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Abstract

Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and
cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare
them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created
TRIDENT, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic
absorption spectra and related data. TRIDENT can (i) create absorption-line spectra for any trajectory through a
simulated data set mimicking both background quasar and down-the-barrel configurations; (ii) reproduce the
spectral characteristics of common instruments like the Cosmic Origins Spectrograph; (iii) operate across the
ultraviolet, optical, and infrared using customizable absorption-line lists; (iv) trace simulated physical structures
directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (vi)
generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical
codes. TRIDENT was originally developed to aid in the interpretation of observations of the circumgalactic medium

and intergalactic medium, but it remains a general tool applicable in other contexts.
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1. Introduction
1.1. Why Observe Simulated Data?

Most of the baryonic material in the universe consists of low-
density gas that is insufficiently bright to be detected by its
emission alone (e.g., Cen et al. 1994; Zhang et al. 1995;
Hernquist et al. 1996; Miralda-Escudé et al. 1996; Davé et al.
2001). In order to reveal this gas, observers rely on its ability to
absorb certain wavelengths of light from bright background
sources, analogous to how the Sun appears red to viewers
looking at it through an Earth-bound dust cloud. The location of a
background source in the sky thus defines a sightline, usually
parameterized as an infinitesimally thin one-dimensional line,
which probes the intervening material between us and the
background object. Electron energy transitions in the intervening
gas preferentially absorb light at discrete wavelengths, creating
troughs in the spectrum of the light along this sightline. The
atoms and ions present in the intervening gas determine the
viable electron transitions, which when coupled with the relative
velocity to the observer, produce the distribution of absorption-
line features in the observed spectrum. Thus, the characteristics of
different absorption features in a sightline’s spectrum can reveal
an enormous amount of information about the density, temper-
ature, velocity, radiation field, and ionic composition of gas along
a given line of sight. See Figure 1 for a schematic of this process.

“Absorption-line spectroscopy” is employed in a variety of
environments where observers attempt to detect low-density gas,
ranging from the gas between stars (the interstellar medium—
ISM), the gas surrounding galaxies (the circumgalactic medium
—CGM), and the gas between galaxies (the intergalactic medium
—IGM). These observations provide us with clues as to (i) how
galaxies balance external gas accretion (e.g., Lehner 2017; Rubin
2017) with turbulent outflows of material from supernovae (e.g.,
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Hummels & Bryan 2012; Fielding et al. 2017) and supermassive
black holes (e.g., Johnson et al. 2015; Kacprzak et al. 2015); (ii)
what is happening in the vast volume of “empty” space between
galaxies (e.g., Peeples et al. 2014); and (iii) what the CGM/IGM
can tell us about the evolution of the universe as a whole (e.g.,
McQuinn 2016).

Observers require that background sources used in absorption-
line spectroscopy be sufficiently bright and well characterized, so
that the baseline spectra are constrained when identifying
absorption features that are due to intervening material. Typically,
quasars are used as background sources, but because bright
quasars are relatively uncommon, only few cosmic structures
such as galaxies or gas filaments can be probed by multiple
sightlines. In order to study these gas structures, observers must
therefore combine samples of sightlines through many different
galaxies, making assumptions about the homogeneity of the
probed galaxy population in order reach general conclusions
(e.g., COS-HALOS—Tumlinson et al. 2013; COS-DWARFS—
Bordoloi et al. 2014; KBSS—Rudie et al. 2012; Chen et al.
2010; Steidel et al. 2010; Prochaska et al. 2011; Nielsen et al.
2013; Liang & Chen 2014; Rubin et al. 2014; Turner et al. 2015).
These samples contain an enormous amount of information about
the galaxy population, but as of yet, the details of the relationship
between the CGM and host galaxy are not well understood.

