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Abstract

A nano abnormality detection scheme (NADS) in molecular nano-networks is studied. This is

motivated by the fact that early detection of diseases such as cancer play a crucial role in their successful

treatment. The proposed NADS is in fact a two-tier network ofsensor nano-machines (SNMs) in the

first tier and a data-gathering node (DGN) at the sink. The SNMs detect the presence of competitor cells

(abnormality) by variations in input and/or parameters of anano-communications channel (NCC). The

noise of SNMs as their nature suggest is considered correlated in time and space and herein assumed

additive Gaussian. In the second step, the SNMs transmit micro-scale messages over a noisy micro

communications channel (MCC) to the DGN, where a decision ismade upon fusing the received signals.

We find an optimum design of detectors for each of the NADS tiers based on the end-to-end NADS

performance. The detection performance of each SNM is analyzed by setting up a generalized likelihood

ratio test. Next, taking into account the effect of the MCC, the overall performance of the NADS is

analyzed in terms of probabilities of misdetection and false alarm. In addition, computationally efficient

expressions to quantify the NADS performance is derived by providing respectively an approximation and

an upper bound for the probabilities of misdetection and false alarm. This in turn enables formulating a

design problem, where the optimized concentration of SNMs in a sample is obtained for a high probability

of detection and a limited probability of false alarm. The results indicate that otherwise ignoring the spatial

and temporal correlation of SNM noise in the analysis, leadsto an NADS that noticeably underperforms

in operations.
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I. INTRODUCTION

Cancer is a leading cause of death in the world and accounts for about 13% of all death per annum [1].

In addition, it incurs serious disability and emotional challenges to the people and heavily affects them

financially [2]. There have been many advances by significanttechnological innovations in the treatment

of cancer. However, success is still a distant goal in this direction. Indeed, research in early detection

and diagnostics of cancer and their associated enabling technologies are of extraordinary importance.

It is believed that the overall behavior of cancer is determined with genes expressions and/or proteins.

In fact, proteomic data and collective functions of proteins are known to directly set the cell function.

Hence, modeling and analysis of genomic and proteomic data using micro array and mass spectrometry

technologies have found various applications in cancer studies [3]. In [4], an interesting review of

technologies for nano-scale cancer bio-molecular detection using proteomic and genomic approaches

is presented. In [5], application of nano-technologies forbio-molecular detection and medical diagnostics

is studied. In [6] and [7], investigating the profile of molecules based on genetic expressions, reliable

cancer classifiers are designed. The gene and/or protein changes due to certain types of cancer lead to

peroxidation of cell membrane. This emits biomarkers in theblood or exhaled breath that may be detected

using tailor-made cross-reactive sensors [8], [9]. A high level of insulin-like growth factor or estrogen in

the blood of women before menopause is one sign of breast cancer [10]. In [11], combining engineered

proteins with an appropriate detection technique is suggested to enable a new type of molecular sensor.

Also in [12], nano-bio sensors are designed and simulated for dye molecules targeting to enhance targeting

efficiency.

The development of novel mathematical models and analytical approaches for disease diagnostics

in the nano-scale is crucial to take advantage of nano-technology for this purpose. The mathematical

modeling and simulation of cancer progression are studied in [13] and [14], respectively. A model for

nano-communications channel is proposed in [15], [16]. In [17], the noise in diffusion-based molecular

communication over nano-networks is analyzed. The design of optimized molecular recognizers is studied

in the biochemical noisy environment using a Bayesian cost in [18]. Such recognizers could serve as

abnormality detection (AD) mechanisms by distinguishing between two molecule types, which one exists

in the body on the healthy setting and the other appears only in the presence of a certain disease.

In [19], a layered architecture of molecular communicationis investigated. In practical schemes for
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abnormality detection, one can typically identify a two-tier architecture for detection. In the first tier, the

presence of abnormality is detected in the molecular nano-scale level. In the second tier, the abnormality

is reported in a bigger scale to a data gathering node (DGN) inthe outside world. A similar hierarchical

architecture, which includes two levels of nano and micro scale messages is considered in [20] for body

sensor networks. In [21], a two-tier nano abnormality detection scheme (NADS) in which the sensor nano-

machines (SNMs) have independent Poisson observations [17] is suggested and its detection performance

is analyzed.

Table I presents the two tiers of abnormality detection, i.e., detection in nano-scale and micro-scale, in

different methods of cancer detection based on nano-technology. In detection of breast cancer, quantum

dot bio-conjugates with targeting antibodies have been used to recognize associated molecular signatures

including ERBB2 (Avian erythroblastosis oncogene B-2) [22], [23]. In the second tier, this feature is

recognized using long-term multiple color imaging or immune-fluorescent labeling [22], [23]. In early

detection of lung cancer, the increasing level of epidermalgrowth factor receptor (EGFR) can react at

the nano-scale with injected single chain forward variable(SCFV) polypeptide with embedded Au [24],

which act as a SNM. Next, the product of this reaction may be recognized by imaging techniques for

finding Au in the body [25].

A potential candidate for SNM in NADS is graphene-based bio-sensors, which are optimized for

detecting proteins, nucleic acids, carbohydrates, or compounds generated by metabolic processes. Ex-

isting detection methods employed by these sensors includeelectrical, electrochemical, and photonic

approaches with respect to detecting labeled (or enzyme-assisted) and label-free (or enzyme-free) probe

structures [45]. In this context, design and analysis of a wireless nanosensor network for monitoring

human lung cells using graphene based sensors are considered in [46], where graphene antennas would

be able to communicate in the terahertz band. In this case, respiration is the major process that influences

the terahertz channel inside lung cells. The channel has been characterized as a two-state channel, where it

periodically switches between good and bad states. It has been shown that the channel absorbs terahertz

signal much faster when it is in the bad state as opposed to thegood state [46]. Another reported

application of in-vivo wireless network is graphene-basedwireless bacteria detection on tooth enamel [47].

In this case, the DGN based on terminology of [48] is a so-called bio-cyber interface on the skin, which

receives the electromagnetic signal transmitted by the graphene-based SNMs.
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TABLE I: NADS in cancer detection using nano-technology.

Cancer detection method Detection in tier 1-NCC Detection in tier 2-MCC
Nano-sized magnetic reso-
nance imaging (MRI) con-
trast agents for intraopera-
tive imaging in the context
of neuro-oncological inter-
ventions [26], [27]

Gadolinium-based nano-particle [28] Combined MRI with biological
targeting [29] and optical detec-
tion [26], [29], [30]

Ironoxide-based nano-particles [31], [32]
Multiple-mode imaging contrast nano-
agents

Optical detection
Semiconductor nano-crystals [33]–[36] Optical detection
Quantum dots [33]–[36]

Nano scale field-effect bio-
transistor

Silicon nano-wires [37], [38] Reporting changes in their conduc-
tance that are generated by molec-
ular binding events on their surface

Carbon nano-technology Nano-tubes have been reported as high-
specificity sensors of antibody signatures
of autoimmune disease [39] and of single-
nucleotide polymorphisms (SNPs) [40]

Electronic biosensors

Quantum dot bio-conjugates
with targeting

Molecular signatures including
ERBB2 [22], [23]

Long-term multiple color imaging,
immune-fluorescent labeling

Nano-particle-based methods
Covalently linked antibodies [41], [42] Confocal microscopy
Fluorophore-laden silica beads have been
used for the identification of leukaemia
cells in blood samples [43]

Optical identification

Fluorescent nanoparticles have been used
for an ultrasensitive DNA-detection sys-
tem [44]

Fluorescence identification

For the second tier of abnormality detection architecture,one may also consider the recent proposals

of wireless nano sensor networks; including diffusion-based molecular communication [49], medical

imaging techniques [31], ultrasonic communications [50],[51], optical communication using plasmonic

nano-antennas [52] and terahertz communication techniques [53].

