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Abstract

A nano abnormality detection scheme (NADS) in molecularoaaatworks is studied. This is
motivated by the fact that early detection of diseases saa@aacer play a crucial role in their successful
treatment. The proposed NADS is in fact a two-tier networksefsor nano-machines (SNMs) in the
first tier and a data-gathering node (DGN) at the sink. The Shletect the presence of competitor cells
(abnormality) by variations in input and/or parameters afamo-communications channel (NCC). The
noise of SNMs as their nature suggest is considered caetelattime and space and herein assumed
additive Gaussian. In the second step, the SNMs transmitorsicale messages over a noisy micro
communications channel (MCC) to the DGN, where a decisionade upon fusing the received signals.
We find an optimum design of detectors for each of the NADSstleaised on the end-to-end NADS
performance. The detection performance of each SNM is aedlpy setting up a generalized likelihood
ratio test. Next, taking into account the effect of the MClig bverall performance of the NADS is
analyzed in terms of probabilities of misdetection andegfatarm. In addition, computationally efficient
expressions to quantify the NADS performance is derivedroyiging respectively an approximation and
an upper bound for the probabilities of misdetection andgefalarm. This in turn enables formulating a
design problem, where the optimized concentration of SNMssample is obtained for a high probability
of detection and a limited probability of false alarm. Thsuiks indicate that otherwise ignoring the spatial
and temporal correlation of SNM noise in the analysis, ldadsn NADS that noticeably underperforms
in operations.
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. INTRODUCTION

Cancer is a leading cause of death in the world and accounsbfut 13% of all death per annumi [1].
In addition, it incurs serious disability and emotional idrages to the people and heavily affects them
financially [2]. There have been many advances by signifitasttnological innovations in the treatment
of cancer. However, success is still a distant goal in thiedtion. Indeed, research in early detection
and diagnostics of cancer and their associated enablifgaémgies are of extraordinary importance.

It is believed that the overall behavior of cancer is detagdiwith genes expressions and/or proteins.
In fact, proteomic data and collective functions of progeare known to directly set the cell function.
Hence, modeling and analysis of genomic and proteomic dsiteyumicro array and mass spectrometry
technologies have found various applications in cancediesu[3]. In [4], an interesting review of
technologies for nano-scale cancer bio-molecular deteatising proteomic and genomic approaches
is presented. Il [5], application of nano-technologieshiormolecular detection and medical diagnostics
is studied. In[[6] and[]7], investigating the profile of malées based on genetic expressions, reliable
cancer classifiers are designed. The gene and/or protengebalue to certain types of cancer lead to
peroxidation of cell membrane. This emits biomarkers intifoed or exhaled breath that may be detected
using tailor-made cross-reactive sensbrs [8], [9]. A higvel of insulin-like growth factor or estrogen in
the blood of women before menopause is one sign of breasecfl@. In [11], combining engineered
proteins with an appropriate detection technique is sugde® enable a new type of molecular sensor.
Also in [12], nano-bio sensors are designed and simulatedyfe molecules targeting to enhance targeting
efficiency.

The development of novel mathematical models and analyéipproaches for disease diagnostics
in the nano-scale is crucial to take advantage of nano-tdobwy for this purpose. The mathematical
modeling and simulation of cancer progression are studiefd3] and [14], respectively. A model for
nano-communications channel is proposed_in [15]] [16]/17)],[the noise in diffusion-based molecular
communication over nano-networks is analyzed. The dedigptimized molecular recognizers is studied
in the biochemical noisy environment using a Bayesian aogfl8]. Such recognizers could serve as
abnormality detection (AD) mechanisms by distinguishiegaeen two molecule types, which one exists
in the body on the healthy setting and the other appears onijhe presence of a certain disease.

In [19], a layered architecture of molecular communicatisninvestigated. In practical schemes for
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abnormality detection, one can typically identify a twertarchitecture for detection. In the first tier, the
presence of abnormality is detected in the molecular naatedevel. In the second tier, the abnormality
is reported in a bigger scale to a data gathering node (DGdroutside world. A similar hierarchical

architecture, which includes two levels of nano and micrlestnessages is considered[in/[20] for body
sensor networks. In [21], a two-tier nano abnormality désecscheme (NADS) in which the sensor nano-
machines (SNMs) have independent Poisson observatiohs[éidggested and its detection performance

is analyzed.

Table[] presents the two tiers of abnormality detection, detection in nano-scale and micro-scale, in
different methods of cancer detection based on nano-témisndn detection of breast cancer, quantum
dot bio-conjugates with targeting antibodies have beed useecognize associated molecular signatures
including ERBB2 (Avian erythroblastosis oncogene B{2)][223]. In the second tier, this feature is
recognized using long-term multiple color imaging or imratftuorescent labeling [22][ [23]. In early
detection of lung cancer, the increasing level of epidergraivth factor receptor (EGFR) can react at
the nano-scale with injected single chain forward varidB€FV) polypeptide with embedded Au ]24],
which act as a SNM. Next, the product of this reaction may lw®geized by imaging techniques for

finding Au in the body[[25].

A potential candidate for SNM in NADS is graphene-based dginsors, which are optimized for
detecting proteins, nucleic acids, carbohydrates, or camgs generated by metabolic processes. Ex-
isting detection methods employed by these sensors inahletdrical, electrochemical, and photonic
approaches with respect to detecting labeled (or enzysistad) and label-free (or enzyme-free) probe
structures[[45]. In this context, design and analysis of eel&ss nanosensor network for monitoring
human lung cells using graphene based sensors are comkidgrs], where graphene antennas would
be able to communicate in the terahertz band. In this caspiration is the major process that influences
the terahertz channel inside lung cells. The channel has tfeaacterized as a two-state channel, where it
periodically switches between good and bad states. It has bleown that the channel absorbs terahertz
signal much faster when it is in the bad state as opposed tmdoe state[[46]. Another reported
application of in-vivo wireless network is graphene-bas#@eless bacteria detection on tooth enamel [47].
In this case, the DGN based on terminology/(of|[48] is a scedallio-cyber interface on the skin, which

receives the electromagnetic signal transmitted by thplgnae-based SNMs.
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TABLE I: NADS in cancer detection using nano-technology.

Cancer detection method

Detection in tier 1-NCC

Detection in tier 2-MCC

Nano-sized magnetic resq
nance imaging (MRI) con-
trast agents for intraoperd
tive imaging in the contex
of neuro-oncological inter;

ventions [26], [27]

\

-Gadolinium-based nano-particle [28]

Ironoxide-based nano-particles [31], [32

Multiple-mode imaging contrast nang
agents

Combined MRI with biological
targeting [29] and optical deted

tion [26], [2€], [30]

—

Optical detection

Semiconductor nano-crystals [33]-[36]

Quantum dots[[33]L[36]

Optical detection

Nano scale field-effect bior

transistor

Silicon nano-wires[[37],[[38]

Reporting changes in their condu
tance that are generated by molg
ular binding events on their surfag

Carbon nano-technology

Nano-tubes have been reported as hi
specificity sensors of antibody signatur
of autoimmune diseasg [39] and of singl|
nucleotide polymorphisms (SNP$) [40]

gHelectronic biosensors
es
e

Quantum dot bio-conjugate
with targeting

sMolecular

signatures includin

ERBB2 [22], [23]

y Long-term multiple color imaging
immune-fluorescent labeling

Nano-particle-based methg

Covalently linked antibodie$ [41], [42]

Confocal microscopy

deluorophore-laden silica beads have be

e@ptical identification

used for the identification of leukaem
cells in blood sample$ [43]

Fluorescent nanoparticles have been usdduorescence identification
for an ultrasensitive DNA-detection sy$

tem [44] )

a

For the second tier of abnormality detection architectoree may also consider the recent proposals
of wireless nano sensor networks; including diffusiondshsnolecular communication [49], medical
imaging techniques [31], ultrasonic communications! [$81], optical communication using plasmonic
nano-antenna$ [52] and terahertz communication techsiffifg.

