such a cut in the J
plane can often be written

a.()=a1(3t)+aa(3t)—1

in terms of two poles a; and as which cause it.! There-
fore, if the Pomeranchuk trajectory ap exists, and if
ap(0)=1, then the cut caused by the Pomeranchon
and any other Regge pole a(f) has the property that
a(t) and the cut intersect at ¢=0. Consequently, it is
natural to expect that the pole will develop some sort
of singularity in ¢ at {=0, and it has been suggested
in fact that all Regge poles will have left-hand branch
cuts in ¢ from {=—o to t=0.?

We wish, therefore, to explore the behavior of Regge
poles, Regge cuts, and scattering amplitudes contain-
ing these poles and cuts, near {=0. In order to do this,
a model is needed imitating the dynamics producing
these singularities, because the detailed behavior near
t=0 is evidently determined by dynamics.

We shall not attempt a full-blown dynamical calcula-
tion-here; instead, we shall construct, by analogy with
potential theory, a fairly general form which hopefully
is characteristic of a wide class of dynamical situations.
In particular, the few model dynamical worlds we have
which incorporate (at least partially) both poles and
cuts do fall in this class.? The construction is given in
Sec. II.

In terms of our form, some general features of the
collision of a cut and pole become evident and we shall
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describe these in Sec. ITI. More detailed behavior can
be studied in various simple special cases, and we do
this too, in Sec. IV; finally, we mention the expected
asymptotic form of the scattering for some of these
cases in Sec. V.

One interesting possibility created by the existence
of left-hand cuts in trajectories is that the Pomeranchuk
trajectory has a flat real part equal to unity for /<0
so that nonshrinking diffraction peaks become possible.
We comment on the special case of such a trajectory in
Sec. VI.

Before we launch into all this detail, however, it may
be useful for us to summarize our basic conclusions
here.

We find that when a Regge pole collides with a
Mandelstam branch cut, the pole always develops a
branch point in #° and one of two things happens
naturally. Either the pole passes through the cut and
disappears from the physical angular momentum sheet,
or the cut “expels” a pole and the original pole and the
expelled pole form a complex conjugate pair in the
physical complex / plane, after meeting at a square-
root branch point. Which of these two things happens
depends on the sign and nature of the “coupling” of the
pole to the cut. In the case of baryon trajectories, this
quite reasonably leads to the removal of MacDowell
partners, if the coupling is strong.

II. CONSTRUCTION OF MODEL

When two Regge poles a(#) and a1 (£) collide, it is well
known that both develop square-root branch points
in £. This is trivially argued from the analytic properties
of D(¢]) in the neighborhood of the collision, which
must be a quadratic form in /, with coefficients which

4 See Ref. 3. The suggestion of a flat Pomeranchon is also made
by P. G. O. Freund and R. Oehme [Phys. Rev. Letters 10, 450
(1963)7, in which the Mandelstam cut is not invoked as the cause
of a branch point in «,(#), but a new cut, joining two complex
conjugate points in the / plane, is invented for this purpose.

5 In contrast to what has been alleged [R. Oehme, Phys. Letters
20B, 414 (1969)], we find that in any realistic dynamical model,
a Regge pole must always develop a branch point upon collision
with the cut.
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are analytic in ¢.° A simple model of D is

D)) =d[i—a®(t) [l—a® () THc2(2)
=[—a@®J0—a()]
1—ad(t) 0
c® dll—a"(0]]’

where a(?), a1°(¢), and ¢(f) are polynomials in ¢, and
a(f) and a:°(f) can be thought of as the unperturbed
trajectories coupled by the function ¢(f). Because of
this coupling the trajectories a°(f) and :°(f) become
modified to a(#) and a;(t), and these modified trajec-
tories develop branch points in ¢&. We have, specifically,

=det (2.1)
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a(®)=3{a’()+e’())
HL( )~ ())— (4/d)e* (1) 2},

2.
ar()= a0+ () 22
—[@O)—a(O))— (4/d)e* () ]2},
and branch points are at £, given by
a®(ty) —ar®(tv) == (4/d) 2c (ts) . (2.3)

[If we wish a branch point to be at {=0, we can let
a’(0)=ar*(0)+ (4/d)"%¢(0). ]

If a trajectory «(f) collides with a set of trajectories
a;(t), we may expect a reasonable model of the D
function to be

I—a(t) ci(?) 210
Dip=det| 20 AOU—at®)] 0 (2.4)

This form couples the trajectory of to each of the others,
but neglects coupling between the other trajectories
().

The determinant is readily evaluated to give

D =L— (I TL [1=e ()10

=3 Ca(t) TT [—a P ()40

=1 J#1

=[l—ao<t)+g lfa(:it)]

Xexp( >: In[l—a? ()14}, (2.5)

where Cl(t)= —Ciz (t)/dz(t)
Now let us suppose all the trajectories «%(f) are
parallel and differ only a little:

a()=al(t)— (j—1)e,

Here, € is a small number, which we will eventually
allow to approach zero. Then

j=1,2,....