In the past decade, significant advances have been made in the
field of hydrodynamical modeling of astrophysical systems.
There now exist many high-resolution simulations that track the
positions and velocities of stars as well as the phase and
composition of gas through galaxies and significant cosmological
volumes (e.g., ERIS—Guedes et al. 2011; FIRE—Hopkins et al.
2014; ILLUSTRIS—Vogelsberger et al. 2014; EAGLE—Schaye
et al. 2015). These simulations possess sufficient detail to enable
us to follow the distribution and evolution of individual gas,
metal, and ionic species self-consistently, making them ideal aids


https://orcid.org/0000-0002-3817-8133
https://orcid.org/0000-0002-3817-8133
https://orcid.org/0000-0002-3817-8133
https://orcid.org/0000-0002-6804-630X
https://orcid.org/0000-0002-6804-630X
https://orcid.org/0000-0002-6804-630X
https://orcid.org/0000-0002-4109-9313
https://orcid.org/0000-0002-4109-9313
https://orcid.org/0000-0002-4109-9313
https://doi.org/10.3847/1538-4357/aa7e2d
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa7e2d&domain=pdf&date_stamp=2017-09-20
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa7e2d&domain=pdf&date_stamp=2017-09-20

THE ASTROPHYSICAL JOURNAL, 847:59 (17pp), 2017 September 20

Figure 1. Schematic showing how absorption-line spectroscopy indicates the
presence of low-density gas through its absorption of light from background
objects. Ions in the intervening gas between an observer and a bright
background object absorb discrete wavelengths of light, providing information
about the composition and phase of the intervening gas. Here, an observer
detects absorption from the CGM (inside the dashed circle) and filamentary
IGM (outside the dashed circle) in the spectrum from a background quasar.

Table 1
Important Trident Resources
Resource Location
Web Page http:/ /trident-project.org
Source Code https://github.com/trident-project/trident
Documentation http://trident.readthedocs.org

Mailing List trident-project-users @ googlegroups.com

in understanding what is truly happening in low-density gas,
which is so difficult to track observationally.

The best way to compare observations and simulations is to
directly compare similar data products. The production of synthetic
observations of simulated data sets enables such a comparison by
modeling the way light travels through space and into telescopes.
Astrophysics has a rich history in producing mock spectra in many
contexts, including stars (e.g., Kurucz 1979), the Sun (e.g., Husser
et al. 2013), galaxies (e.g., STARBURST99—Leitherer et al. 1999),
stellar population synthesis (e.g., FSPS—Conroy et al. 2009),
molecular clouds (e.g., RADMC-3D—Dullemond 2012), plasmas
(e.g., cLOUDY—TFerland et al. 1998), and dust (e.g., DUSTY—
Nenkova et al. 2000). Additionally, there exist a number of
open-source Monte Carlo radiative transfer (RT) codes (e.g.,
SUNRISE—Jonsson 2006; HYPERION—Robitaille 2011) that are
potentially applicable to synthetic absorption-line spectroscopy, but
they currently lack the line transfer physics necessary to produce
absorption features.

A number of works have made use of specialized tools for
generating synthetic spectra from simulation data, each designed
with the specific features and needs of their own data formats
in mind. Examples include SPECEXBIN (Oppenheimer & Davé
2006) and SPECWIZARD (Schaye et al. 2003) for GADGET
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Table 2

Simulation Codes that TRIDENT Explicitly Supports
Code Type Reference
AREPO Moving Mesh Springel (2010)
ART-T AMR Kravtsov (1999)
ART-II AMR Rudd et al. (2008)
ATHENA AMR Stone et al. (2008)
CHANGA SPH Stinson et al. (2006)
ENZO AMR Bryan et al. (2014)
FLASH AMR Fryxell et al. (2000)
GADGET SPH Springel (2005)
GASOLINE SPH Wadsley et al. (2004)
GIZMO SPH and Meshless Hopkins (2015)
RAMSES AMR Teyssier (2002)

(Springel et al. 2001; Springel 2005); the method of Shen et al.
(2013) for GASOLINE (Wadsley et al. 2004); the tools of
Churchill et al. (2015) and Liang et al. (2016) for their respective
versions of ART (Kravtsov et al. 1997; Kravtsov 1999); the
methods of Smith et al. (2011) and Hummels et al. (2013) (early
versions of the work presented here) for ENZO (Bryan et al.
2014); and the FAKE_SPECTRA’ code (Bird et al. 2015) for
AREPO (Springel 2010). These tools span a range of simulation
methods, from adaptive mesh-refinement (AMR) to smoothed-
particle hydrodynamics (SPH) and moving mesh techniques, and
so must work with fundamentally different quantities.