In this paper, a nano abnormality detection scheme (NAD§j)aposed for the detection of nano-scale
abnormality in a bio-molecular environment using a twae-tiecision-making process. The abnormality
is due to the existence of competitor cells in the said envirent. The NADS includes a set of SNMs
for the detection of a nano-scale abnormality over a namorgonication channel (NCC) with spatially
correlated noise. The spatial correlation of noise amonll$ motivated by the nature of bio-molecular
environment in the nano-scale, and as we shall demonstighdy hinfluences the overall detection
performance of the NADS. The SNMs communicate their deegsiover a noisy micro-communication

channel (MCC) to a data gathering node using micro-scalesages (MSMs). Fusing the collected
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TABLE II: List of acronyms

Acronym Definition

AWGN Additive white Gaussian noise
AD Abnormality detection
DGN Data gathering node

EGFR Epidermal growth factor receptor
ERBB2 | Avian erythroblastosis oncogene Bt2

GLRT Generalized likelihood ratio test
MAP Maximum a-posteriori probability
MCC Micro communication channel
MRI Magnetic resonance imaging
MSM Micro-scale message

NADS Nano abnormality detection scheme
NCC Nano communication channel
PDF Probability distribution function
SNM Sensor nano-machine

VTNM Virtual transmitter nano-machine

signals, the DGN makes a decision and may alarm the presdnae abnormality as necessary. In

Table[] list of used acronyms in this paper and their defini are discribed.

The performance analysis of the SNMs over the NCC is set upgenaralized likelihood ratio test,
which quantifies the probability of false alarm and the plulitg of misdetection. Next, incorporating
the effect of MCC, the total detection performance of NADSre DGN is analyzed. The correlated
noise in the NCC is assumed Gaussian (similai_to [54]-[37]this case, the overall NADS detection
performance is efficiently approximated and expressedrimgeof the performances of the constituent
NCCs and MCC. The presented analyses are then used to diaoptimized concentration of SNMs
in the sample for a prescribed high probability of abnortgatietection and a bounded false alarm
probability. Extensive numerical results are provided tartify the effect of different design and system
parameters on the NADS performance. Specifically, the &ffe€ temporal and spatial correlation of

noise at the SNMs on the detection performance are invéstiga

The outline of this paper is as follows. In Section I, prehiaries and problem statement are presented.
The communication strategy on nano and micro communicati@nnels are described in Section Ill.
In Section IV, the performance of NADS is evaluated anafityc Numerical results are presented in

Section V. Finally, conclusions are made in Section VI.
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TABLE IIlI: Effective parameters in transition probabilityf NCC [15]

Parametern Parameter Description Unit
0 Temperature K
X Distance between nano-transmitter and SNM m
Cr Concentration of nano receptors, denotediyyon the SNM pmol/l
Cx Concentration of Molecular bit, transmitted by VTNM pmol/(I's)
Cg Concentration of bind-receptor, denoted By on the SNM pmol/(I's)
K1 Binding rate pmol/(I's)
K_1 Release rate pmol/(I's)
Ko Zero force release st
ksc Boltzmann Constant JIK
N, The number of received molecule when the VTNM sends the mtdedit | pmol/l

x; € {A,0} during timety at times.
Pa Probability of transmission of molecular bit by the VTNM.

Il. PRELIMINARIES AND PROBLEM STATEMENT

In this Section, the setup of NADS and the problem statemedeuconsideration are described. The
NADS comprises of two tiers. In the first tier, each SNM dedettte detection feature in nano-scale
and emits a micro-scale message! [58]. In the second tier, ld Bdllects the transmitted MSMs from
multiple SNMs.

The NCC models the molecular environment. In the healthiinggtno abnormality (here competitor
cell) exists in the molecular environment. The moleculanpetitor changes the rate of binding between
the molecules and the nano-receptors on the SNM or changesutihber of transmitted molecules by
the so-called virtual transmitter nano-machine (VTNM).isTts reflected in the NCC model, with the
VTNM as the transmitter and the SNMs as the receivers.

Each of the SNMs generate an MSM as it detects an abnormaligt.DGN collects the MSMs over
a noisy micro-communication channel. Then it decides, aalades the presence or the absence of the
abnormality to the outside world. The MCC is considered aditag white Gaussian noise (AWGN)

channel. Below, we continue with a detailed descriptionhaf NCC model and the detection feature.

A. Nano Communication Channel

The NCC characterizes chemical reactions in the molecureament. We consider a set of SNMs,
which act as molecular receivers, injected into the biaabtissue for test. We assume that the existing
molecules in the molecular environment react with the resrspn SNMs. The molecules are assumed to

be transmitted by a VTNM with a periodic square pulse propiaggattern. A molecular pulsd (or 0)
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is emitted by VTNM asy;, x; € {A, 0}, with concentratiorC'4 (or 0) and probabilityP4 (or (1 — Pjy)),
during timeitry <t < itpy +try, ¢ = 0,1,..., wheretpy is the duration of the pulses transmitted
by VTNM [B9]. The transmitted molecules are absorbed at #essr nano-machine. If the VTNM

transmits a molecular pulsé, the number of received molecules during the time is quantified by

try
Ny = Cp (t)dt, 1)
0

in which Cp (t) denotes the concentration of the bound receptors, in tefmsnl/liter and is given

by
Cp (t) = Cp (o) (1 — e_t(””*ﬁ"“c‘*)) ,0 <t <trn, (2)

whereCp (00) = k1CACRr/ (k-1 + k1C4) is the steady state concentration of the bound receptofs [15

The parameters; andx_;, respectively are binding and release rates for the follgweactions

A+R2 B, (3a)

B A+ R, (3b)

where R and B respectively, denote nano-receptors on the SNMs and theds@ceptors after reaction
betweenA and R. It is evident in [2) thailCs (¢) is increased exponentially over time within the pulse

period with concentration of’'4. After time ¢, when the pulse duration endSg (t) is reduced as
Cg (t) =Cp (tTN) exp (—I{_l (t — tTN)) for t > try. 4)

As a result, at the SNM and over the subsequent time intethvial previous pulse is reflected as follows
in the receiver

trn

NQ:O Nyel=5=18 g, (5)

Obviously, we haveV, = N/ = 0. The rates of interaction of the molecules with the SNM réoey
1 and k_1, depend on the molecular diffusion over the NCC. Hengemay be influenced by such
parameters as the molecular diffusion coefficient and thgpégature of the environmer, [60], and

may be assessed analytically [61]. The release rate,is given by [60]

foy = K X/l ()
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in which v depends on the energy of the molecules propagated betweeriTtiM and the SNMs and
environment factors, ang, k- and @ are defined in TablgTll. The paramete? ; can be obtained
by matching experimental measurements, and depends orbsloepsion capability of molecules at the
SNM [60]. Hence, it is assumed thal ; is a variable, which depends on the properties of nano-tecep

in the SNM.