In this paper, a nano abnormality detection scheme (NADS) isproposed for the detection of nano-scale

abnormality in a bio-molecular environment using a two-tier decision-making process. The abnormality

is due to the existence of competitor cells in the said environment. The NADS includes a set of SNMs

for the detection of a nano-scale abnormality over a nano-communication channel (NCC) with spatially

correlated noise. The spatial correlation of noise among SNMs is motivated by the nature of bio-molecular

environment in the nano-scale, and as we shall demonstrate highly influences the overall detection

performance of the NADS. The SNMs communicate their decisions over a noisy micro-communication

channel (MCC) to a data gathering node using micro-scale messages (MSMs). Fusing the collected
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TABLE II: List of acronyms

Acronym Definition
AWGN Additive white Gaussian noise

AD Abnormality detection
DGN Data gathering node
EGFR Epidermal growth factor receptor
ERBB2 Avian erythroblastosis oncogene B-2
GLRT Generalized likelihood ratio test
MAP Maximum a-posteriori probability
MCC Micro communication channel
MRI Magnetic resonance imaging
MSM Micro-scale message
NADS Nano abnormality detection scheme
NCC Nano communication channel
PDF Probability distribution function
SNM Sensor nano-machine

VTNM Virtual transmitter nano-machine

signals, the DGN makes a decision and may alarm the presence of an abnormality as necessary. In

Table II list of used acronyms in this paper and their definitions are discribed.

The performance analysis of the SNMs over the NCC is set up as ageneralized likelihood ratio test,

which quantifies the probability of false alarm and the probability of misdetection. Next, incorporating

the effect of MCC, the total detection performance of NADS atthe DGN is analyzed. The correlated

noise in the NCC is assumed Gaussian (similar to [54]–[57]).In this case, the overall NADS detection

performance is efficiently approximated and expressed in terms of the performances of the constituent

NCCs and MCC. The presented analyses are then used to obtain the optimized concentration of SNMs

in the sample for a prescribed high probability of abnormality detection and a bounded false alarm

probability. Extensive numerical results are provided to quantify the effect of different design and system

parameters on the NADS performance. Specifically, the effects of temporal and spatial correlation of

noise at the SNMs on the detection performance are investigated.

The outline of this paper is as follows. In Section II, preliminaries and problem statement are presented.

The communication strategy on nano and micro communicationchannels are described in Section III.

In Section IV, the performance of NADS is evaluated analytically. Numerical results are presented in

Section V. Finally, conclusions are made in Section VI.
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TABLE III: Effective parameters in transition probabilityof NCC [15]

Parameter Parameter Description Unit
θ Temperature K
χ Distance between nano-transmitter and SNM m
CR Concentration of nano receptors, denoted byR, on the SNM µmol/l
CA Concentration of Molecular bitA, transmitted by VTNM µmol/(l s)
CB Concentration of bind-receptor, denoted byB, on the SNM µmol/(l s)
κ1 Binding rate µmol/(l s)
κ−1 Release rate µmol/(l s)
κ−1

0
Zero force release s−1

kBC Boltzmann Constant J/K
Nxi The number of received molecule when the VTNM sends the molecular bit

xi ∈ {A, 0} during timetTN at time i.
µmol/l

PA Probability of transmission of molecular bitA by the VTNM.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this Section, the setup of NADS and the problem statement under consideration are described. The

NADS comprises of two tiers. In the first tier, each SNM detects the detection feature in nano-scale

and emits a micro-scale message [58]. In the second tier, a DGN collects the transmitted MSMs from

multiple SNMs.

The NCC models the molecular environment. In the healthy setting, no abnormality (here competitor

cell) exists in the molecular environment. The molecular competitor changes the rate of binding between

the molecules and the nano-receptors on the SNM or changes the number of transmitted molecules by

the so-called virtual transmitter nano-machine (VTNM). This is reflected in the NCC model, with the

VTNM as the transmitter and the SNMs as the receivers.

Each of the SNMs generate an MSM as it detects an abnormality.The DGN collects the MSMs over

a noisy micro-communication channel. Then it decides, and declares the presence or the absence of the

abnormality to the outside world. The MCC is considered an additive white Gaussian noise (AWGN)

channel. Below, we continue with a detailed description of the NCC model and the detection feature.

A. Nano Communication Channel

The NCC characterizes chemical reactions in the molecular environment. We consider a set of SNMs,

which act as molecular receivers, injected into the biological tissue for test. We assume that the existing

molecules in the molecular environment react with the receptors on SNMs. The molecules are assumed to

be transmitted by a VTNM with a periodic square pulse propagation pattern. A molecular pulseA (or 0)
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is emitted by VTNM asxi, xi ∈ {A, 0}, with concentrationCA (or 0) and probabilityPA (or (1−PA)),

during time itTN ≤ t ≤ itTN + tTN , i = 0, 1, ..., wheretTN is the duration of the pulses transmitted

by VTNM [59]. The transmitted molecules are absorbed at the sensor nano-machine. If the VTNM

transmits a molecular pulseA, the number of received molecules during the timetTN is quantified by

NA =

∫ tTN

0
CB (t) dt, (1)

in which CB (t) denotes the concentration of the bound receptors, in terms of µmol/liter and is given

by

CB (t) = CB (∞)
(
1− e−t(κ−1+κ1CA)

)
, 0 ≤ t ≤ tTN , (2)

whereCB (∞) = κ1CACR/(κ−1 + κ1CA) is the steady state concentration of the bound receptors [15].

The parametersκ1 andκ−1, respectively are binding and release rates for the following reactions

A+R
κ1→B, (3a)

B
κ−1→ A+R, (3b)

whereR andB respectively, denote nano-receptors on the SNMs and the bound-receptors after reaction

betweenA andR. It is evident in (2) thatCB (t) is increased exponentially over time within the pulse

period with concentration ofCA. After time tTN , when the pulse duration ends,CB (t) is reduced as

CB (t) = CB (tTN ) exp (−κ−1 (t− tTN )) for t > tTN . (4)

As a result, at the SNM and over the subsequent time interval,this previous pulse is reflected as follows

in the receiver

N
′
A =

∫ tTN

0
NAe

(−κ−1t)dt. (5)

Obviously, we haveN0 = N
′
0 = 0. The rates of interaction of the molecules with the SNM receptors,

κ1 and κ−1, depend on the molecular diffusion over the NCC. Hence,κ1 may be influenced by such

parameters as the molecular diffusion coefficient and the temperature of the environment,θ [60], and

may be assessed analytically [61]. The release rate,κ−1 is given by [60]

κ−1 = κ0−1e
χυ/kBC θ, (6)
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in which υ depends on the energy of the molecules propagated between the VTNM and the SNMs and

environment factors, andχ, kBC and θ are defined in Table III. The parameterκ0−1 can be obtained

by matching experimental measurements, and depends on the absorption capability of molecules at the

SNM [60]. Hence, it is assumed thatκ0−1 is a variable, which depends on the properties of nano-receptors

in the SNM.

The noise of the SNM measurement is correlated over time and space. The former is due to the slow

variation of SNM measurement as it models a bio-chemical reaction. The latter is due to the relatively

small volume of the molecular environment in the range ofnm3 to µm3. The NCC is modeled by a first

order Markov model with additive noise, and as such the inputof SNM j at time i is described by

yij = g+ (xi, κ1, κ−1, tTN , CA, θ) + g− (xi−1, κ1, κ−1, tTN , CA, θ) + εij . (7)

In (7), if the VTNM transmits the molecular bitxi ∈ {A, 0}, then

g+ (xi, κ1, κ−1, tTN , CA, θ) = Nxi , (8)

g− (xi−1, κ1, κ−1, tTN , CA, θ) = N
′
xi−1

, (9)

indicate the number of molecules received in the current time interval from the current and previous

transmissions, respectively. Also,εij ’s are jointly normal distributed with an assumed time correlation

span ofp. The temporal (normalized) covariance matrix ofεij ’s is given by

ΩTC =
[
ωTC
ij

]
p×p. (10)

The SNM observes the nano-communications channel for a timeduration ofn ≥ p. We next consider

the spatial correlation. The spatial (normalized) covariance matrix of SNM noisesεij is given by

ΩSC =
[
ωSC
jl

]
M×M , (11)

in which M is the number of SNMs,ωSC
jl is the correlation coefficient of observations of SNMsj

and l. Moreover, in this paper we assume that the space-time correlation function of SNM noises is
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separable [62], [63]. As such, the correlation coefficient of εij andεkl is given by

E(εijεkl)√
E(ε2ij)E(ε2kl)

= ωTCik ωSCjl . (12)

The Gaussian NCC model we consider here is also justified froma molecular communication perspec-

tive. The propagation models of molecules over a diffusive molecular communication channel are widely

studied in the literature [17], [64]–[68]. In a molecular communication system, with information encoded

in the number of molecules, the number of received moleculesexhibits a binomial process [68]. When

multiple emissions are considered, due to the ISI caused by the diffusion channel, previous transmissions

must also be taken into account for the determination of the current symbol. This requires a summation of

the binomial random variables, which is analytically hard to work with. Therefore, in the literature, two

approximations of the binomial distribution are used, namely the Poisson and Gaussian approximations

[67], [69]–[71]. In [72], it is shown that when the number of transmitted molecules increases, the Gaussian

approximation provides a good model for the molecular communications channel.