Thus, there is a need for a universal tool for generating mock
absorption-line spectra, one that can work with many different
simulation code formats. Like a real telescope facility, this virtual
telescope is most beneficial when it is publicly available, not used
solely by its designers and their collaborators. Such a publicly
available universal tool prevents unnecessary duplication of
efforts, provides a single resource for members of the scientific
community to contribute their specific strengths, ensures fewer
bugs and more features, and enables inter-code simulation
comparison efforts (e.g., AGORA project—Kim et al. 2014).

1.2. Introducing TRIDENT

This paper announces the full public release of TRIDENT, an
open-source tool for generating synthetic absorption spectra
from astrophysical hydrodynamical simulations. TRIDENT is an
object-oriented pure Python library with support for both
Python 2 and Python 3. TRIDENT relies on the ability of the YT®
analysis toolkit (Turk et al. 2011) to ingest simulation data
from a vast array of sources and formats for further analysis
and processing. As a result, TRIDENT is capable of generating
spectra for at least 10 different simulation codes. In addition to
spectral creation, TRIDENT provides other analysis tools, such
as a method for creating fields of ion densities (e.g., C 1V, O VI)
from simulation data using various photo- and collisional
ionization models. TRIDENT can also operate in parallel
using the Message Passing Interface system (MPI, Forum 1994)
to scale to many processors and speed up execution (see
Appendix A for details).

Members of the scientific community are actively encour-
aged to use and develop TRIDENT’® as a community code

https://github.com/sbird /fake_spectra
http:/ /yt-project.org

http:/ /trident-project.org
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according to the Revised BSD License. Table 1 lists locations
for various important resources related to TRIDENT, including
its documentation, mailing list, and source code repository.

This paper is composed as follows. Section 2 describes the
three-pronged approach TRIDENT takes to generating spectra:
creating ion fields for the simulation data set (Section 2.2),
making sightlines through the data set to sample the relevant
fields (Section 2.3), and depositing absorption lines based on
the characteristics of gas along the sightline (Section 2.4).
Section 3 provides an annotated Python script demonstrating
the use of TRIDENT to create a simple spectrum. In Section 4 we
perform some tests of TRIDENT, including a comparison with
observational data and a curve-of-growth analysis, and we
describe some of TRIDENT’s assumptions and limitations.
Finally, Section 5 summarizes the highlights and features of
the code.

2. Code Method

This section describes the algorithms employed by TRIDENT
to post-process simulation outputs. It covers a brief discussion
of what simulation outputs contain and how TRIDENT interacts
with them (Section 2.1); how TRIDENT estimates the concen-
tration of a desired ion when it is absent from the simulation
(Section 2.2); how TRIDENT calculates the trajectory of
different sightlines (Section 2.3); how TRIDENT produces an
absorption-line spectrum (Section 2.4); and how TRIDENT
processes this spectrum to make it resemble real observations
(Section 2.5).

TRIDENT is an object-oriented software library with its own
set of classes and modules. The most important of these are
discussed in detail in later sections, but they are provided here
as a reference:

1. ion_balance: a module used to calculate the density
of any atomic ion in a simulated data set.

2. LightRay: a class describing a one-dimensional
sightline through a simulated data set.

3. SpectrumGenerator: a class responsible for creat-
ing absorption-line spectra from LightRay objects.

For a full description of all classes and their usage in
TRIDENT, see the API documentation.’