The noise of the SNM measurement is correlated over time pades The former is due to the slow
variation of SNM measurement as it models a bio-chemicaltima The latter is due to the relatively
small volume of the molecular environment in the rangevof® to um3. The NCC is modeled by a first

order Markov model with additive noise, and as such the igptBNM j at timei is described by

Yij = 9" (@5, 51, k-1, tow, Ca,0) + g~ (ziz1, k1, k-1, trw, Ca, 0) + €35 (7)

In (@), if the VTNM transmits the molecular bit; € {A,0}, then
9" (@i, k1, -1, ton, Ca, 0) = Ny, (8)
g (®i—1, k1, k-1, t7n,Ca,0) = N, 9)

indicate the number of molecules received in the currene timterval from the current and previous
transmissions, respectively. Alse;;’s are jointly normal distributed with an assumed time clatien

span ofp. The temporal (normalized) covariance matrixegfs is given by

Q7 = [wl¢ (10)

Wi |

The SNM observes the nano-communications channel for a dimation ofn > p. We next consider

the spatial correlation. The spatial (normalized) cova@gmatrix of SNM noises;; is given by

QSC_ [ SC

= Wi ]MXM’ (11)

in which M is the number of SNMswflC is the correlation coefficient of observations of SNWlIs

and [. Moreover, in this paper we assume that the space-time latore function of SNM noises is
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separable[62]/[€3]. As such, the correlation coefficieint;¢9 andey, is given by

Bleyew)  _ 1c, sc (12)
E(afj)E(azl)

The Gaussian NCC model we consider here is also justified &anolecular communication perspec-
tive. The propagation models of molecules over a diffusivdarular communication channel are widely
studied in the literature [17], [64]=[68]. In a moleculamamunication system, with information encoded
in the number of molecules, the number of received moleceidsbits a binomial process [68]. When
multiple emissions are considered, due to the ISI causetidgitfusion channel, previous transmissions
must also be taken into account for the determination of tlieeat symbol. This requires a summation of
the binomial random variables, which is analytically hasdmork with. Therefore, in the literature, two
approximations of the binomial distribution are used, nigniiege Poisson and Gaussian approximations

[67], [69]-[71]. In [72], it is shown that when the number cdinsmitted molecules increases, the Gaussian

approximation provides a good model for the molecular cominations channel.

B. Detection Feature

The biochemical activities of the competitor cells, e.cqaneer cells, affect the molecular environ-
ment and change its parameters![18]. We model this as an mhiityr or intrusion in the molecular
environment, which is to be detected as early as possible.prasence of competitor cells affects the
NCC. For example, the competitor cells can react with theeawdes transmitted by the VTNM. This
reduces the concentration of transmitted molecudles and hence, changes the NCC parameters or
input. This variation in NCC parameters or input is used fadeding of protein identification for early
cancer detection in the nano-scélel[18]. Alternativelg tdompetitor cells may devitalize the receptors
on the SNMs, change_; andx; on the SNM by a biochemical reaction or vary the temperattire o
nano-receptors on the SNMs.

In the NCC, for a given size of sample tissue and the paramgtéiabldll, a measurable parameter is
defined as detection feature, which is to be constant durisgsorement. In presence of competitor cells,
this parameter deviates from its normal value, that in tsralétected by the SNM. Here, we consider
two scenarios although other scenarios may also be signiarisidered. In the first scenario, we assume

that the VTNM always sends molecular bit B = 0) in the healthy setting, and sends only molecular
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bit A (P4 = 1) when an abnormality exists. In this case, the detectiotufeds defined as follows
NR = 9+ ((Bia R1,K-1, tTN7 CA7 9) + g_ (xi—la R1,K-1, tTNa CA7 9) (13)

Hence,NR in (13) is a constant value in the healthy setting and chatgesother constant value as
the environmental parameters vary in the non-healthyrggtti

In the second scenario, we assume that VTNM sends molecitlat with probability P4 and the
presence of a competitor cell in the environment can chdnhgand/or channel parameters. In this case,
NR in ([I3) is not a constant value over multiple transmissidms,its average is still so. As such, the

detection feature is defined as follows
NR=F (g+ (':L'Z'a K1, Kk-1,tTN, CA7 9) +9 (Q:i—lv K1,Kk-1,tTN, CA7 9)) ) (14)

where, the expectation (average) at the receiver is nturamputed over multiple transmission time
slots, ¢y . By this definition, NR in (14) has two distinct constant values in the healthy andmealthy
settings, and is used as an abnormality detection featuthid case, we rewrit¢](7), with a new channel

output interpretation, as follows (this allows us to treathbscenarios in a common setting in the sequel)

Yij = E (g7 (i, k1, k-1, t7n, Ca, 0) + g~ (zi1, k1, k-1, b1, Ca, 0)) + €45 (15)

Note that the same Gaussian model describef ih [10)-(12);fas adopted here. Obviously the model
parameters may not be necessarily the same in the two medti®eenarios. It is noteworthy that the
separability of the space-time correlation function ramaralid.

In both noted scenarios, the NCC is considered homogenemdisve haveFE [(yij —NR)Q} =
E [(yil - NR)Q} , 4L €{1,..., M} andi € {1,...,n}. In the healthy settingVk = NH; and in presence
of a competitor cell or an abnormality that affects the NC@apgeters or inputNVR deviates fromVH.
In the sequel, we considey; as a decision variable, whose time average serves as a detection feature

for abnormality detection at SNM.

C. Problem Statement

We consider a design optimization problem to determine timénnum required concentration of SNMs,

M = M /wvol , in the test environment for a reliable NADS, wherel is the volume of the sample.
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The SNMs are typically synthesized chemical compoundsdbatd be expensive or could create side
effects if used in vivo. Hence, we wish to use them in the sesaltoncentration possible. A reliable
NADS would identify the existence of an abnormality withfgziéntly high probability,P;,. At the same
time, when the abnormality in fact does not exist it only nske(false) alarm with sufficiently small
probability, Pr. The Pp and Pr are later analyzed in Theorem 3. The desired optimizati@blpm in
this paper is formulated as follows.

Problem The NADS design optimization problem is given by

M*=min M (16)

subject to Pp > &, Pp < 7.

where,¢ is a constant close to unity andis a constant close to zero. As observed in Section V for given

values of¢ and~, the optimized concentration of SNM&/, depends on type or level of abnormality,

[1l. DETECTION STRATEGY OVERNCCAND MCC

In this Section, the detection strategy over NCC and MCCudist. In the first Subsection, a hypoth-
esis test is set up for the detection of competitor cells & lifo-molecular environment. Subsequently,

the communication and detection strategies over the MCGtaidied.

A. Hypothesis Test for AD in NCC

This test determines the functionality of the SNM over theQN@Ve derive a threshold level for each
SNM to alarm the presence of competitor cells by generatimicao scale message. This is accomplished
such that the detection probability of each SNM over the NE@aximized for a bounded probability
of false alarm. The detection probability in terms of theséahlarm probability is the basic performance
characteristic of an SNM over the NCC.

The following hypothesis test is considered for the detectif a competitor cell in the molecular

environment

Hy, NR=NH
(17)
H,, NR+ NH.

The Gaussian assumption for the observation is motivatedddan thermal noise distribution, the noise

in gene expression levels [55] and the noise of biochemigstems [[57]. In the sequel, the detection
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performance of the hypothesis test[inl(17) is analyzed, &kar consider maximum likelihood estimate

of NR at the SNM over the observation periag i.e., ]VEJ = argn]lv%xP (y?

NR), wherey? =

(Y15, Y25, ...,ynj]T, where denotes the transpose operation. If we rewfite (7) (L¥)eareceiver in
terms of NR, respectively based on definition &fR in (I3) or [14), for SNMj = 1,2,..., M and
timei=1,2,...,n, we have

Yij = NR + g5 (18)

Without loss of generality, we consider> p, and define the extended temporal (normalized) covariance

matrix of observations within the observation periods follows

Qre 0
O = [l = | 0 i @)
0 re
- nxn
For example withp = 2 andwl’ = wl | = p, QT is given by
1 p 0
1 -+ 0
o = | 7 |l (20)
00 p 1
L - nXxXn

By this model of channel, as the status of the molecular enment departs from a healthy setting,

the detection featureVR, deviates fromNH. Here, NR deviates formNH as follows
NR = (1 + konceo) NH, (21)

in which & could indicate the type or level of abnormality atiglcc is standard deviation of noise in
NCC. Fork = 0, the molecular environment is healthi) 8 = NH) and we assume + koycc > 0,

k > 0. A certain value oft could correspond to a given progress level of a disease.