B. Detection Feature

The biochemical activities of the competitor cells, e.g., cancer cells, affect the molecular environ-

ment and change its parameters [18]. We model this as an abnormality or intrusion in the molecular

environment, which is to be detected as early as possible. The presence of competitor cells affects the

NCC. For example, the competitor cells can react with the molecules transmitted by the VTNM. This

reduces the concentration of transmitted moleculesCA, and hence, changes the NCC parameters or

input. This variation in NCC parameters or input is used for modeling of protein identification for early

cancer detection in the nano-scale [18]. Alternatively, the competitor cells may devitalize the receptors

on the SNMs, changeκ−1 and κ1 on the SNM by a biochemical reaction or vary the temperature of

nano-receptors on the SNMs.

In the NCC, for a given size of sample tissue and the parameters in Table III, a measurable parameter is

defined as detection feature, which is to be constant during measurement. In presence of competitor cells,

this parameter deviates from its normal value, that in turn is detected by the SNM. Here, we consider

two scenarios although other scenarios may also be similarly considered. In the first scenario, we assume

that the VTNM always sends molecular bit 0 (PA = 0) in the healthy setting, and sends only molecular

September 10, 2018 DRAFT
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bit A (PA = 1) when an abnormality exists. In this case, the detection feature is defined as follows

NR = g+ (xi, κ1, κ−1, tTN , CA, θ) + g− (xi−1, κ1, κ−1, tTN , CA, θ). (13)

Hence,NR in (13) is a constant value in the healthy setting and changesto another constant value as

the environmental parameters vary in the non-healthy setting.

In the second scenario, we assume that VTNM sends molecular bit A with probability PA and the

presence of a competitor cell in the environment can changePA and/or channel parameters. In this case,

NR in (13) is not a constant value over multiple transmissions,but its average is still so. As such, the

detection feature is defined as follows

NR = E
(
g+ (xi, κ1, κ−1, tTN , CA, θ) + g− (xi−1, κ1, κ−1, tTN , CA, θ)

)
, (14)

where, the expectation (average) at the receiver is naturally computed over multiple transmission time

slots,tTN . By this definition,NR in (14) has two distinct constant values in the healthy and non-healthy

settings, and is used as an abnormality detection feature. In this case, we rewrite (7), with a new channel

output interpretation, as follows (this allows us to treat both scenarios in a common setting in the sequel)

yij = E
(
g+ (xi, κ1, κ−1, tTN , CA, θ) + g− (xi−1, κ1, κ−1, tTN , CA, θ)

)
+ εij . (15)

Note that the same Gaussian model described in (10)-(12) forεij is adopted here. Obviously the model

parameters may not be necessarily the same in the two mentioned scenarios. It is noteworthy that the

separability of the space-time correlation function remains valid.

In both noted scenarios, the NCC is considered homogeneous and we haveE
[
(yij − NR)2

]
=

E
[
(yil −NR)2

]
, j, l ∈ {1, ...,M} andi ∈ {1, ..., n}. In the healthy setting,NR = NH ; and in presence

of a competitor cell or an abnormality that affects the NCC parameters or input,NR deviates fromNH .

In the sequel, we consideryij as a decision variable, whose time averageNR serves as a detection feature

for abnormality detection at SNMj.

C. Problem Statement

We consider a design optimization problem to determine the minimum required concentration of SNMs,

M̄ = M/vol , in the test environment for a reliable NADS, wherevol is the volume of the sample.
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The SNMs are typically synthesized chemical compounds thatcould be expensive or could create side

effects if used in vivo. Hence, we wish to use them in the smallest concentration possible. A reliable

NADS would identify the existence of an abnormality with sufficiently high probability,PD. At the same

time, when the abnormality in fact does not exist it only makes a (false) alarm with sufficiently small

probability,PF . ThePD andPF are later analyzed in Theorem 3. The desired optimization problem in

this paper is formulated as follows.

Problem. The NADS design optimization problem is given by

M̄∗=min M̄ (16)

subject to PD ≥ ξ, PF ≤ γ.

where,ξ is a constant close to unity andγ is a constant close to zero. As observed in Section V for given

values ofξ andγ, the optimized concentration of SNMs,̄M , depends on type or level of abnormality,k.

III. D ETECTION STRATEGY OVER NCC AND MCC

In this Section, the detection strategy over NCC and MCC is studied. In the first Subsection, a hypoth-

esis test is set up for the detection of competitor cells in the bio-molecular environment. Subsequently,

the communication and detection strategies over the MCC arestudied.

A. Hypothesis Test for AD in NCC

This test determines the functionality of the SNM over the NCC. We derive a threshold level for each

SNM to alarm the presence of competitor cells by generating amicro scale message. This is accomplished

such that the detection probability of each SNM over the NCC is maximized for a bounded probability

of false alarm. The detection probability in terms of the false alarm probability is the basic performance

characteristic of an SNM over the NCC.

The following hypothesis test is considered for the detection of a competitor cell in the molecular

environment 



H0, NR = NH

H1, NR 6= NH .
(17)

The Gaussian assumption for the observation is motivated based on thermal noise distribution, the noise

in gene expression levels [55] and the noise of biochemical systems [57]. In the sequel, the detection
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performance of the hypothesis test in (17) is analyzed, where we consider maximum likelihood estimate

of NR at the SNM over the observation periodn, i.e., N̂Rj = argmax
NR

P
(
ynj

∣∣∣NR
)

, whereynj =

[y1j , y2j, ..., ynj ]
†, where† denotes the transpose operation. If we rewrite (7) and (15) at the receiver in

terms ofNR, respectively based on definition ofNR in (13) or (14), for SNMj = 1, 2, . . . ,M and

time i = 1, 2, . . . , n, we have

yij = NR + εij . (18)

Without loss of generality, we considern ≥ p, and define the extended temporal (normalized) covariance

matrix of observations within the observation periodn as follows

ΩT =
[
ωTC
ij

]
n×n =




ΩTC · · · 0
...

. . .
...

0 · · · ΩTC



n×n

. (19)

For example withp = 2 andωTC
12 = ωTC

21 = ρ , ΩT is given by

ΩT =




1 ρ · · · 0

ρ 1 · · · 0
...

...
. . .

...

0 0 ρ 1



n×n

. (20)

By this model of channel, as the status of the molecular environment departs from a healthy setting,

the detection feature,NR, deviates fromNH . Here,NR deviates formNH as follows

NR = (1± kσNCC )NH , (21)

in which k could indicate the type or level of abnormality andσNCC is standard deviation of noise in

NCC. Fork = 0, the molecular environment is healthy (NR = NH ) and we assume1 ± kσNCC ≥ 0 ,

k ≥ 0. A certain value ofk could correspond to a given progress level of a disease.

The conditional probability of observations vectorynj , givenNR at SNM j is computed as follows,
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where† denotes the transpose operation,

P
(
ynj

∣∣∣NR
)
= P (y1j, y2j , . . . , ynj|NR) =

1
(2π)n/2σn

NCC
|ΩT|1/2 exp

(
− 1

2σ2
NCC

(
ynj −NRn

)†
ΩT

−1
(
ynj −NRn

))
.

(22)

andNRn =
[
NR NR · · · NR

]†
n×1

. Considering the Logarithm of (22), we have

log P
(
ynj
∣∣NR

)
= −n log

(∣∣ΩT
∣∣1/(2n)

√
2πσ2NCC

)
− 1

2σ2NCC

(
ynj −Nn

R

)†
ΩT

−1 (
ynj −Nn

R

)
. (23)

We define

ΨT =
[
ψTC
ij

]
n×n

∆
= ΩT

−1

, (24)

and rewrite (23) as follows

log P
(
ynj
∣∣NR

)
= −n log

(∣∣ΩT
∣∣1/(2n)

√
2πσ2NCC

)
− 1

2σ2NCC

n∑

l=1

n∑

i=1

(ylj − NR) (yij − NR)ψTC
il .