2.1. Brief Overview of Simulation Outputs and how TRIDENT
and YT Interact with Them

An astrophysical hydrodynamical simulation output repre-
sents a three-dimensional volume with a series of scalar and
vector fields expressing different fluid quantities for the gas
across that volume. Grid codes discretize the gas into a regular
grid with elements of fixed volume, oftentimes employing
AMR to achieve higher resolution in regions of interest.
SPH codes discretize the gas into particles, each representing
a parcel of gas with fixed mass, which can be smoothed using
a three-dimensional smoothing kernel to achieve a finite size.
Moving mesh and meshless codes take a hybrid approach by
representing the gas over tessellating fluid elements that
change shape as the gas moves. Despite their differences, in
all of these code formats, the gas is represented as a series of
field elements describing its distribution in position, velocity,
density, temperature, metallicity, etc.

° htp: //trident.readthedocs.io /en/latest /reference.html
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TRIDENT was originally developed as an analysis module
within the YT framework (Turk et al. 2011), and it consequently
inherits the way YT interacts with simulation outputs. For
operations that involve sampling fluid values at arbitrary
locations, particle fields must be converted into a grid-like
structure. YT first creates an underlying octree grid structure that
ensures high resolution in regions of high particle density, and
then deposits particle-based fluid quantities onto these grid
elements using the appropriate smoothing kernel and length.
These steps ensure that subsequent analyses can be treated
homogeneously across different simulation formats and methods.
Note that some operations like calculating ion densities are
performed on the particles before the smoothing process.

Because of the close relationship of TRIDENT to YT, many of
the features that TRIDENT provides to users, such as the ability
to post-process a data set to include density fields for a desired
ion, can be further used within the YT framework seamlessly.
This enables users to make volumetric projections and slices
of these ion fields, create phase plots and probability
distribution functions for the presence of arbitrary ions,
categorize how fluid quantities change along a line of sight,
and more.

In addition, TRIDENT inherits the support of YT for every
major astrophysical hydrodynamical code. Table 2 contains a
list of the simulation codes that have been tested and confirmed
to work with TRIDENT. TRIDENT should function correctly with
other YT-supported codes, but appropriate sample data sets
were unavailable for testing.

2.2. Creating lon Fields with the ion_balance Module

In order to create absorption lines for a given ion, it is
necessary that a fluid field representing the density of that ion
be present for all computational elements sampled by the
sightline or LightRay. In some cases, these fields may be
explicitly tracked by the simulation with a non-equilibrium
chemistry solver. Examples of this include Smith et al. (2011)
and Hummels et al. (2013), which follow atomic species of H
and He in non-equilibrium, and Cen & Fang (2006), which
additionally follows O V through O IX. However, in most cases,
tracking additional ion densities within a simulation is
computationally prohibitive, and so they must be derived from
the available data fields using models that assume ionization
equilibrium.

For species not followed by the simulation, the TRIDENT
ion_balance sub-package creates a new field by defining
the density of an ion, i, of an element, X, as

ny; :nfol_, (1)

where ny is the total number density of the element and fy, is
the ionization fraction of the ith ion. For simulations that track
multiple metal fields, such as those presented by Hopkins et al.
(2014), ny may already exist in the simulation output. If this is
not the case, then ion_balance defines ny as

ne = Z (”_X) , ®)

ny )

where ny is the total hydrogen number density, Z is the
metallicity, and (ny /ng)s is the solar abundance by number. If
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the simulation does not explicitly track the hydrogen number
density, we assume it to be given as

g = x--, 3)
my

where p is the total gas density and Y is the primordial H mass
fraction, for which we adopt a value of 0.76. If desired,
ion_balance can overwrite a data set’s existing ion fields
using the force_override keyword to ensure consistency
in ionization calculations.