The conditional probability of observations vecgf , given NR at SNM j is computed as follows,
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where’ denotes the transpose operation,

P(Y? NR>:P(y1j>y2ja'~7ynj|NR):

T
1 1 n n T n n
T P <——2C,%CU (yp-NR") Q7 (yr - NR )) .

(22)

t
andNR" = [ NR NR --- NR } . Considering the Logarithm of (R2), we have

nx1

n 1 n n - n n
log P (y}| NR) = —nlog (\QTW@ v 2770%/00) — 52— - N (v) - NR).(29)
NCC

We define

L P N (24)

and rewrite [(2B) as follows

n n

n 1
log P (yﬂ NR) = —nlog (‘QTW@ )\/27TO']2VCO> — ZZ (yij — NR) (yij — NR) 7/’50-

2012\700 =1 i=1
(25)

To maximize (23), we set its derivative with respectN& to zero and considering the symmetrysof
obtain . .
NR; =3 yd€ /305wl (26)
=1 i=1 I=1 i=1
To derive the decision rule of Neyman-Pearson as in the hgsig test of (17), we employ the generalized

likelihood ratio test (GLRT) in the next theorem due to th@bthesis test if (17) is composite testl[73].

Theoreml. Consider an SNM witl temporally correlated Gaussian observations over the NKOC.
the hypothesis test i _(IL7), the decision threshold and #tection probability with limited probability

of false alarm,PY¢C < n,, are given by

Hy, NH —op¢~' (1—"2) < NR; < NH +op¢~' (1 - 1)

" NR; > NH + op¢~* (1 - %) (27)
1,

NR; < NH —opo~" (1- 1),

PNCC — 1

Q((-opp™' (1 =) FkonceNH) /op) + Q((opod~ (1 — L) F konceNH) /op) ,

(28)

whereg~! (.) is the inverse function of normal cumulative distributien,Q (.) =1—¢ (.) is Q-functions
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and

n n -2 n n n n
- (zwe) (z wg’c) e 1257 3wl (z wzf) (Mc)
=11 =1 =1 =1 =1

=1 =1 g=Il+1
Proof. See Appendix A.

The probability of miss-detection for each SNM then is gilmn
PNC'C PNCC’ (29)

As we shall demonstrate in Section V, a largewould enhance the performance in general. However,
the level of obtained gain depends on the temporal depegpdeEnthe SNM observations. In the next

Section, we study the abnormality detection and commuioicatver the MCC.

B. Detection and Communication Strategy over MCC

The DGN receives the MSMs from the SNMs over the MCC and deslaither the existence or the
absence of the competitor cells in the NCC. It is assumedhieaSMs have two alphabets. If the SNM
J detects the competitor cells, it generates the mes&gge G, otherwise it sets(; = 0. Replacing[(Z2b)
in the decision rule of SNV in (27), we have

0. NH —opé™ (1~ %)<iiy«ﬂ0 S S wdC < NH +ops™ (1- %)

1 I=1i=1

X; = >3 iy Zzw > NH +ope™' (1- %) (30)
iimﬁ > 3 0fC < N —apo (1),

I=11=

The probability of the eventX; = G and X; = 0 depends on the presence or the absence of the
competitor cell. If the competitor cell is present in the smllar environment, the probability of micro-

scale message is given by

1-PNC  X;=0
p(X;j| NR # NH) = (31)
PN X; =G.
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If the competitor cell is not present in the environment thebability of micro-scale message is given

by

1—-PHYC X;=0
p(Xj|NR = NH) = (32)
pNCC X, =@,

The signal received at the DGN through the AWGN MCC then i®giby

M

V=> X;+epan, (33)
j=1

where.epan ~ N (0,0%,,), anda?, . is the MCC noise variance. We set up the following hypothesis
test at the DGN,
M
Hy Z Xj <G
o (34)
H Y X;>G.
j=1
This fusion rule is known as the OR-rule [74]. The hypothd&i$H)) is declared if at least one (none) of
the SNMs transmits the MSNF, stating that the abnormality exists (does not exist) inkimemolecular
environment. In the next Section, the NADS performance &yaed when the SNMs observations are

spatially, and temporally correlated.

IV. NADS PERFORMANCEANALYSIS

In this Section, the performance of NADS is analyzed and tased-form expressions for the
probabilities of detection and false alarm are derived.nThe the next Subsection, a computationally

efficient formulae is derived for performance of NADS.

A. Exact Performance Analysis

In this Subsection, the NADS performance is quantified ugihgoreml on the NCC performance
and considering the communication of SNMs over the MCC asudised in Section Ill. Fig.J1 shows
the modeling of the communication channels between the VTMig SNMs and the DGN. The NADS
is composed of a broadcast channel with a common messagevéallby a Gaussian multiple access

channel and an OR fusion rule.
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< |
Z ¥s NCC =
'; Normal 1-F L T f
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|
|
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N
2 (72}
(M) ?ﬂCC é K
)3 NCO
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Fig. 1: Modeling of communication channels between VTNM,M&\Nand the DGN.

Considering Fig[ 11 and the communication of SNMs over the M@€ have

M

The event of abnormality detection alarm at the SNMvhen the abnormality truly exists, is denoted by
Dj; and its complementary event is denoted/®y In this case, we considé€)p = P (U > G| NR # NH).
Considering the spatially correlated observations of St using the OR-fusion rul€), can be writen

as follows
M
Qp=1-Pr {ﬂjzl D'j} : (36)

The SNMj alarms an abnormality over the NCC depending on its dec'mmiable@ in (28). Hence,
to quantify the probability in[(36), we need to derive the POINR . — | NRy NRy --- NRy '
The next lemma serves this purpose.

Lemmal. The decision variables of SNNSR ' = [ NR, NR, --- NR,, )" arejointly Gaussian
with meanNR and (normalized) covariance mat§¥°¢ in (I1).

Proof. See Appendix B.

Using Lemmal and noting the decision region in_{27), we have

NH+7'  NH+r/

Qp=1-

NH—7  NH—7 ' (37)
/\J\/[ p —1 /\]\/[ — —
ST XD (—% (NR — NRM ) QsC (NR — NRM )> dNR; ... dNRys
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whereNRM = [ NR NR --- NR ] . In a similar manner, we considé?; as the false alarm
1xM

event that SNMj alarms an abnormality, when it does not exist in reality. Thenplementary event

is denoted byE”. In this case, we consideépr = P (U > G| NR = NH). Considering the spatially

correlated observations of SNMs and using the OR-fusios, @ can be rewritten as follows

OQp =1—Pr {ﬂjﬂil E’j} (38)

Using Lemmal and noting the decision region in_{27), we have

NH+7" NH+71’

Qr=1-

NH—r'  NH—r (39)
oM Y oset (M M ~ ~b
NR & - NH )Q (NR _ NH ) dNR, ... dNRy,

1 1
(271_)1\/1/202)/1‘930|1/2 eXp T 202 (

where NHM = { NH NH --- NH } . If the observations of different SNMs are spatially
IxM
independent2°¢ is diagonal and[(37) and (B9) are simplified as follols [74],

Qp=1—(1—- PN (40)
Qr =1— (1 - PNCOM (41)

where PYCC =, and PYCC is defined in[(2D).