(25)

To maximize (23), we set its derivative with respect toNR to zero and considering the symmetry ofΩT

obtain

N̂Rj =
n∑

l=1

n∑

i=1

yljψ
TC
il

/
n∑

l=1

n∑

i=1

ψTC
il (26)

To derive the decision rule of Neyman-Pearson as in the hypothesis test of (17), we employ the generalized

likelihood ratio test (GLRT) in the next theorem due to the hypothesis test in (17) is composite test [73].

Theorem1. Consider an SNM withn temporally correlated Gaussian observations over the NCC.For

the hypothesis test in (17), the decision threshold and the detection probability with limited probability

of false alarm,PNCC
F < η1, are given by




H0, NH − σDφ
−1
(
1− η1

2

)
< N̂Rj < NH + σDφ

−1
(
1− η1

2

)

H1,
N̂Rj > NH + σDφ

−1
(
1− η1

2

)

N̂Rj < NH − σDφ
−1
(
1− η1

2

)
,

(27)

PNCC
D = 1−

Q
((
−σDφ−1

(
1− η1

2

)
∓ kσNCCNH

)/
σD
)
+Q

((
σDφ

−1
(
1− η1

2

)
∓ kσNCCNH

)/
σD
)
,

(28)

whereφ−1 (.) is the inverse function of normal cumulative distribution,φ; Q (.) =1−φ (.) is Q-functions
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and

σD =

√√√√√
(

n∑

l=1

n∑

i=1

ψTC
il

)−2




n∑

l=1

(
n∑

i=1

ψTC
il

)2

σ2NCC + 2

n−1∑

l=1

n∑

q=l+1

ωTC
kl σ

2
NCC

(
n∑

i=1

ψTC
iq

)(
n∑

i=1

ψTC
il

)


Proof. See Appendix A.

The probability of miss-detection for each SNM then is givenby

PNCC
M = 1− PNCC

D . (29)

As we shall demonstrate in Section V, a largern would enhance the performance in general. However,

the level of obtained gain depends on the temporal dependency of the SNM observations. In the next

Section, we study the abnormality detection and communication over the MCC.

B. Detection and Communication Strategy over MCC

The DGN receives the MSMs from the SNMs over the MCC and declares either the existence or the

absence of the competitor cells in the NCC. It is assumed thatthe MSMs have two alphabets. If the SNM

j detects the competitor cells, it generates the messageXj = G, otherwise it setsXj = 0. Replacing (26)

in the decision rule of SNMj in (27), we have

Xj =





0, NH − σDφ
−1
(
1− η1

2

)
<

n∑
l=1

n∑
i=1

yljψ
TC
il

/
n∑
l=1

n∑
i=1

ψTC
il < NH + σDφ

−1
(
1− η1

2

)

G,

n∑
l=1

n∑
i=1

yljψ
TC
il

/
n∑
l=1

n∑
i=1

ψTC
il > NH + σDφ

−1
(
1− η1

2

)

n∑
l=1

n∑
i=1

yljψ
TC
il

/
n∑
l=1

n∑
i=1

ψTC
il < NH − σDφ

−1
(
1− η1

2

)
,

(30)

The probability of the eventsXj = G andXj = 0 depends on the presence or the absence of the

competitor cell. If the competitor cell is present in the molecular environment, the probability of micro-

scale message is given by

p (Xj |NR 6= NH ) =





1− PNCC
D Xj = 0

PNCC
D Xj = G.

(31)
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If the competitor cell is not present in the environment the probability of micro-scale message is given

by

p (Xj |NR = NH ) =





1− PNCC
F Xj = 0

PNCC
F Xj = G,

(32)

The signal received at the DGN through the AWGN MCC then is given by

V =

M∑

j=1

Xj + εDGN , (33)

where,εDGN ∼ N
(
0, σ2MCC

)
, andσ2MCC is the MCC noise variance. We set up the following hypothesis

test at the DGN, 



H0

M∑
j=1

Xj < G

H1

M∑
j=1

Xj ≥ G.

(34)

This fusion rule is known as the OR-rule [74]. The hypothesisH1(H0) is declared if at least one (none) of

the SNMs transmits the MSMG, stating that the abnormality exists (does not exist) in thebio-molecular

environment. In the next Section, the NADS performance is analyzed when the SNMs observations are

spatially, and temporally correlated.

IV. NADS PERFORMANCEANALYSIS

In this Section, the performance of NADS is analyzed and two closed-form expressions for the

probabilities of detection and false alarm are derived. Then, in the next Subsection, a computationally

efficient formulae is derived for performance of NADS.

A. Exact Performance Analysis

In this Subsection, the NADS performance is quantified usingTheorem1 on the NCC performance

and considering the communication of SNMs over the MCC as discussed in Section III. Fig. 1 shows

the modeling of the communication channels between the VTNM, the SNMs and the DGN. The NADS

is composed of a broadcast channel with a common message followed by a Gaussian multiple access

channel and an OR fusion rule.
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Fig. 1: Modeling of communication channels between VTNM, SNMs and the DGN.

Considering Fig. 1 and the communication of SNMs over the MCC, we have

U =
∑M

j=1
Xj. (35)

The event of abnormality detection alarm at the SNMj, when the abnormality truly exists, is denoted by

Dj and its complementary event is denoted byD′
j. In this case, we considerQD = P (U ≥ G|NR 6= NH ).

Considering the spatially correlated observations of SNMsand using the OR-fusion rule,QD can be writen

as follows

QD = 1− Pr

{⋂M

j=1
D′

j

}
. (36)

The SNMj alarms an abnormality over the NCC depending on its decisionvariableN̂Rj in (26). Hence,

to quantify the probability in (36), we need to derive the PDFof N̂R
M

= [ N̂R1 N̂R2 · · · N̂RM ]†.

The next lemma serves this purpose.

Lemma1. The decision variables of SNMŝNR
M

= [ N̂R1 N̂R2 · · · N̂RM ]† are jointly Gaussian

with meanNR and (normalized) covariance matrixΩSC in (11).

Proof. See Appendix B.

Using Lemma1 and noting the decision region in (27), we have

QD = 1−
NH+τ ′∫
NH−τ ′

...
NH+τ ′∫
NH−τ ′

1
(2π)M/2σM

D |ΩSC |1/2 exp

(
− 1

2σ2
D

(
N̂R

M −NRM
)†
ΩSC

−1
(
N̂R

M −NRM
))

dN̂R1 . . . dN̂RM

(37)
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whereNRM =
[
NR NR · · · NR

]
1×M

. In a similar manner, we considerEj as the false alarm

event that SNMj alarms an abnormality, when it does not exist in reality. Thecomplementary event

is denoted byE′
j. In this case, we considerQF = P (U ≥ G|NR = NH ). Considering the spatially

correlated observations of SNMs and using the OR-fusion rule,QF can be rewritten as follows

QF = 1− Pr

{⋂M

j=1
E′

j

}
(38)

Using Lemma1 and noting the decision region in (27), we have

QF = 1−
NH+τ ′∫
NH−τ ′

...
NH+τ ′∫
NH−τ ′

1
(2π)M/2σM

D |ΩSC |1/2 exp

(
− 1

2σ2
D

(
N̂R

M −NHM
)†
ΩSC

−1
(
N̂R

M −NHM
))

dN̂R1 . . . dN̂RM

(39)

whereNHM =
[
NH NH · · · NH

]
1×M

. If the observations of different SNMs are spatially

independent,ΩSC is diagonal and (37) and (39) are simplified as follows [74],

QD = 1− (1− PNCC
D )M (40)

QF = 1− (1− PNCC
F )M (41)

wherePNCC
F = η1 andPNCC

M is defined in (29).

At the DGN with the OR-rule, we are facing a channel with binary outputs. However, the input to the

DGN is a noisy version ofU , i.e., V , which is the basis for the decision on the possible presenceof

abnormality. The next theorem presents the corresponding decision region at the DGN based on maximum

a-posteriori probability (MAP) rule. This is motivated to obtain a point estimate of the unobserved quantity

of presence or non-presence of abnormality based on DGN observations.