Under the assumption of ionization equilibrium, the ionization
fraction is a function of temperature, density, and the shape and
intensity of the incident radiation field. Currently, ion balance
only considers radiation from metagalactic UV background
models, such as those of Faucher-Giguere et al. (2009) and
Haardt & Madau (2012). In these models, the radiation field is
parameterized solely by the value of the redshift, making the
ionization fraction a function of just temperature, density, and
redshift. Using the code'” in Smith et al. (2008), we have
computed the equilibrium ionization fractions for all the ions and
elements through atomic number 30 (i.e., Zn) over a grid of
temperature, hydrogen number density, and redshift. These data
are generated with a series of single-zone simulations using the
photoionization software cLouDY'! (Ferland et al. 2013),
following the same method used by the GRACKLE chemistry
and cooling library (Smith et al. 2017). The resulting data are
saved as a three-dimensional lookup table, which is loaded by
TRIDENT when needed. Ionization fractions for each ion are then
calculated for each computational element by linearly interpolating
over these precomputed tables. Currently, TRIDENT provides data
tables for the UV backgrounds described by Faucher-Giguere
et al. (2009) and Haardt & Madau (2012), but the method is
general enough that other backgrounds can be added. For more
information demonstrating the accuracy of these tables, see
Appendix B.

Figure 2 presents a visual illustration of the way in which the
ion_balance module generates ion fields for simulated data
sets. ion_balance can create ion density fields for all
computational elements for which density and temperature
fields exist. This allows fields created by ion_balance to be
used independently of spectrum generation, for example, to
study the spatial distribution of various ions and their
relationship to physical gas quantities, as shown in Figure 3.
When creating light rays from grid-based simulation data, the
creation of the ion fields is saved for after the light ray is
generated, allowing the fields to only be created for the cells in
the light ray itself and not the entire simulation domain. Since
the three-dimensional interpolation can be computationally
expensive when performed for all grid cells in the domain, this
results in a significant speed up. However, for particle-based
data sets, where particle fields are smoothed onto a grid, we do
not take this shortcut. In this case, we first create the ion fields
for each particle on the particle itself, and afterward deposit the
resulting ion densities onto the corresponding grid cells
according to the chosen smoothing kernel. While more time
consuming, this avoids errors that may arise by creating ion
fields from smoothed density and temperature fields.

10 hitps: // github.com//brittonsmith/cloudy_cooling_tools
1 http:/ /nublado.org/
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Figure 2. Operation of the TRIDENT ion_balance module. Grid and particle
data sets pass their redshift and fluid quantities (density, temperature, and
metallicity) to the 1on_balance module to estimate the number density of
any ions of interest (e.g., HI, C1v, and O VI). These number densities are
computed on the original fluid elements, whether grid cell or particle.
Additionally, particle-based data sets are deposited onto a grid as an AMR
octree using the particle smoothing kernel.

2.3. Sightline Creation: the LightRay Object

The next step in the process of generating a spectrum is
choosing and sampling a line of sight through the simulation
data. The user specifies the trajectory of the sightline through
the simulation output, as well as the gas fields they wish to
sample. Optionally, the user can specify which spectral lines or
ionic species they wish to include in any subsequently
generated spectrum, and TRIDENT will include the necessary
fields. The end product of this step is a LightRay object, a set
of spatially ordered one-dimensional arrays sampling the the
desired fields of the simulation output along the ray’s path. The
LightRay is saved to an HDF5 file (The HDF Group 1997)
that can be reloaded by YT as an ordinary data set for the
purposes of spectrum generation or direct access for further
analysis.
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Figure 3. Projections of a 1536° cosmological ENZO data set aimed at probing the nature of the intergalactic medium, similar to those presented by Smith et al. (2011).
Each projection shows a region of the box that is 30 Mpc on a side and 5 Mpc deep. The region is centered on a halo in the simulation that was identified using the
ROCKSTAR halo-finder Behroozi et al. (2012). The halo has a mass of 1.9 x 10" M_, and a virial radius of 1.5 Mpc. From top to bottom, the left panels show density,
temperature, and metallicity, while the right panels show the projected number densities (effective column densities) of H1, C 1v, and O VI. The ion number densities

were computed using the 1on_balance module in TRIDENT.