At the DGN with the OR-rule, we are facing a channel with bynautputs. However, the input to the
DGN is a noisy version ol/, i.e., V, which is the basis for the decision on the possible presehce
abnormality. The next theorem presents the correspondioigion region at the DGN based on maximum
a-posteriori probability (MAP) rule. This is motivated tbtain a point estimate of the unobserved quantity

of presence or non-presence of abnormality based on DGN\atigms.

Theorem2. The decision region at the DGN based on MAP rule is given by

Hy:V < VTHE
(42)
H,:V > VTHRE
where,V THE s the minimum value of/, satisfying the following inequality,
((1 = Qr) P(Ho) ~ (1= Qp) P(H)) exp (=) +
/ (43)

M v_amz\ Ho
(QrP(Ho) — QpP(H1)) 5y lZ prexp (%) >0.

In @3),p; =Pr{U =1G} for 1 € {0,..., M}, is given by
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p =P (H.)p'; + P (Hoy)p", (44)

wherep] andp] are given by

, B - M
P =Pr{U=IG|H} =
I A JaJac  Jae
l M-l

1 1 (M m ose (M M D D
s7rshrEeTiTs OXP (—H<NR ~NR >Q (NR ~NR ) dNR, ...dNRy

(45)

(27)

"o — — M
P’ =Pr{U =I1G|Ho} =
I A JaJac  Jac
!

M-I (46)

— M T 1M /\ /\
TR €D <—ﬁ (NR - NHM) QsC (NR - NHM)> dNR; ...dNRy;.
D D

NH—7/ oo NH+7'
Jae=Ja " ot Jnpyreand oo = [yg_o e
Proof. See Appendix C.

Hence, the next theorem quantifies the NADS performance.

Theorem3. The probabilities of detection and false alarm of NADS gikeen by

M VTHR _ (3
Zl:l Q ( omcc )p/l
- Qb (47)
—F0
M THR _
SYQ (VTWZG) p")

> (1-Qr)+ T Qr (48)

VTHR

PD:Q< >(1—QD)+

oMcc
VTHR

PF:Q<

oMmcc

Proof. The proof is provided in Appendix D.

If the noise of SNMs are considered spatially independdrd, riext corollary presents the NADS

probability of detection and false alarm.

Corollary 1. The probability of detection and false alarm of NADS foasally independent NCCs

are given by
M VIR G
v THR > @ oo )P M
Pp=20 ( ) (1 — PYCOYM 4 ( , ) (1-a-py™) @9
oMcC 1 =7
M VTHE_ G\  n
VTHR zl:l Q [egvtete: P M
Pr=9Q ( ) (1= PYOM 4 1< ,, > (1 — (1 - PF°Y) ) (50)
oMmcce —Po
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where

pi = (1= PHe) " (PheC) (51)

M _
e N e e R CA (52)

Remark.1l. The analysis in Theorem 3 relies on an OR rule (1 oudfofule). This can be extended
to the case withn out of M rule at the DGN. Specifically, following similar steps, itsgraight forward

to show that the probabilities of detection and false alarengaven by

VTHR _ |G
Pp = 53
= Zpl < o ) (53)
M
VTR |G
Pr =310 (7) | (54)
— oMcC

whereV 7% is smallest value of/ which satisfy the next inequality

((=Qr) P ) = (1= @p) P (1) §- <_<v—za>2>+

2 —
210100 z I =0

(QrP (Ho) — QpP (Hy)) & Z Dy exp <_<V - ZG>2> £
l=m

= A48 (55)

2030 2 P
I=k

whereQp = M pr andQr = S pl/. It is obvious thaty THR explicitly depends onn. Indeed,

for the case ofm = 1 replacing@Qp and Qr in terms ofp; and p;' in (@5) and [(46) leads td_(53)

and [54). Our experiments (not reported here) reveal thit Bp and Pr reduce asn increases beyond

one. Assuming SNMs have smaiy““ and PJ““ , and considering our application of early disease

detection, in the sequel we focus on the 1 ddtrule and aim at improving the probability of detection,

with a small and acceptable probability of false alarm. Asberated, similar analysis can be carried out

for the case ofn out of M rule.

B. Computationally Efficient Performance Assessment

Performance evaluation of NADS based on the analyses inrféhed and equation$_(¥4), (45) and](46)

is computationally challenging in general, due to the rpldtinested integrals involved (especially for
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large number of SNMs). Therefore, in the next lemma we piteapproximations that enable more
computationally efficient solutions.

Lemma2. The probabilitiey), p/ andp; in (44), (45) and[(46) are approximated by

M M-l tosc—1 al fosc—1
Py ~ | (1— PYCOY™5 (mrese @) (PYCO) s ([urese ). (56)
" M Nooye it ([fese T 1)  pveey o ([Tese 1)
A l (1-PR%) (PF°) ; (57)
P =P (Hy)p, + P (Ho)p". (58)

where[1] = [1,...,1]}, , anda is a fitting parameter.
Proof. The proof is provided in Appendix E.
Since the DGN uses an OR-fusion rule, we héye = 1 — p{, andQr = 1 — p{j. Using [56) and[(57)

with [ = 0, we can approximat€p andQr in (37) and [(3D) for their efficient computation as follows:

Qp =1 - (1 - PRCC)ie (59)

QF -1 (1 o P]{_‘VCC)Q[I}TQSC*WI} (60)

Using the results of Lemma 2 and Corollary 1, computatignetficient expressions foPp and Pr are

obtained by replacing;, p}, p/', @p andQr with p;, pj, p/, Qp andQp , respectively.

V. NUMERICAL RESULTS

In this Section, we present numerical results and assesgeifiermance of the proposed NADS. In
addition, the effects of different parameters including tamporal and spatial correlations of the SNM
noise are studied. In the experiments of this Section, wenassthat the observations of SNMs are

temporally correlated by the correlation matrix [n](20) atheé spatial correlation matrix i§°¢ =
SC]

W rxnr, and w3¢ = (1/4) =7l We also consider the volume of the sample size at 1064.
Table[1M presents the parameters of the numerical expetsmen
Fig.[2 shows the probability of receiving no microscale nages at the DGN for spatially correlated

noise of SNMs in presence of abnormality (ih_I(45)) and itsrapimation @ in (58)) in terms of the

DRAFT September 10, 2018



SUBMITTED PAPER 21

number of SNMs M, for different values of observation time, As evident the approximate expression
P, matches the analysjs, reasonably well for the selected= 1.2. As such in the subsequent numerical

results, we setv = 1.2 when using the approximations.

Table[V explains the presentation of numerical results igs Ba-[5H. Two methods for obtaining
the performance results are considered, which are labalexpproximate and numerical in the sequel.
First, we elaborate the results and comment on how the twhadstare compared. Fig.13a shows the
probability of miss-detection’,; in terms of the number of SNMs in the sample sizé,for different
values of observation time; and temporal correlatiop in spatially independent scenario. It is evident
that even a small value of temporal correlation, eog= 0.1, greatly affectsPy, . Fig.[3B showsPy, in
terms of M, for different values of observation time,in spatially correlated and temporally independent
scenario. One sees that spatial correlation of SNM obsensategrade$’,,. For example, with\/ = 8
andn = 9, spatially independent SNM observations results in a 2@gismallerP,; when compared to
the spatially correlated setting. Hence, if observationSMMs are spatially correlated and we consider
them as spatially independent, the reliability of NADS ibstantially degraded. Figs]3c arid] 3d show
Py with oycc = 0.1 andoyce = 0.4 in terms of M for different values ofn and p in spatially
and temporally correlated scenario. One sees that inogasicc degradesP,;. Based on results in
Figs[3&{3d, it is evident that the probability of miss-détet P,; obtained by the approximate method
matches well with that computed based on the numerical rdetHence, the approximate method can

be efficiently used to solve the design problem[ofl (16).