Theorem2. The decision region at the DGN based on MAP rule is given by



H0 : V < V THR

H1 : V > V THR
(42)

where,V THR is the minimum value ofV , satisfying the following inequality,

((1−QF )P (H0)− (1−QD)P (H1)) exp
(

−V 2

2σ2
MCC

)
+

(QFP (H0)−QDP (H1))
1

(1−p0)
M∑
l=1

pl exp
(
−(V−lG)2

2σ2
MCC

)
H0

>
<
0.

(43)

In (43), pl = Pr {U = lG} for l ∈ {0, . . . ,M}, is given by
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pl = P (H1) p
′
l + P (H0) p

′′
l (44)

wherep′l andp′′l are given by

p′l = Pr {U = lG|H1} =


 M

l



∫

A

...

∫

A︸ ︷︷ ︸
l

∫

AC

...

∫

AC︸ ︷︷ ︸
M−l

1
(2π)M/2σM

D |ΩSC |1/2 exp

(
− 1

2σ2
D

(
N̂R

M −NRM
)†
ΩSC

−1
(
N̂R

M −NRM
))

dN̂R1 . . . dN̂RM

(45)

p′′l = Pr {U = lG|H0} =


 M

l



∫

A

...

∫

A︸ ︷︷ ︸
l

∫

AC

...

∫

AC︸ ︷︷ ︸
M−l

1
(2π)M/2σM

D |ΩSC |1/2 exp

(
− 1

2σ2
D

(
N̂R

M −NHM
)†
ΩSC

−1
(
N̂R

M −NHM
))

dN̂R1 . . . dN̂RM .

(46)

∫
A
• =

∫ NH−τ ′

−∞ •+
∫∞
NH+τ ′ • and

∫
AC • =

∫ NH+τ ′

NH−τ ′ •,

Proof. See Appendix C.

Hence, the next theorem quantifies the NADS performance.

Theorem3. The probabilities of detection and false alarm of NADS aregiven by

PD = Q
(
V THR

σMCC

)
(1−QD) +

∑M
l=1 Q

(
V THR−lG
σMCC

)
p′l

1− p′0
QD (47)

PF = Q
(
V THR

σMCC

)
(1−QF ) +

∑M
l=1Q

(
V THR−lG
σMCC

)
p′′l

1− p′′0
QF (48)

Proof. The proof is provided in Appendix D.

If the noise of SNMs are considered spatially independent, the next corollary presents the NADS

probability of detection and false alarm.

Corollary 1. The probability of detection and false alarm of NADS for spatially independent NCCs

are given by

PD = Q
(
V THR

σMCC

)
(1− PNCC

D )M +

∑M
l=1Q

(
V THR−lG
σMCC

)
p′l

1− p′0

(
1− (1− PNCC

D )
M
)

(49)

PF = Q
(
V THR

σMCC

)
(1− PNCC

F )M +

∑M
l=1Q

(
V THR−lG
σMCC

)
p′′l

1− p′′0

(
1− (1− PNCC

F )
M
)

(50)
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where

p′l =


 M

l


(1− PNCC

D

)M−l(
PNCC
D

)l
(51)

p′′l =


 M

l


(1− PNCC

F

)M−l(
PNCC
F

)l
. (52)

Remark.1. The analysis in Theorem 3 relies on an OR rule (1 out ofM rule). This can be extended

to the case withm out ofM rule at the DGN. Specifically, following similar steps, it isstraight forward

to show that the probabilities of detection and false alarm are given by

PD =

M∑

l=0

p′lQ
(
V THR − lG

σMCC

)
(53)

PF =

M∑

l=0

p′′lQ
(
V THR − lG

σMCC

)
. (54)

whereV THR is smallest value ofV which satisfy the next inequality

((
1− Q̌F

)
P (H0)−

(
1− Q̌D

)
P (H1)

)
√

2πσ2MCC

m−1∑
l=0

pl

m−1∑

l=0

pl exp

(
−(V − lG)2

2σ2MCC

)
+

(
Q̌FP (H0)− Q̌DP (H1)

)
√
2πσ2MCC

M∑
l=k

pl

M∑

l=m

pl exp

(
−(V − lG)2

2σ2MCC

)
H0
>
< 0 (55)

whereQ̌D =
∑M

l=m p
′
l and Q̌F =

∑M
l=m p

′′
l . It is obvious thatV THR explicitly depends onm. Indeed,

for the case ofm = 1 replacingQD andQF in terms of p′l and p′′l in (45) and (46) leads to (53)

and (54). Our experiments (not reported here) reveal that both PD andPF reduce asm increases beyond

one. Assuming SNMs have smallPNCC
F andPNCC

D , and considering our application of early disease

detection, in the sequel we focus on the 1 outM rule and aim at improving the probability of detection,

with a small and acceptable probability of false alarm. As elaborated, similar analysis can be carried out

for the case ofm out of M rule.

B. Computationally Efficient Performance Assessment

Performance evaluation of NADS based on the analyses in Theorem 2 and equations (44), (45) and (46)

is computationally challenging in general, due to the multiple nested integrals involved (especially for
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large number of SNMs). Therefore, in the next lemma we present approximations that enable more

computationally efficient solutions.

Lemma2. The probabilitiesp′l, p
′′
l andpl in (44), (45) and (46) are approximated by

p′l ≈


 M

l


(1− PNCCD

)αM−l

M

(
[1]†ΩSC−1

[1]
)(
PNCCD

)αl

M

(
[1]†ΩSC−1

[1]
)

, (56)

p′′l ≈


 M

l


(1− PNCCF

)αM−l

M

(
[1]†ΩSC−1

[1]
)(
PNCCF

)αl

M

(
[1]†ΩSC−1

[1]
)

, (57)

p̃l = P (H1) p̃
′
l + P (H0) p̃

′′. (58)

where[1] = [1, ..., 1]†M×1 andα is a fitting parameter.

Proof. The proof is provided in Appendix E.

Since the DGN uses an OR-fusion rule, we haveQD = 1− p′0 andQF = 1− p′′0. Using (56) and (57)

with l = 0, we can approximateQD andQF in (37) and (39) for their efficient computation as follows:

Q̃D = 1− (1− PNCC
D )α[1]

†ΩSC
−1

[1] (59)

Q̃F = 1− (1− PNCC
F )α[1]

†ΩSC
−1

[1] (60)

Using the results of Lemma 2 and Corollary 1, computationally efficient expressions forPD andPF are

obtained by replacingpl, p′l, p
′′
l , QD andQF with p̃l, p̃′l, p̃

′′
l , Q̃D and Q̃F , respectively.

V. NUMERICAL RESULTS

In this Section, we present numerical results and assess theperformance of the proposed NADS. In

addition, the effects of different parameters including the temporal and spatial correlations of the SNM

noise are studied. In the experiments of this Section, we assume that the observations of SNMs are

temporally correlated by the correlation matrix in (20) andthe spatial correlation matrix isΩSC =

[ωSC
ij

]M×M , and ωSC
ij

= (1/4) |i−j|. We also consider the volume of the sample size at 1000nm3.

Table IV presents the parameters of the numerical experiments.

Fig. 2 shows the probability of receiving no microscale messages at the DGN for spatially correlated

noise of SNMs in presence of abnormality ( in (45)) and its approximation (p′0 in (56)) in terms of the
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number of SNMs,M , for different values of observation time,n. As evident the approximate expression

p̃′0 matches the analysisp′0 reasonably well for the selectedα = 1.2. As such in the subsequent numerical

results, we setα = 1.2 when using the approximations.

Table V explains the presentation of numerical results in Figs 3a- 5d. Two methods for obtaining

the performance results are considered, which are labeled as approximate and numerical in the sequel.

First, we elaborate the results and comment on how the two methods are compared. Fig. 3a shows the

probability of miss-detection,PM in terms of the number of SNMs in the sample size,M for different

values of observation time,n and temporal correlationρ in spatially independent scenario. It is evident

that even a small value of temporal correlation, e.g.,ρ = 0.1, greatly affectsPM . Fig. 3b showsPM in

terms ofM , for different values of observation time,n in spatially correlated and temporally independent

scenario. One sees that spatial correlation of SNM observations degradesPM . For example, withM = 8

andn = 9, spatially independent SNM observations results in a 20 times smallerPM when compared to

the spatially correlated setting. Hence, if observations of SNMs are spatially correlated and we consider

them as spatially independent, the reliability of NADS is substantially degraded. Figs 3c and 3d show

PM with σMCC = 0.1 and σMCC = 0.4 in terms ofM for different values ofn and ρ in spatially

and temporally correlated scenario. One sees that increasing σMCC degradesPM . Based on results in

Figs 3a- 3d, it is evident that the probability of miss-detection PM obtained by the approximate method

matches well with that computed based on the numerical method. Hence, the approximate method can

be efficiently used to solve the design problem of (16).