These “light rays” make use of the YT ray data container,
which takes a start and end point and returns field values for all
computational elements intersected by the ray’s trajectory through
the data set. For grid-based simulation codes, these computational
elements are simply the highest-resolution grid cells of the
Eulerian mesh along the line of sight. As described in Section 2.1,
particle-based codes have their particles deposited to a grid by
first smoothing the particles into an octree mesh to create gridded
Eulerian fluid fields. In this case, the computational elements
returned by the LightRay are these octree cells.

In addition to sampling the fields specified by the user, the
LightRay creates some special fields for further processing.
For each line element along the LightRay, TRIDENT
calculates and records its d1, path length; dredshift,
cosmological redshift interval; redshift, cosmological
redshift; velocity_los, line-of-sight velocity; red-
shift_dopp, Doppler redshift; and redshift_eff,
effective redshift. Here we derive all of these quantities.

Let us define the sightline of a LightRay vector I passing
through a single data set from point a to point b, where the
observer sits at point b. We can think of it as a collection of n

individual line elements dl:
l:rb—ra:Zdli. (4)
i=0

Field values along the light ray are the values within the grid
or octree cell intersected by the ray trajectory. The path length,
dl;, is the vector intersection of the ray with the cell.

dl; = |dl. )
We assume a smooth Hubble expansion between points a

and b in the ray such that their separation in redshift is the
comoving radial distance (Hogg 1999), given by

— “ dZ/
F="Dn f E@) ©
where
E® = (1l + 23 + % + 22 + Qs 7

Dy is the Hubble distance, and €2, €, and 2, are the ratios
of mass density, spatial curvature density, and vacuum density,
respectively, to the critical density of the universe. Since
the simulation data provide I, the comoving radial distance
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Figure 4. Methods by which LightRay objects are generated to represent a sightline path from point a to point b (the observer). Left: simple rays are defined by a
start point and end point for a single data set output. Right: compound rays contain path lengths longer than the width of a single data set by continuing the ray path

over periodic boundary conditions and consecutive outputs.

between a and b, and we require z,, — 7, the redshift difference
between a and b, we must invert Equation (6). Since there is no
simple analytical form, we use Newton’s method to iteratively
calculate the redshift interval between the points, taking the
redshift of the simulation as the redshift at the far point a.

Now that we know the redshift interval connecting points a
and b within our simulation output, we assume that the
cosmological redshift interval of a line element is linearly
related to its path length:

dz = %@h ~ 2. ®)

This redshift interval estimate is a good approximation on
the small path lengths within an individual data set. This also
allows us to calculate the cosmological redshift for the ith
LightRay element as

=+ dg ©)
J=1

When generating spectra, the observer cannot discern
between an absorber redshift due to cosmological expansion
or one due to the absorber’s motion along the line of sight.
Thus, by default, TRIDENT also includes the effects of Doppler
redshift that are due to radial motions of the gas. The line-of-

sight velocity for a LightRay element is defined as

vios,i = Vi - dl; = vidl; cos(0)), (10)

where v; is the local gas velocity field in the cell and 6; is the
angle between the line of sight and the gas velocity vector. The
local velocity field enables us to calculate the Doppler redshift
Zdopp,i Of a LightRay element as

1 4+ Ycos(9))
1+ Zdopp,i = 07, (11)

Vi 2

1= (3)
where c is the speed of light. The effective redshift, the redshift
used to modify the location of spectral absorption lines, for

each element of the ray is then given as a combination of its
cosmological and Doppler redshifts (Peebles 1993) as

1 4 zetri = (1 + Zdopp,) (1 + z0). (12)

LightRay generation is divided into two use cases: simple
rays, and compound rays. Aside from the differences in generating
their trajectories, these objects have similar internal structures and
are treated the same by the rest of the TRIDENT machinery.