Fig. [4a shows the probability of false alarf- in terms of M, for different values ofry;cc. One
sees that the behavior @¥» in terms of M varies aso o increases. For small values 6f,¢c¢, the
performance degradation is due to error in the NCC. As eviage(G0d), this performance result is valid
for all values ofn and p, since in this experiment?Y““ is small (set to equality in(T1)) anéycc
is also small (effect of MCC is negligible ofr). Moreover, one sees that any spatial or temporal
correlation in SNM observations improveés-. Fig.[4D showsPr in terms of M for different values of
n With o);cc = 0.4. One sees that the point at which the behavior of the curvasggs depends both
on oycc andn. From Figsi4a and_4b, it is evident that the approximate ntefbo computing Pr
slightly overestimates the false alarm probability whempared to the numerical method (see Table V

for all values of M andn. Hence, to avoid calculating multiple integrals inl(37) a®B), the proposed
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approximate method may be efficiently used to address thigrdpsoblem in [15).

The presented results in recent figures may be used to sadveptimization problem of[(16). For
example, Figé 3b arld Wa reveal that the optimized number ddsSper unit size isM = 7 for o 00 =
0.1, when NCCs are spatially correlated and temporary indegantbr ¢ = 1 — 1075, v = 1072,
oyce = 0.1 andn = 9. Figs[3d and_4b indicate that in the same setting and temparadt spatially
correlated NCCs withry;cc = 0.4, we need to select/ = 23. Furthermore, Figl_3b demonstrates a
smaller P); when SNM observations are spatially independent as opposethen they are correlated.
Hence, if we consider the correlated observations as inutkge observations in the analyses instead, we
will underestimate the required number of SNMg, For example, in the same setting with, = 10~°
to achieveP); = 10~% we find M = 10 for spatially independent SNM observations. However, i th

correlated scenario, we need at least= 13.

Figs[5& and_8b show,; and Pr for NADS in terms of)M, for different values ofPY¢“ for spatially
and temporary correlated NCCs. In Fig] 5b, the results detnate that’r increases withPY“C and M.
The typical trade-off of false alarm and detection perfanoeof SNM over the NCC is visible in Fig.15c.
Interestingly, PY¢C affects the overall detection performance of NADS in the samay (Fig[5h), as it
directly influences the NCC detection performareg““ (Fig. [5d). These figures also demonstrate the
effect of networking of the SNMs on the performance. Consitie performance of a single SNM in
Fig. 58 atPYCC = 1076 and PJY¢C ~ 0.35. According to results in[Ba and_15b, utilizing 20 SNMs

leads to significantly improved,, of 107¢ and P, ~ 1075 .

Our experiments (not reported here) reveal that the préityabf miss-detection over the NCC notice-
ably reduces as parameteincreases (this parameter may be used to indicate the dipeagress level).
Such a behavior then reflects in the overall system perfocmas depicted in Fig. 5d. One sees that
ask increasesP), reduces much faster with/. The results indicate that if the competitor cell affects
the molecular environment more strongly, the proposed NAB®cts its presence more easily. A larger
value of k in (2I), may be interpreted as a disease which has progrésghdr and hence has altered

the status of the molecular environment more significantiynf a healthy setting.

The setting of this paper in the special case of spatial ampaeal independent noise of SNMs
reduces to that of our earlier study [n [21]. However, thespreged analysis in this work is exact in the

said setting, whereas the prior work relies on certain apprations. Specifically, our extensive numerical
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TABLE IV: Parameters of numerical results for FIg§ 2-5d, X Yenotes the range of parameter as [X,Z]
with step size Y,G = 1, NH =1, vol = 1000[nm?].

Parameter oMCcCe m n k
Figs[3#3L 0.1 10°° 1:29] 2
Figs[3d and 4| 0.4 10-° 1:29] 2
Fig.[4a 0.1, 0.2:0.2:1] 10°° 9 2
Figs[Ga{bt 0.1 [10-°10=°10-%1073107210" 1] | 9 2
Fig.[5d 0.1 0.1 1 1.75:0.5:3.25

i i
10 15

20

Fig. 2: The probability of receiving no microscale messagieBGN over the spatially and temporally
correlated noise of SNMs in presence of abnormality (Safids: pf, in (45)) and approximation ofy,
(Markers:p;, in (88)), in terms ofM for different values ofn with p = 0.1.

results show that the approximated analyses of PF and PMLiraf2 respectively a good approximation

and an upper bound for the exact values presented here.

VI. CONCLUSIONS

An abnormality detection scheme for detection of competi#dls in a bio-molecular nano-network was

proposed. This is motivated for the early detection andsdiaation of diseases and enabling their timely

TABLE V: Numerical results presentation specification fogsf3(5

Method Type of | Spatially cor-| Qp,Qr ;0] Py, Pr
Curve related
Numerical (Num.) | Solid lines Vi Numerically Approximated by| 4) and [(4B)
computed by[(37)| p; andp] in (56)
and [39) and [57)
Approximated Markers only | / Approximated by| Approximated by| (47) and [4B)
(App.) @p andQr (B9 | p} andyp;’ in (B)
and [60) and [57)
Exact formula| Dashed- X Q) and [(41) (1) and [(5P) | (49) and[(BD)
spatially independent dotted lines
scenario (Sp. Ind.)
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107] =y=n=9,p =02, App. n =17, App
n=9,p =02, Num. A e n =7, Num.
107 o n=9,p=0.1, App. 10°:] Y& n=09, App.
n=9,p=0.1, Num. n =9, Num.
-8 T ; i -7 i P i i
10 0 5 10 15 20 10 0 5 10 M 15 20 25

M
Fig. 3: (&) Py vs. M for different values ofr andp in spatially independent and temporally correlated
scenario (dashed-dotted= 0, dotted linesp = 0.1 , dashed line® = 0.2 ) andoycc = 0.1. (b) Py
vs. M for different values ofx in spatially independent/correlated and temporally irejent scenario,
p = 0andoycc = 0.1. (¢) Py vs. M for different values ofn and p in spatially and temporally
correlated scenario. (Dotted lings= 0.1, dashed linep = 0.2) andoycc = 0.1. (d) Py, in terms of
M for different values of, in spatially and temporally correlated scenario, ot 0.2 ando oo = 0.4

and effective treatment. The proposed NADS is a two-tiewngk. The sensor nano-machines at the first
tier act as receivers of a hano-communications channel lingdée molecular environment. The SNMs

then communicate over a noisy channel to a data gathering, mduich operates based on an OR fusion
rule. The average number of received molecules serves aduaddor detecting the abnormalities at the
SNMs. The detection performance of each SNM in presence o§skan observation noise was analyzed
using a generalized likelihood ratio test. Moreover, thiea$ of temporal and spatial correlations of
the SNMs observations on the detection performance wetiestuThe reported experiments results

reveal that otherwise ignoring possibly existing temparaspatial correlations would lead to noticeably
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(b)
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M
Fig. 4: (a) Pr in terms of M for different values ofs o, in spatially *orrelated/independent and
temporary correlated scenario with= 0.2. (b) Pr in terms of M for different values ofn in spatially
and temporally correlated scenario, fore= 0.2 ando oo = 0.4.

inaccurate performance results. Next, quantifying theraVeNADS detection performance, a design
problem was set up that quantifies the minimum required curaton of SNMs for a desired level of

NADS reliability. The solution determines the optimizedeagtion of detectors for each of the NADS
tiers. This in turn facilitates optimized abnormality deten with smallest possible side effects due to the
injection of nano-sensors. The results indicate how dffedusion of the noisy observations collected
from a number of sensor nano-machines with limited cagadsilicould provide an acceptable detection

performance.