Fig. 4a shows the probability of false alarmPF in terms ofM , for different values ofσMCC . One

sees that the behavior ofPF in terms ofM varies asσMCC increases. For small values ofσMCC , the

performance degradation is due to error in the NCC. As evident in (50), this performance result is valid

for all values ofn andρ, since in this experiment,PNCC
F is small (set to equality in (71)) andσMCC

is also small (effect of MCC is negligible onPF ). Moreover, one sees that any spatial or temporal

correlation in SNM observations improvesPF . Fig. 4b showsPF in terms ofM for different values of

n with σMCC = 0.4. One sees that the point at which the behavior of the curves changes depends both

on σMCC and n. From Figs 4a and 4b, it is evident that the approximate method for computingPF

slightly overestimates the false alarm probability when compared to the numerical method (see Table V

for all values ofM andn. Hence, to avoid calculating multiple integrals in (37) and(39), the proposed
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approximate method may be efficiently used to address the design problem in (16).

The presented results in recent figures may be used to solve the optimization problem of (16). For

example, Figs 3b and 4a reveal that the optimized number of SNMs per unit size isM = 7 for σMCC =

0.1, when NCCs are spatially correlated and temporary independent for ξ = 1 − 10−6, γ = 10−5,

σMCC = 0.1 andn = 9. Figs 3d and 4b indicate that in the same setting and temporary and spatially

correlated NCCs withσMCC = 0.4, we need to selectM = 23. Furthermore, Fig. 3b demonstrates a

smallerPM when SNM observations are spatially independent as opposedto when they are correlated.

Hence, if we consider the correlated observations as independent observations in the analyses instead, we

will underestimate the required number of SNMs,M . For example, in the same setting withPF = 10−5

to achievePM = 10−6 we findM = 10 for spatially independent SNM observations. However, in the

correlated scenario, we need at leastM = 13.

Figs 5a and 5b showPM andPF for NADS in terms ofM , for different values ofPNCC
F for spatially

and temporary correlated NCCs. In Fig. 5b, the results demonstrate thatPF increases withPNCC
F andM .

The typical trade-off of false alarm and detection performance of SNM over the NCC is visible in Fig. 5c.

Interestingly,PNCC
F affects the overall detection performance of NADS in the same way (Fig. 5a), as it

directly influences the NCC detection performancePNCC
M (Fig. 5c). These figures also demonstrate the

effect of networking of the SNMs on the performance. Consider the performance of a single SNM in

Fig. 5c atPNCC
F = 10−6 andPNCC

M ≈ 0.35. According to results in 5a and 5b, utilizing 20 SNMs

leads to significantly improvedPM of 10−6 andPF ≈ 10−5 .

Our experiments (not reported here) reveal that the probability of miss-detection over the NCC notice-

ably reduces as parameterk increases (this parameter may be used to indicate the disease progress level).

Such a behavior then reflects in the overall system performance as depicted in Fig. 5d. One sees that

ask increases,PM reduces much faster withM . The results indicate that if the competitor cell affects

the molecular environment more strongly, the proposed NADSdetects its presence more easily. A larger

value ofk in (21), may be interpreted as a disease which has progressedfurther and hence has altered

the status of the molecular environment more significantly from a healthy setting.

The setting of this paper in the special case of spatial and temporal independent noise of SNMs

reduces to that of our earlier study in [21]. However, the presented analysis in this work is exact in the

said setting, whereas the prior work relies on certain approximations. Specifically, our extensive numerical
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TABLE IV: Parameters of numerical results for Figs 2-5d, X:Y:Z denotes the range of parameter as [X,Z]
with step size Y,G = 1, NH = 1 , vol = 1000[nm3].

Parameter σMCC η1 n k

Figs 3a-3c 0.1 10−6 1:2:9 2
Figs 3d and 4b 0.4 10−6 1:2:9 2
Fig. 4a 0.1, 0.2:0.2:1 10−6 9 2
Figs 5a- 5c 0.1 [10−610−510−410−310−210−1] 9 2
Fig. 5d 0.1 0.1 1 1.75:0.5:3.25
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Fig. 2: The probability of receiving no microscale messagesat DGN over the spatially and temporally
correlated noise of SNMs in presence of abnormality (Solid lines:p′0 in (45)) and approximation ofp′0
(Markers:p̃′0 in (56)), in terms ofM for different values ofn with ρ = 0.1.

results show that the approximated analyses of PF and PM in [21] are respectively a good approximation

and an upper bound for the exact values presented here.

VI. CONCLUSIONS

An abnormality detection scheme for detection of competitor cells in a bio-molecular nano-network was

proposed. This is motivated for the early detection and classification of diseases and enabling their timely

TABLE V: Numerical results presentation specification for Figs 3-5

Method Type of
Curve

Spatially cor-
related

QD,QF p′
l
,p′′

l
PM , PF

Numerical (Num.) Solid lines
√

Numerically
computed by (37)
and (39)

Approximated by
p′
l

andp′′
l

in (56)
and (57)

(47) and (48)

Approximated
(App.)

Markers only
√

Approximated by
Q̃D andQ̃F (59)
and (60)

Approximated by
p′
l

andp′′
l

in (56)
and (57)

(47) and (48)

Exact formula
spatially independent
scenario (Sp. Ind.)

Dashed-
dotted lines

× (40) and (41) (51) and (52) (49) and (50)
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Fig. 3: (a)PM vs.M for different values ofn andρ in spatially independent and temporally correlated
scenario (dashed-dottedρ = 0, dotted linesρ = 0.1 , dashed linesρ = 0.2 ) andσMCC = 0.1. (b) PM
vs.M for different values ofn in spatially independent/correlated and temporally independent scenario,
ρ = 0 and σMCC = 0.1. (c) PM vs. M for different values ofn and ρ in spatially and temporally
correlated scenario. (Dotted linesρ = 0.1, dashed linesρ = 0.2) andσMCC = 0.1. (d) PM in terms of
M for different values ofn in spatially and temporally correlated scenario, forρ = 0.2 andσMCC = 0.4
.

and effective treatment. The proposed NADS is a two-tier network. The sensor nano-machines at the first

tier act as receivers of a nano-communications channel modeling the molecular environment. The SNMs

then communicate over a noisy channel to a data gathering node, which operates based on an OR fusion

rule. The average number of received molecules serves as a feature for detecting the abnormalities at the

SNMs. The detection performance of each SNM in presence of Gaussian observation noise was analyzed

using a generalized likelihood ratio test. Moreover, the effects of temporal and spatial correlations of

the SNMs observations on the detection performance were studied. The reported experiments results

reveal that otherwise ignoring possibly existing temporalor spatial correlations would lead to noticeably
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Fig. 4: (a) PF in terms ofM for different values ofσMCC , in spatially correlated/independent and
temporary correlated scenario withρ = 0.2. (b) PF in terms ofM for different values ofn in spatially
and temporally correlated scenario, forρ = 0.2 andσMCC = 0.4.

inaccurate performance results. Next, quantifying the overall NADS detection performance, a design

problem was set up that quantifies the minimum required concentration of SNMs for a desired level of

NADS reliability. The solution determines the optimized operation of detectors for each of the NADS

tiers. This in turn facilitates optimized abnormality detection with smallest possible side effects due to the

injection of nano-sensors. The results indicate how effective fusion of the noisy observations collected

from a number of sensor nano-machines with limited capabilities could provide an acceptable detection

performance.