2.3.1. Simple Rays: Rays Traversing a Single Data Set

Simple rays are defined for use with a single simulation
output at a fixed point in time. The primary use case for simple
rays is the creation of spectra from targeted physical structures,
such as a specific galaxy at a particular redshift. To generate a
simple ray, the user must specify the simulation output data set
and the starting and ending locations of the ray in the data set
volume. TRIDENT uses the simulation data set’s redshift as the
redshift at the back of the ray (location a), and increments it
forward along its path to the user according to the method
described in Equations (6)—(8). For non-cosmological simula-
tion outputs, TRIDENT defaults to using a redshift of zero, but
the user can specify any desired value. Figure 4 illustrates a
simple ray object traversing a simulation data set.

2.3.2. Compound Rays: Rays Traversing Multiple Data Sets

Synthetic spectra that resemble those arising from real QSO
sightlines require light rays that are many times longer than the
box size of typical cosmological simulations. For example, a
comoving radial distance of 150 Mpc A" at z = 0 corresponds
to a change in redshift of only ~0.05. Even with a larger box
size, using a single data set to generate a spectrum that probes
the material between a distant QSO and an observer would be
inappropriate as it would fail to capture the temporal evolution
of structure occurring over the light travel time within a single
simulation output.

In order to create light rays spanning cosmological distances,
TRIDENT splices together ray segments from multiple data sets
written at different redshifts of the simulation. This process was
first described by Smith et al. (2011). To create these compound
light rays, the user must provide the parameter file of the original
simulation as well as the desired start and end redshift. Machinery
within YT determines the redshifts of all data sets from
information stored in the simulation parameter file. Using this
layout and the framework described in Equations (6)—(8), we
calculate the precise data sets and path length through each data
set required to span the desired redshift range. The process for
this is similar to that described in Section 2.3.1 in that we
calculate the change in redshift equivalent to traversing the
entirety of the box at the redshift of any given data set. The full
compound ray is then constructed by piecing together the line
segments from the required data sets, as illustrated in Figure 4.
By default, these segments are chosen at random locations and
trajectories within the box to avoid probing the same structures
multiple times at different redshift. If desired, the user has the
option of maintaining a single constant trajectory (as in Figure 4),



THE ASTROPHYSICAL JOURNAL, 847:59 (17pp), 2017 September 20

where the end point of one segment is used as the start point for
the next to avoid spatial discontinuities.

2.4. Using SpectrumGenerator to make Spectra

The SpectrumGenerator class contains all of the
machinery to create absorption-line spectra from the Light-
Ray objects. In order to instantiate a SpectrumGenerator,
TRIDENT needs some information about the characteristics of
the spectrograph modeled. These details include the desired
wavelength range, the size of individual wavelength bins, and
optionally the line spread function (LSF) of the spectrograph.
Users can create their own custom spectrographs or select one
of the existing presets, like observing mode G130M of the
Cosmic Origins Spectrograph (COS) on board the Hubble
Space Telescope (HST).

In addition, users must provide the details of the absorption
lines they wish to observe in their data sets. For a given
absorption line to be modeled, TRIDENT needs information about
the corresponding quantum transition including its source ion,
wavelength ), oscillator strength f,.,;, and probability of transition
I". TRIDENT includes a list of 220 absorption lines frequently
used in CGM and IGM studies in the UV and optical (line data
extracted from NIST'? using AstroQuery package'®) (Sipocz
2016), but users can easily add their own or subsample this list.

We recall that the LightRay object consists of a series of
one-dimensional arrays of different fields (e.g., temperature,
density, path length, ny ,, etc.) along its trajectory through the
simulation volume. Before creating the spectrum, Spectrum-
Generator ensures that all of the necessary ion density fields
are present on the ray object needed to calculate optical depths
for the desired absorption lines. If they are not present,
ion_balance constructs them on the LightRay object
itself using the gas fields. SpectrumGenerator multiplies
the d1 (path length) field against each of the relevant ion
number density fields to produce an array of ion column
densities, corresponding to the column density of each ion for
each parcel of gas intersected by the ray.