At the current stage of research on detection of diseashe atino-scale, there are still many interesting
open research problems. Here, we state a few of them. In &lpisrpthe detection feature is set based on a
mathematical modeling and certain valid approximationsvdloping more precise models or obtaining
the exact detection feature based on experimental measuoternn the target tissue is an interesting
research avenue. The side effects of injected SNMs on theaulalr environment play an important role
in the accuracy of the model and the performance of NADS. Hentudying those effects is another
key aspect of research in this field. Designing practical SNt detection of cancer or other diseases
and taking the experimental constraints of those SNMs iatosicleration within the proposed NADS
framework poses a number of other interesting and impores#arch problems. Medical imaging is one
approach to detection over the MCC; other approaches iasluttrasonic or terahertz communications.
Realistic modeling of MCC noise is an interesting issue fohancing the NADS performance for

abnormality detection in a biomolecular environment.
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Fig. 5: (a) Py in terms of M for different values ofPY¢C. (b) Pr in terms of M for different values of
PNCC all for p=0.2 andoyce = 0.1. (c) PYCC in terms ofn for different values ofPY¢C, p = 0.2.
(d) Py in terms of M for different values ofk, p = 0.2 andojy;cc = 0.1.

VIl. APPENDICES

A. Proof of Theorem 1

The GLRT [73] for hypothesis test df (IL7) is given by

25, POGINR) . p(yr|NR,)
P(yy[NH) P(y;[NH)
——n\ T 1 ——n
e (s (o -NR) er (v NR)) - 1
)
PRy T e (s (g ) 0 (v ) )
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whereNR" = {J/\/ﬁj} , NH" = [NH],,,,, and ]/\@j is given by [26). Simplifying[(6l1) we have

1xn

exp { . [Z > (s = VB, ) (i = NR; ) 65 = D25 (s = NH) (s — NH) %TlC] } -

203 =1 i—1 1=1 i=1
(62)
Computing the natural Logarithm df (62), we obtain
= (63)
Py (e ) + (Tvﬁj ~NH)) (v — NR;) + (NR; - NH) ) wgc} > log .
Following some manipulations, we have
st {8 £ (- ) (7 - ) - "

TC

il
n o n n 2
> (vis — NR; ) (NR; — NH) 0 — PY (NR; - NH) ¢50} > log 7.
ReplacingN}\Bj from (28) in the first and second terms of RHS [of](64), we have

—1

[— Zn: Zn: (VR; - NH)ng’C] > logr = (N, — NH)2 > %ﬂ. (65)
—1 i= TC
=1 1 l; z; wzl

2
20500

With more simplification, the decision region for hypotlesist of [(1V) is obtained as

Hy NH —7 < NR; < NH +7'

]/VE]'>NH+T/ (66)
H; -
NRj < NH — 7'

where

T 2 \l 2JNCO log (7 Z Z 1/) . (67)

=1 i=1

For deriving the false-alarm probability of a decision fule need to calculate the PDF EII\R]- given
in (26). The random variableg; are jointly Gaussian, hence their weighted summation is @sussian.

When Hj is true, the mean of decision variable at the SNTM\{:]- is NH and its variance is given by [75]

= (Zn:zn:%:zm> {Zvar Al) —|—22cov Ags Al) } (68)

=1 i=1 q<l
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inwhich \; = y;; > wi’{C, the subscript ofi in \; is dropped due to homogeneous assumption of NCCs
=1

n 2 n
for each SNM,var()\;) = <¥1 wg’C) ooy andcov(Ag, ) = <¥1 ¢g’0> <Zz/z ) wa® TNoe

We have

i=1 =1 \i=1 =1 g=I+1

= <Zn: Zn: ¢5O> R Zn: <§: T,Z)i:zm> 2 (0'12\700 + 27§ ZN: wahCokeo | ¢ (69)
=11
Therefore, the false alarm probability can be expressed by
PYC“ =1-Pr{NH -7 <N (NH,o%) < NH +7'| Ho} , (70)
and as we desire to hav@¥““ < ;, we obtain
¢ (7' fop) —1>1—m, (71)

that is satisfied with equality, when we have

7= o (1 . %) . (72)

According to the region of{; in (68), P““ can be written as

PYOC = Pr{ NR; < NH — 7', NR; > NH + 7'

3 (73)
and due to the Gaussian distributionﬁf\%j, we have

PNCYC =Pr{N (NR,0}) < NH —7/,N (NR,0}) > NH + 7'} =
1-0 <NH T —NR) 10 (NH+T —NR)

The relation ofPp, and NR is evident in[[7#). When a competitor cell is present in theO\&vironment,

(74)

NR deviates from theVH. For a specific type of competitor cell, consideriag](21)[7d) P,%,VCC can

be obtained as
Pl])VCC =1- Q((NH—T/— (likO'NC(j) NH)/op) + Q((NH—i—T/— (likO'NC(j)NH)/O'D)

=1- Q((—T/ F konyceNH)/(op)) + Q((T/ T kO'NchH)/(O'D)).
(75)
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Replacingr’ from (Z2) in [Z5), the following result is obtained

PNCC =1—

Q((~ono~ (1~ )  howce NH) [op) + © (006" (1~ §) F howceNH) [op).

(76)

B. Proof of Lemma 1

It is evident in [26) thatZT/'ﬁj is a weighted sum of;;'s, which are jointly Gaussian distributed and

hence their summation is Gaussian with meéaR. The correlation coefficient oﬁﬁj andﬁl\%q is given

by E|(NR; - NR) (NR, — NR)|

cor(NR;j, NR,) = .
\/E [(Kfﬁj = NR>2] E {(Nz\aq - NR)?

(77)

Using [26), we obtain
cor(ﬁj, N}\Bq) =
B[(£ S wl /£ £ vie-nr) (£ Sl /£ & vic-nr)] (78)

I=1i=1 i=1

\/E[(Z Eyw/z zle;U—NR)z}E[( b3 yw/ 3 iwz;“—NR)z]
l=11i=1 l=11i=1 l=11i=1 l=1:i1=1

and following some mathematical manipulation, we have

(79)

Using the assumption of separability of spatial and tempooarelation as discussed in Section Il and

some mathematical manipulations, we have

36 (8 (shoo (Bvae £y017) 42,32 aboebeo £390° 5500
_ 5C

i=1 i=1 k=Il+1 i=1 i=1

cor(]/\/ﬁj,ﬁl\%q) = 5 i
> {<Z @Z’i:lpc> 012v00+2kz (Z

n
TC TC TC 2
(Ch Z% > Wi UNOC}
=l+1 \i=1 i=1

(80)
C. Proof of Theorem 2
The MAP rule is written as
max P (H|V) & P H| V.Wo) P(Wol V) + P (H| V.W) P (W[ V)
b b
© max P (ILIWo) P(Wo| V) + P (| W) P (W3] V) (81)
() ’ P(W,o|H,)P(H,) P(Wi|H,)P(H,)
= e —pry L (WolV)+ =gy P (V)
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where in the probability function of (e) event of IV = v is denoted byl” for brevity and events of
WolW, are defined as

Wo: M X, <G

{ 0 Z]—l J (82)

W1 : Zj]\/ilXj 2 G.

