A Caltech Library Service

Abnormality Detection in Correlated Gaussian Molecular Nano-Networks: Design and Analysis

Ghavami, Siavash and Lahouti, Farshad (2017) Abnormality Detection in Correlated Gaussian Molecular Nano-Networks: Design and Analysis. IEEE Transactions on NanoBioscience, 16 (3). pp. 189-202. ISSN 1536-1241. doi:10.1109/TNB.2017.2659678.

[img] PDF - Submitted Version
See Usage Policy.


Use this Persistent URL to link to this item:


A nano-abnormality detection scheme (NADS) in molecular nano-networks is studied. This is motivated by the fact that early detection of diseases such as cancer plays a crucial role in their successful treatment. The proposed NADS is in fact a two-tier network of sensor nano-machines (SNMs) in the first tier and a data-gathering node (DGN) at the sink. The SNMs detect the presence of competitor cells (abnormality) by variations in input and/or parameters of a nano-communications channel. The noise of SNMs as their nature suggest is considered correlated in time and space and herein assumed additive Gaussian. In the second step, the SNMs transmit micro-scale messages over a noisy micro-communications channel (MCC) to the DGN, where a decision is made upon fusing the received signals. We find an optimum design of detectors for each of the NADS tiers based on the end-to-end NADS performance. The detection performance of each SNM is analyzed by setting up a generalized likelihood ratio test. Next, taking into account the effect of the MCC, the overall performance of the NADS is analyzed in terms of probabilities of misdetection and false alarm. In addition, computationally efficient expressions to quantify the NADS performance are derived by providing, respectively, an approximation and an upper bound for the probabilities of misdetection and false alarm. This in turn enables formulating a design problem, where the optimized concentration of SNMs in a sample is obtained for a high probability of detection and a limited probability of false alarm. The results indicate that otherwise ignoring the spatial and temporal correlation of SNM noise in the analysis, leads to an NADS that noticeably underperforms in operations.The results indicate how effective fusion of the noisy observations collected from a number of SNMs with limited capabilities could provide an acceptable detection performance.

Item Type:Article
Related URLs:
URLURL TypeDescription Paper
Ghavami, Siavash0000-0003-2422-225X
Lahouti, Farshad0000-0002-8729-873X
Additional Information:© 2017 IEEE. Manuscript received November 24, 2015; revised April 25, 2016 and October 30, 2016; accepted January 5, 2017. Date of publication March 2, 2017; date of current version April 27, 2017.
Subject Keywords:Abnormality detection, Molecular communication, mathematical modeling, correlation
Issue or Number:3
Record Number:CaltechAUTHORS:20170525-100726337
Persistent URL:
Official Citation:S. Ghavami and F. Lahouti, "Abnormality Detection in Correlated Gaussian Molecular Nano-Networks: Design and Analysis," in IEEE Transactions on NanoBioscience, vol. 16, no. 3, pp. 189-202, April 2017. doi: 10.1109/TNB.2017.2659678 URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:77751
Deposited By: Tony Diaz
Deposited On:25 May 2017 18:18
Last Modified:15 Nov 2021 17:33

Repository Staff Only: item control page