At the current stage of research on detection of diseases at the nano-scale, there are still many interesting

open research problems. Here, we state a few of them. In this paper, the detection feature is set based on a

mathematical modeling and certain valid approximations. Developing more precise models or obtaining

the exact detection feature based on experimental measurements in the target tissue is an interesting

research avenue. The side effects of injected SNMs on the molecular environment play an important role

in the accuracy of the model and the performance of NADS. Hence, studying those effects is another

key aspect of research in this field. Designing practical SNMs for detection of cancer or other diseases

and taking the experimental constraints of those SNMs into consideration within the proposed NADS

framework poses a number of other interesting and importantresearch problems. Medical imaging is one

approach to detection over the MCC; other approaches includes ultrasonic or terahertz communications.

Realistic modeling of MCC noise is an interesting issue for enhancing the NADS performance for

abnormality detection in a biomolecular environment.
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Fig. 5: (a)PM in terms ofM for different values ofPNCC
F . (b) PF in terms ofM for different values of

PNCC
F all for ρ = 0.2 andσMCC = 0.1. (c) PNCCM in terms ofn for different values ofPNCC

F , ρ = 0.2.
(d) PM in terms ofM for different values ofk, ρ = 0.2 andσMCC = 0.1.

VII. A PPENDICES

A. Proof of Theorem 1

The GLRT [73] for hypothesis test of (17) is given by

max
NR 6=NH

P(yn
j |NR)

P(yn
j |NH)

=
P(yn

j |N̂Rj)
P(yn

j |NH)
=

1

(2π)n/2σn
NCC

|ΩT |1/2 exp

(
− 1

2σ2
NCC

(yn
j −N̂R

n

)
†
ΩT−1

(yn
j −N̂R

n

)
)

1

(2π)n/2σn
NCC

|ΩT |1/2 exp

(
− 1

2σ2
NCC

(yn
j −NHn)

†
ΩT

−1
(yn

j −NHn)
) > τ,

(61)
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whereN̂R
n
=
[
N̂Rj

]
1×n

, NHn = [NH ]1×n and N̂Rj is given by (26). Simplifying (61) we have

exp

{
−1

2σ2NCC

[
n∑

l=1

n∑

i=1

(
ylj − N̂Rj

)(
yij − N̂Rj

)
ψTCil −

n∑

l=1

n∑

i=1

(ylj −NH) (yij −NH)ψTCil

]}
> τ.

(62)

Computing the natural Logarithm of (62), we obtain

−1
2σ2

NCC

{
n∑
l=1

n∑
i=1

(
ylj − N̂Rj

)(
yij − N̂Rj

)
ψTCil −

n∑
l=1

n∑
i=1

((
ylj − N̂Rj

)
+
(
N̂Rj − NH

))((
yij − N̂Rj

)
+
(
N̂Rj − NH

))
ψTCil

}
> log τ.

(63)

Following some manipulations, we have

−1
2σ2

NCC

{
−

n∑
l=1

n∑
i=1

(
ylj − N̂Rj

)(
N̂Rj − NH

)
ψTC
il −

n∑
l=1

n∑
i=1

(
yij − N̂Rj

)(
N̂Rj − NH

)
ψTC
il −

n∑
l=1

n∑
i=1

(
N̂Rj − NH

)2
ψTC
il

}
> log τ.

(64)

ReplacingN̂Rj from (26) in the first and second terms of RHS of (64), we have

−1

2σ2NCC

[
−

n∑

l=1

n∑

i=1

(
N̂Rj − NH

)2
ψTC
il

]
> log τ ⇒

(
N̂Rj − NH

)2
>

2σ2NCC log τ
n∑
l=1

n∑
i=1

ψTC
il

. (65)

With more simplification, the decision region for hypothesis test of (17) is obtained as




H0 NH − τ ′ < N̂Rj < NH + τ ′

H1

N̂Rj > NH + τ ′

N̂Rj < NH − τ ′,

(66)

where

τ ′
∆
=

√√√√2σ2NCC log (τ)

/
n∑

l=1

n∑

i=1

ψTC
il . (67)

For deriving the false-alarm probability of a decision rule, we need to calculate the PDF of̂NRj given

in (26). The random variablesyij are jointly Gaussian, hence their weighted summation is also Gaussian.

WhenH0 is true, the mean of decision variable at the SNM,̂NRj is NH and its variance is given by [75]

σ2D =

(
n∑

l=1

n∑

i=1

ψTC
il

)−2




n∑

l=1

var(λl) + 2

n∑

q<l

cov(λq, λl)



 . (68)
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in which λl = ylj
n∑
i=1

ψTC
il , the subscript ofj in λl is dropped due to homogeneous assumption of NCCs

for each SNM,var(λl) =

(
n∑
i=1

ψTC
il

)2

σ2NCC , and cov(λq, λl) =

(
n∑
i=1

ψTC
il

)(
n∑
i=1

ψTC
il

)
ωTC
ql σ2NCC .

We have

σ2D =

(
n∑

l=1

n∑

i=1

ψTC
il

)−2




n∑

l=1

(
n∑

i=1

ψTC
il

)2

σ2NCC + 2

n−1∑

l=1

n∑

q=l+1

ωTC
ql σ

2
NCC





 . (69)

Therefore, the false alarm probability can be expressed by

PNCC
F = 1− Pr

{
NH − τ ′ < N

(
NH , σ2D

)
< NH + τ ′

∣∣H0

}
, (70)

and as we desire to havePNCC
F ≤ η1, we obtain

2φ
(
τ ′
/
σD
)
− 1 ≥ 1− η1, (71)

that is satisfied with equality, when we have

τ ′ = σDφ
−1
(
1− η1

2

)
. (72)

According to the region ofH1 in (66), PNCC
D can be written as

PNCC
D = Pr

{
N̂Rj < NH − τ ′, N̂Rj > NH + τ ′

∣∣∣H1

}
, (73)

and due to the Gaussian distribution of̂NRj, we have

PNCC
D = Pr

{
N
(
NR, σ2D

)
< NH − τ ′,N

(
NR, σ2D

)
> NH + τ ′

}
=

1−Q
(
NH−τ ′−NR

σ2
D

)
+Q

(
NH+τ ′−NR

σ2
D

)
.

(74)

The relation ofPD andNR is evident in (74). When a competitor cell is present in the NCC environment,

NR deviates from theNH . For a specific type of competitor cell, considering (21) in (74), PNCC
D can

be obtained as

PNCC
D = 1−Q ((NH − τ ′ − (1± kσNCC )NH )/σD) +Q ((NH + τ ′ − (1± kσNCC )NH )/σD)

= 1−Q ((−τ ′ ∓ kσNCCNH )/(σD)) +Q ((τ ′ ∓ kσNCCNH )/(σD)) .

(75)
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Replacingτ ′ from (72) in (75), the following result is obtained

PNCC
D = 1−

Q
((
−σDφ−1

(
1− η1

2

)
∓ kσNCCNH

)/
σD
)
+Q

((
σDφ

−1
(
1− η1

2

)
∓ kσNCCNH

)/
σD
)
.

(76)

B. Proof of Lemma 1

It is evident in (26) that̂NRj is a weighted sum ofyij ’s, which are jointly Gaussian distributed and

hence their summation is Gaussian with meanNR. The correlation coefficient of̂NRj andN̂Rq is given

by

cor(N̂Rj , N̂Rq) =
E
[(

N̂Rj − NR

)(
N̂Rq − NR

)]

√
E

[(
N̂Rj − NR

)2]
E

[(
N̂Rq − NR

)2]
. (77)

Using (26), we obtain

cor(N̂Rj , N̂Rq) =

E

[(
n∑

l=1

n∑
i=1

yljψ
TC

il

/
n∑

l=1

n∑
i=1

ψTC

il −NR

)(
n∑

l=1

n∑
i=1

ylqψ
TC

il

/
n∑

l=1

n∑
i=1

ψTC

il −NR

)]

√
E

[(
n∑

l=1

n∑
i=1

yljψ
TC

il

/
n∑

l=1

n∑
i=1

ψTC

il −NR

)2]
E

[(
n∑

l=1

n∑
i=1

ylqψ
TC

il

/
n∑

l=1

n∑
i=1

ψTC

il −NR

)2] ,
(78)

and following some mathematical manipulation, we have

cor(N̂Rj, N̂Rq) =

E

[(
n∑
l=1

n∑
i=1

(ylj − NR)ψTC
il

)(
n∑
l=1

n∑
i=1

(ylq − NR)ψTC
il

)]

√√√√E

[(
n∑
l=1

n∑
i=1

(ylj − NR)ψTC
il

)2
]
E

[(
n∑
l=1

n∑
i=1

(ylq − NR)ψTC
il

)2
] . (79)

Using the assumption of separability of spatial and temporal correlation as discussed in Section II and

some mathematical manipulations, we have

cor(N̂Rj , N̂Rq) =

ωSC
jq

(
n∑
l=1

(
σ2NCC

(
n∑
i=1

ψTC
il

n∑
i=1

ψTC
il

)
+ 2

n∑
k=l+1

ωTC
kl σ

2
NCC

n∑
i=1

ψTC
il

n∑
i=1

ψTC
il

))

n∑
l=1

{(
n∑
i=1

ψTC
il

)2

σ2NCC +2
n∑

k=l+1

(
n∑
i=1

ψTC
il

n∑
i=1

ψTC
il

)
ωTC
kl σ

2
NCC

}
= ωSC

jq .