© C@(t)
DeH=[ 1= 0+% z_ac°<t>+<j—'1>e]

Xexp( g (I[l—ad O+ G+DeLO}).  (26)

We note that every zero of the exponential part of D
is matched by a pole in the bracket and is therefore not

¢ Hung Cheng, Phys. Rev. 130, 1283 (1963).,For simplicity, we
shall ignore signature in what follows, since it is basically irrelevant
for our purposes.

210) 0

ds(?) [ljaz"(t)]

a zero of D itself. The zeros of D are then contained
solely in the first bracket. To see where these zeros are,
we set
Dup=l-at() 45, — O 2.1)
Lh)=1—a(t - .
= —alt)+(—1)e

equal to zero. Schematically, the equation

O—al)=3 G0 2.38)
A —a(l)= .
Fal) —ad )+ (—1)e

is shown in Fig. 1. Two cases are represented, corre-
sponding to ¢ values such that the singled-out tra-
jectory o’(f) is above the infinite series of trajec-
tories [a®(f)>a.(f)] and below the top one of these
[a°(#) <a.(?) ]. The unperturbed solutions are marked by
circles and the perturbed solutions by solid dots. In the
figure we are in a regime where all solutions are real.
Consider now decreasing e, keeping everything else the
same. The pole terms start crowding together, and on
that particular pole term on which there are three solu-
tions, two will approach each other, meet, and go into
the complex plane. Since each pole term must be cut
once by the line o°(f)—!, we form one and only one
complex conjugate pair for some critical value of e.
Once the slope of the pole terms is larger than the slope
of a®(#)—I, that is, once e is small enough, ¢ can be
moved around and the complex conjugate pair will
move with it, corresponding to the trajectory a(f) and
one pole taken from the series a(f) — (j—1)¢, but it
cannot be identified as belonging to one particular 7.
Taking the case where the unperturbed trajectories
are, respectively, one linear trajectory and infinitely
many flat ones, we can now represent the sequence in
terms of increasing the couplings C;(¢), which is essen-
tially equivalent to decreasing the spacing. This is
shown in Fig. 2. When a critical coupling is reached,
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Fic. 1. Schematic representation of solutions to Eq. (2.8). Two cases are shown corresponding to ¢, such that ao(t) >ad 9(t) and
ao(f) <ald(f), respectively. In each case, the unperturbed (perturbed) solutions correspond to the ! values given by circles

(dots).

a complex conjugate pair is formed near the intersection
of a°(#) and «(f), which keeps moving as a pair for
negative .

It is evident that in order to generate a cut in I,
along with a moving pole, we can let the spacing
between the trajectories shrink to zero. In the limit
e— 0, we obtain

acl(t) C ’l
D))= I: —a(t)— / —Z,—(;—l—) l’]

acd (1)
Xexp[ / In(l —l’)d(t,l’)dl’] . (29

The case of interest to us is the collision of the
trajectory o®(f) with the Mandelstam! branch cut.
In its first iteration, the branch point is located at
al()=2a(%)—1; however, successive iterations pro-
gressively flatten out the cut until it eventually appears
to be flat. Therefore, let us first consider the collision
of the pole o°(f) with a flat cut, located at «°(f)=1.
[The point 1 is, obviously, arbitrary; but if we are
thinking of a°(¢) as the Pomeranchon, the value 1 is the
natural choice. We will also choose o?(0)=1.T] The case
of a moving cut is not appreciably different; we shall
mention it briefly later. -

Our model for the D function is then

D)= 1-20 - f cwn, @)

Xexp[ [ ; ln(l—-l’)d(t,l')dl'} (2.10)

=D(1,]) exp[ /_ lw ln(l—l’)d(t,l’)dl'].

III. GENERAL FEATURES

Equation (2.5) may be used to describe, qualitatively,
the broad features to be expected when a Regge pole
collides with a Regge cut.

Regge poles are found from the equation

D(t,a(2))=0. 3.1)

The poles of interest to us are the solutions to the
equation
1O
a(t) —ao(t)—/ d
e V' —a(2)

In barticular, results obtained in the multi-Regge
bootstrap (MRBS) are of the form of Eq. (3.2) with the

1'=0. (3.2)
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integral replaced by ~In[a(f)—1].® In this case, how-
ever, the trajectory on the physical sheet never does
cross the cut and become complex, but starting from
a®(¢) for large positive ¢, it approaches the branch point
from above for large negative ¢.