In 1), (a) follows from the law of total probability, (b)dm Markov property ofH; — W; — V and
(c) follows from the Bayes rule. Simplifying[[(81), we have

P(Wo|Ho)P(Ho P(Wi|Ho) P(H, H,
( IL(W)O)( )P(WO‘V)‘F ( IL(W)I)(_)P(WHV)i
(a)

iy P (Wol V) + SR (11 V) S

®)

(1_%(Fizlfz§Ho)'P(W0|V)+ QFP(HO (W1|V) i ?DEJXBVP)(HI)' (W0|V)+—?_D£((§;))P(W1|V):>
(1-Qr)P(Ho) P(V|Wo)P(Wo) + QFP(HO) (V\Wl)P(Wl) Ié’
PV PO 1—P(Wo) PV) >
(1-=Qp)P(H:) P(V|W,)P(Wy) + QpP(H,) P(V|W,)P(W) -
(o) V) 1—P(o) POV
(1-QF)P(Ho)P (V|Wy)+ QrP(Ho)P (V\Wl) (1 —Qp) P(Hy)P (V| Wo) + QpP(Hy)P (V| W)

(83)
where, (a) is derived based on definition @f= and Qp respectively in[(36) and_(38), (b) is derived
based on the Bayes rule. In.{83),(V| W,) and P (V| W;) are given by

1 —V?
P (VW) = exp( : ) (84)
2 20
y Ve Mees
= =P VZXJ:GUUZXJ:MG
j=1 j=1

P(V|W1):P<V

" (zjx —au. uzx MG’V) V) 4 P 5SS X,=GU..UY X,=MG V)P(V)
P ZX]_GU uz; XJ_MG> 1—P(§31Xj=0)
o{{Evesgnel) (e el)
1-P(5 X,=0) 1-P(5 X,=0)
W E;Vflp<{§;xj=zc}mv> z;.‘fy(v fjxj:zG>P(§; X,=1G)
B 1-P(5 X,=0) B 1-P(5 X,=0)
() 1 A —(V-1G)®
N (1—po)\/2m0%, 0 lz Piexp ( 20300 >

Here, (a) follows from the Bayes rule, (b) follows from defiion of event of X, (c) follows from De
Morgans law, (d) follows since the event§ =[G, Vi are mutually exclusive, and (e) follows since the

noise of MCC is Gaussian. Hence, replacingl (84) (85 (& have
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2 _(VV_ 2\ Hp
(1 - Q) P(Hy)—=—~—exp (2;2V ) + QrP(Ho) ———— Zpl exp ( (2‘2 IG) ) >
\/27rchCC Mce (1=po)\/2703cc [Z Mce < (86)
(1= Qp) P(Hy)—=—exp (5 ) + QpP(H1) -t % exp (=571
b ! \/27"‘712\/1(10 p 20300 b ! (1=po)\/270%cc (= prexp 20300 ’
which simplifies to
(1= Qr) P(Fo) = (1= Qo) PUFL)) exp (Z2)+
_ 2\ Hy (87)
(QrP(Ho) — QpP(H1)) g=py Zpl GXP( ngwf) > >0.
The decision region of DGN is thewi < VTHE whereV THE is derived numerically from{87).
D. Appendix D. Proof of Theorem 3
The probability of detectionPp, is given by
(2)
PD =P (Vy,|Hy) = P (Vy,|Hi,Wy) P (Wy| Hy) + P (Vg,| H1, Wh) P (W1| Hy)
o P(VH1’ Hy,Wy) (1 = Qp) + P (Vy,| Hi,W1)Qp
(c)
=P (VHI\ Hy, Y00 X = 0) (1-Qp)+P (VHI\ Hy, Y00, X, > G) @p
@ =M, P(VH1| f; Xj:lG,H1>P< f; X;=IG H1> (88)
:P<VH1|H172jNi1XJZO> (1-@p)+ = — @p

—P( S X,=0

.

where,V, is the event o > VTHR (@) follows from the law of total probability, (b) is derigebased

on definitions ofQr and Qp respectively in[(36) and (38), (c) is derived based on dédimst of 17/,
and Wy in B2), andp, = Pr{U = IG| H:}, | € [0, M] is given by [45), and (d) is derived as follows,

P (VH1

Jj=1

vTHR _

o (Y (- gpy+ Ea g,

M
Hi, Y X 2G> :P<VH1

J=1

Hm<zx GU... uzX MG))

J

VH1>P(VH1) ®) P(({Jin:G}mVHlmHl)u u({ZXJ—MG}ﬂVHlﬂ%))

M M M
=1 j=1 =
M M
MLoP Y X =IG pNViy NH,y MoP| Vi, E X,;=IGNH, E ;=IGNH,
(©) i=1 (d) =
B M M -
J=1 J=1 i= i=
M M M
Ef\il P VHl E XJ:leHl P Z X]:lG H1 (Hl) Zl 1 VHl Z X —lGﬂHl X]—lG
(e) i=1 i=1 (i) j=1
o M M o
j=1 j=1 Jj=1

(89)

September 10, 2018 DRAFT



32 IEEE TRANSACTIONS ON NANOBIOSCIENCE

The steps in derivind (89) are similar to those[inl(85). Inrailsir way, the NADS probability of false
alarm may be computed as

Pp = P (Vy,| Ho) = P (Vg,| Ho, Wo) P (Wo| Ho) + P (Vg,| Ho, W1) P (W1 | Ho)
P (Vy,| Ho,Wo) (1 — QF) + P (Vy,| Ho, W1) QF
P <VH0|H0,Zin1Xj = 0) 1-Qr)+P <VH0|H0,ZJ-A£1X]‘ > G) Qr

M M
lM1P<VH0 ZlXj:lG,H0>P<E_ . X,=1G
j= i=

(90)

P (Va, ") Q

HOaZjNi1Xj:O)(1_QF)+ F

M
1-P( 3 X,=0|H,
j=1

M (VTHR—LG'

THR =1 p— j
=9 (V ) (1 _ QF) + l—p%()cc ) Qr.

[epYele]

where, Vi is the event of < VTHR » = Pr{U =IG| Ho}, | € [1,M] is given by [@6) and the
steps in deriving[(90) are similar to those [n](88).

E. Proof of Lemma 2

—_

We consider a homogenous molecular environment, if we as§Ta\R1 =~ NE ~ ..~ NRy ~ NR,
p; in @8) may be approximated as follows

M — 2 . —
P~ ( ) (2m) M2 pM|QSC |2 [ exp (-ﬁ(]\m ~ NR) 1]fQs¢ [1]> dNR

l (91)

— 2 . A
4o exp (—;JVJI;% (NR - NR) 1) 05 [1]> dNR,
where,[1] = [1,...,1],,,,. Using Holder’s inequality([76] in the RHS of above equatiore have
— 2 . _
[yexp <—% (VR - NR) )05 [1]> dNRx

_ 2 ) .
J4e exp <—%(NR - NR) [1)fQsc” [1]> dNR <

_ o\ et
{fAexp <—ﬁ<NR—NR> >dNR} X
- o\ MtgteseT (92)
{fAc exp <_2;% <NR _ NR) >dNR} -
- [A]ose [1)” X s N mteseTi )
( 27TO'D) {fAmeXp <—E(NR—NR) >dNR} X

e
{fAcmeXp (—ﬁ(NR—NR) >dNR} .

Considering only the first component in Taylor expansiorheffirst term in RHS of the above inequality

M M-l sc—1 ! sc—1
p; ~ ( l ) (1_P£)VCC) M ([I}TQ [H) (PgCC)ﬁUl]TQ [1]> (93)
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The RHS of [98) is denoted by, and serves as an efficient approximatiorppf The fitting parameter
« is obtained numerically for best approximation (See Sec¥d. In a similar mannep; in (48) may
be calculated. IN(38); may be calculated simply by replacipg andp;’ with ) andp; in (@4).
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