(80)
C. Proof of Theorem 2

The MAP rule is written as

max
i∈{0,1}

P (Hi|V )
(a)
= P (Hi|V,W0)P (W0|V ) + P (Hi|V,W1)P (W1|V )

(b)
= max

i∈{0,1}
P (Hi|W0)P (W0|V ) + P (Hi|W1)P (W1|V )

(c)
= max

i∈{0,1}
P (W0|Hi)P (Hi)

P (W0)
P (W0|V ) + P (W1|Hi)P (Hi)

P (W1)
P (W1|V )

(81)
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where in the probability function ofP (•) event ofV = v is denoted byV for brevity and events of

W0/W1 are defined as 



W0 :
∑M

j=1Xj < G

W1 :
∑M

j=1Xj ≥ G.
(82)

In (81), (a) follows from the law of total probability, (b) from Markov property ofHi → Wi → V and

(c) follows from the Bayes rule. Simplifying (81), we have

P(W0|H0)P (H0)
P (W0)

P (W0|V ) + P(W1|H0)P (H0)
P (W1)

P (W1|V )
H0

>
<

P(W0|H1)P (H1)
P (W0)

P (W0|V ) + P(W1|H1)P (H1)
P (W1)

P (W1|V )
(a)⇒

(1−QF )P (H0)
P (W0)

P (W0|V ) + QFP (H0)
1−P (W0)

P (W1|V )
H0

>
<

(1−QD)P (H1)
P (W0)

P (W0|V ) + QDP (H1)
1−P (W0)

P (W1|V )
(b)⇒

(1−QF )P (H0)
P (W0)

P (V |W0)P (W0)
P (V ) + QFP (H0)

1−P (W0)
P (V |W1)P (W1)

P (V )

H0

>
<

(1−QD)P (H1)
P (W0)

P (V |W0)P (W0)
P (V ) + QDP (H1)

1−P (W0)
P (V |W1)P (W1)

P (V ) ⇒

(1−QF )P (H0)P (V |W0) +QFP (H0)P (V |W1)
H0

>
<
(1−QD)P (H1)P (V |W0) +QDP (H1)P (V |W1)

(83)

where, (a) is derived based on definition ofQF andQD respectively in (36) and (38), (b) is derived

based on the Bayes rule. In (83),P (V |W0) andP (V |W1) are given by

P (V |W0) =
1√

2πσ2MCC

exp

( −V 2

2σ2MCC

)
(84)

P (V |W1) = P

(
V

∣∣∣∣∣
M∑
j=1

Xj ≥ G

)
= P

(
V

∣∣∣∣∣
M∑
j=1

Xj = G∪.... ∪
M∑
j=1

Xj =MG

)

(a)
=

P

(
M∑
j=1

Xj=G∪....∪
M∑
j=1

Xj=MG

∣∣∣∣∣V
)
P (V )

P

(
M∑
j=1

Xj=G∪....∪
M∑
j=1

Xj=MG

)
(b)
=

P

(
M∑
j=1

Xj=G∪....∪
M∑
j=1

Xj=MG

∣∣∣∣∣V
)
P (V )

1−P (
M∑
j=1

Xj=0)

=
P

({
M∑
j=1

Xj=G∪....∪
M∑
j=1

Xj=MG

}
∩V
)

1−P (
M∑
j=1

Xj=0)

(c)
=

P

(({
M∑
j=1

Xj=G

}
∩V
)
∪....∪

({
M∑
j=1

Xj=MG

}
∩V
))

1−P (
M∑
j=1

Xj=0)

(d)
=

∑
M

l=1 P

({
M∑
j=1

Xj=lG

}
∩V
)

1−P (
M∑
j=1

Xj=0)
=

∑
M

j=1 P

(
V

∣∣∣∣∣
M∑
j=1

Xj=lG

)
P (

M∑
j=1

Xj=lG)

1−P (
M∑
j=1

Xj=0)

(e)
= 1

(1−p0)
√

2πσ2
MCC

M∑
l=1

pl exp
(
−(V−lG)2

2σ2
MCC

)
.

(85)

Here, (a) follows from the Bayes rule, (b) follows from definition of event ofXj , (c) follows from De

Morgans law, (d) follows since the eventsXj = lG, ∀l are mutually exclusive, and (e) follows since the

noise of MCC is Gaussian. Hence, replacing (84) and (85) in (83) we have
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(1−QF )P (H0)
1√

2πσ2
MCC

exp
(

−V 2

2σ2
MCC

)
+QFP (H0)

1

(1−p0)
√

2πσ2
MCC

M∑
l=1

pl exp
(
−(V−lG)2

2σ2
MCC

)
H0

>
<

(1−QD)P (H1)
1√

2πσ2
MCC

exp
(

−V 2

2σ2
MCC

)
+QDP (H1)

1

(1−p0)
√

2πσ2
MCC

M∑
l=1

pl exp
(
−(V−lG)2

2σ2
MCC

)
,

(86)

which simplifies to

((1−QF )P (H0)− (1−QD)P (H1)) exp
(

−V 2

2σ2
MCC

)
+

(QFP (H0)−QDP (H1))
1

(1−p0)
M∑
l=1

pl exp
(
−(V−lG)2

2σ2
MCC

)
H0

>
<
0.

(87)

The decision region of DGN is thenV
H0

< V THR, whereV THR is derived numerically from (87).

D. Appendix D. Proof of Theorem 3

The probability of detection,PD, is given by

PD = P (VH1
|H1)

(a)
= P (VH1

|H1,W0)P (W0|H1) + P (VH1
|H1,W1)P (W1|H1)

(b)
= P (VH1

|H1,W0) (1−QD) + P (VH1
|H1,W1)QD

(c)
= P

(
VH1

|H1,
∑M

j=1Xj = 0
)
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(88)

where,VH1 is the event ofV > V THR, (a) follows from the law of total probability, (b) is derived based

on definitions ofQF andQD respectively in (36) and (38), (c) is derived based on definitions of W0

andW1 in (82), andp′l = Pr {U = lG|H1}, l ∈ [0,M ] is given by (45), and (d) is derived as follows,
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The steps in deriving (89) are similar to those in (85). In a similar way, the NADS probability of false
alarm may be computed as

PF = P (VH0
|H0) = P (VH0

|H0,W0)P (W0|H0) + P (VH0
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(90)

where,VH0 is the event ofV < V THR, p′′l = Pr {U = lG|H0}, l ∈ [1,M ] is given by (46) and the

steps in deriving (90) are similar to those in (88).

E. Proof of Lemma 2

We consider a homogenous molecular environment, if we assume N̂R1 ≈ N̂R2 ≈ ... ≈ N̂RM ≈ N̂R,

p′l in (45) may be approximated as follows

p′l ≈


 M
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[1]
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(91)

where,[1] = [1, ..., 1]1×M . Using Holder’s inequality [76] in the RHS of above equation, we have
∫
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(92)

Considering only the first component in Taylor expansion of the first term in RHS of the above inequality

p′l ≈


 M

l


(1− PNCCD

)M−l

M

(
[1]†ΩSC−1

[1]
)(
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) l
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(
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)

. (93)
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The RHS of (93) is denoted bỹp′l and serves as an efficient approximation ofp′l. The fitting parameter

α is obtained numerically for best approximation (See Section V). In a similar manner̃p′′l in (46) may

be calculated. In (58)̃pl may be calculated simply by replacingp′l andp′′l with p̃′l and p̃′′l in (44).
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