More generally, the integral in Eq. (2.10) simply
represents an analytic function of / with a cut from
l=—ow to I=1, the discontinuity given by 2x:C(t1).
The integral in Eq. (3.2) represents the same function
of a(f). Furthermore, we want «(0)=1; thus in general
a(t) will cross the cut and will have a branch point at
t=0. The precise form of the branch point depends on
the choice of the coupling C(t,), but whatever its form
(apart from the logarithmic case), it always exists.

IV. SPECIAL EXAMPLES

As a special example of Eq. (3.2) which we can
explore in some detail, and which is typical of what
can happen generally, let us suppose C(¢,0) is such that

Qo (1)
t
ag
ag-e
/ a%-Ze
/ a2-3e
Re a

a(t)

F16. 2. Schematic diagram of solutions to Eq. (2.8), correspond-
ing to increasingly stronger coupling or smaller spacing, e. The
dashed lines represent the real part of a complex conjugate pair
of trajectories.
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F16. 3. Movement of poles in the cut / plane from ¢>0 to <0
in the model described by Eq. (4.3). Poles in the physical (un-
physical) ! plane are shown as dots (circles). The case shown
corresponds to the cut extruding a pole.

(3.2) reduces to
a()—ao(®)—Bo(O)[a(®)—1]"2=0,

where o and B are polynomials in 2.7
There are two possible solutions [«(f)—17'/2 given by

[a()—117=380()=£3{Bo(t)+4[ac()—1T}"2. (4.2)

We define the right half [a(#)—172 plane as corre-
sponding to the physical  plane.
The trajectories themselves are given by

ai(t)=ao(t)+%ﬁo(t)2[1i(1+4—[—aﬂ°—$)t)%1—])m:l. 4.3)

For large positive ¢, only one of these [say, oy (¢)] is
physical. When ¢ is such that the square root in (4.3)
vanishes, ay(f) develops a branch point, and as ¢
decreases further, becomes a complex conjugate pair.
Both complex o’s are either physical or unphysical,
depending on whether 3(¢;) (where #3 is the branch
point) is positive or negative. From the point of view
of the / plane, the physical pair corresponds to the cut
having “extruded” a pole to meet «,(f) and make the
pair. The unphysical pair just looks as if the cut has
swallowed a..(¢). The situation is displayed graphically
in Fig. 3.

As a specific example, let us take

C{o(t) = 1+dl,
Bo(t) = 20bt.

(Of course, this is to be taken seriously only in the
neighborhood of {=0.) We obtain

[aw () — 112 =i 14 (140 /520)1 2]
and (4.5)
ay () =1+4at+ 2022 1 (1+4-a/6%)1/2].
Near {=0 we mdy expand, and obtain
(er(D)—1)1V2=pida 21 24-0(£12) (4.6)
7 We are only interested in ¢ near zero; if such a model were to

be taken more seriously, then o and 8o would both be expected to
have branch points at physical threshold in ¢.

@.1)

(4.4)
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F16. 4. Baryon trajectory model of Eq. (4.10). Poles in the physical
(unphysical) / plane are drawn as full lines (dashed lines).

and
as () =1+ at=£26a 28R 4+-0(&2).

For small ¢ and positive b, the trajectory o (f) meets the
branch point at {=0 and proceeds into the complex
plane as a pair. For negative ¢, we then see two poles
in the physical plane.

So far we have discussed only meson trajectories.
However, the same considerations apply for baryon
trajectories, except now we would expect the coupling
to be a function of W=4/t. Taking B¢(W)=26W, and
ao=1+al¥? for simplicity, we obtain from (4.2)

(*.7)

[as(W)—1712= b4 (82+a) 2]V (4.8)
and
o= 14[a+ 262+ 2b(b2+a) 12 JIW2. (4.9)
We have here two linear trajectories
ar=14a, W2, (4.10)

with
a1=a+202£20(0*+a)'2.

In the absence of coupling to the cut (i.e., if 5=0),
they are identical. However, a;. is physical when >0,
and o when W <0, assuming 5>0. As the coupling b
is turned up, the slope of oy gets steeper and that of o
flatter, thus avoiding MacDowell partners. This is
shown in Fig. 4. If we simultaneously turn off a, we
finally arrive at a situation where

ap=14+40472, (4.11)

(4.12)

oa_=1.
Since

D)=L (1)1 (e — 1)L (1) (o= 1)11],

we can write in this case, letting 1=a/(0),

AQW) 1
D= @) [—a@) T @ W)y
(4.13)
and in the limit ¢ — 0,
AQW) (4.14)

[ (l—ao)2—26W ] (1—ag)?
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This is precisely the starting point of the model of
Carlitz and Kislinger® for avoiding MacDowell partners.
In this limit, the physical trajectory a, is entirely
driven by the coupling to the cut. To what extent
partners are avoided in any case depends on the
strength of that coupling.

In case the Mandelstam cut with which the pole
collides is moving, essentially everything we have said
above still goes through. Equation (2.10) is now
replaced by

D(tl)= <l —a(t)— /; :c(t) gl,(—f_’l—?dl’)

ac(t)
XeXp</ In (l—l’)d(t,l’)dl’), (4.15)

where, for example, we might have a,(f)=2a0(%t)—1,
or, more generally, a,(f) is anything such that a,(0)=1.
For the case of a moving cut, we know that the dis-
continuity across the cut must vanish when / is a right-
signature integer to avoid introducing false branch
points in f into the physical partial-wave amplitudes.
Therefore C(t,l) should, strictly speaking, be propor-
tional to sinjwl for anjeven-signature amplitude. For
simplicity, however, we shall ignore this complication;
it does not alter any of_our results.
Equation (2.10) is then replaced by

D(th)=1—1+[1—ao(®)]— 26 ()[I—ac (]2, (4.16)

and the resulting trajectories are given by

ay (1) =ao(t) +3B0(1)°

x[1:&<1+ *’*——4[0[02(_;(0])1/2], (4.17)

in analogy to Eq. (4.3).

V. LARGE-s BEHAVIOR

What can be anticipated for the form of the scatter-
ing amplitude for large s and small ¢, if the pole-cut
collision occurs? Evidently the partial-wave amplitude
contains for positive ¢ [that is, when «(f) is still real]
just a pole and a fixed cut extending from /= — to
I=1. Below the collision, however (that is, for negative
1), there are two complex conjugate poles as well as the
cut, comprising the original pole, the “extruded” pole
and the remaining cut. Alternatively, the cut may
swallow the pole, in which case only the cut remains
at negative .

In order to see the large-s behavior, we consider that
in our model we have a partial-wave amplitude of the

8 R. Carlitz and M. Kislinger, California Institute of Technology
Report No. CALT-68-223, 1969 (unpublished).
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form
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D[y ()13 (=) —[a_ ()11

(5.1)

In order to separate this clearly into two Regge poles and a cut, we note that we can add and subtract the missing

poles on the other sheet and obtain

, (5.2)

A0 Blapa_;op)  Blapa;o)  1B(ape;)—Blape;er)  18(aet; ) —Bla—et;a)
1) = - -
l_d+ l—a_ 2 l—a+ 2 l—-a_
where For the cases we have been dealing with, where we
(az—1)'2 select a(0)=1, one of the two poles dominates the cut

Blanaz; as)=f(f) (5.3)

(a1 —1)2— (aa— 12

We note that the discontinuity across the [ cut is
then given by

Blapa—; )  Blasay;l)

ay l—a_

B 70)

(=) (a1
><[(1—1)1/2 e

l—a_

discA (1,f) =

], I<1. (54)

l—Ol+

The large-s behavior from this contribution to the Regge
cut is then given by

N
= (a1
IF(A=D)r (1—]e 1
— dl,
X/ l: l—ay l—a_ :l(S/SO)
(a+—1)1’2+(a_—1)1’2'| s/so

(as—1)(a—1)  J[in(s/s)P"
(5.5)

The large-s behavior we anticipate, then, is for /<0
where ;. () =a*()=a(l),

T.(s,t)

0]

—iTa

1
7(61) 2 86/ -+ O/
ey v (O(/5)
. (5.6
X(Z sin1ra*>+ [In(s/s0) 312 (36)

for t>0. For t<0, however, the cut dominates the
poles, since the real part of the poles is now smaller
than 1. At ¢t=0, we would also expect the poles to
dominate, since they both are at ay=1. Hence, except
for the faster than usual attenuation of the cut con-
tribution, very little experimentally noticeable happens
as a result of the collision, at least in the case of weak
coupling.

VI. FLAT POMERANCHONS

In principle, once the existence of left-hand cuts in
Regge trajectories is admitted, trajectories of the
form (near ¢=0)

a()=1+12P (1),

where P(t) is real, become possible. Thus a Pomer-
anchon with a constant (equal to unity) real part for
negative ¢ could exist, permitting us to have nonshrink-
ing forward diffraction peaks.

The simple class of models discussed here does not,
however, seem to permit solutions of this form. This is
most easily seen from Eq. (4.17). A trajectory with a
flat real part can result only if ag+38¢2=1, but in this
case the argument of the square root is easily seen to
be negative for £>0. [This can be avoided only if the
cut a.(t) is given a negative slope, which is manifestly
undesirable physically.] Thus (6.1) is not possible.

Whether other kinds of models of the interaction of a
Regge pole with its Mandelstam cut permit solutions
like (6.1) we do not know; we suspect they do not.
Consequently (6.1) could occur only if some new kind of
I-plane cut is invented, in the existence of which there
is no a priori reason to believe. The collision of a pole
with this “other” cut might then yield (6.1).4

(6.1)