Finally, TRIDENT steps through the ray object from back to
front, depositing Voigt profiles for each encountered absorber
at the appropriate wavelength for each of the requested lines.
The wavelengths are shifted appropriately to account for the
effective redshift of the absorber (see Section 2.3). TRIDENT
will add Lyman continuum absorption features for any neutral
hydrogen source it encounters, each operating as an opacity
source below 912 A in the rest frame with optical depth
approximated as a power law 7 < A’ (Rybicki & Lightman
1979). Once it has passed through the entirety of the ray and
looped over each desired absorption line, it calculates the flux
array from the optical depth array as flux f = e~ ", inherently
assuming that the only variations in the flux array are due to the
absorption of measured species present in the ray.

Figure 5 illustrates the process by which the Spectrum-
Generator produces a Lya absorption feature from a
sightline passing through a low-resolution simulation volume.
This figure clearly depicts how physical structures can be
traced directly to features in the final spectrum based on
density, temperature, and velocity data.

The resulting spectrum can subsequently be post-processed
to make it resemble realistic telescopic data (see Section 2.5),

12 htps: //www.nist.gov/pml/atomic-spectra-database
13 https:/ /astroquery.readthedocs.io
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Figure 5. Physical structures traced to spectral features as TRIDENT generates a
spectrum. Begin at the top and travel downward (A)—(G), noting vertical
alignment between plots. (A) A 2D slice in neutral hydrogen density taken
from a low-resolution simulation of some cosmological filaments. Black arrows
represent the gas velocities, and a white arrow indicates the 10 Mpc long
LightRay sightline passing through the slice to the observer on the left. (B)
Individual points represent gas cells probed by the sightline, plotted as
cosmological redshift vs. neutral hydrogen column density. (C) Line-of-sight
velocity for each gas cell along the LightRay. (D) Applying a Doppler shift
from the line-of-sight velocity shifts the location of each gas absorber into
effective redshift, the frame of the observer. (E) In this new effective redshift
frame, equivalent to (1 + z)1216 A for the Ly transition, the temperature of
each gas cell is plotted vs. observed wavelength. (F) Points indicate the H 1
column density in this effective redshift frame with thermal widths determined
from gas temperature denoted as red error bars. (G) Voigt profiles calculated
for each gas cell for the Ly« transition in green, superimposing to the black
profile, the spectral feature seen by the observer.

or it can be saved to disk as is. TRIDENT supports saving spectra
as tab-delimited text files, as HDF5 files, or as FITS files.
TRIDENT also contains a sophisticated plotting routine built on
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Figure 6. Subgrid deposition method. When absorption features are narrower
than the spectral bin width, TRIDENT creates an array of virtual bins at higher
spectral resolution to ensure flux conservation of unresolved features. Top:
depositing a narrow Ly« feature (dashed blue line) into a spectrum with coarse
1 angstrom spectral bins wipe < Wpin). Middle: TRIDENT creates an array of
virtual bins with 0.1 angstrom resolution (green bins) into which we deposit the
Voigt profile to approximate the flux deficit of the line. Bottom: we numerically
integrate the area of the virtual bins to calculate the equivalent width of the
unresolved spectral line on our original coarse bins (gray bins).

top of MATPLOTLIB (Hunter 2007) for plotting the spectrum in
various ways quickly and easily.

2.4.1. Voigt Profile Calculation

A spectral absorption line is caused by an atom or ion
absorbing incident light of a particular energy in order to boost
itself to a higher quantum energy state. In an ideal environment
with a single particle, the result is an absorption line consisting of
a perfect delta function at the wavelength corresponding to the
energy of the difference between the particle’s quantum states.
However, in practice there are a number of processes that broaden
this delta function based on the characteristics of the gas. The two
most important processes are Doppler broadening due to the
velocity distribution of the gas particles, and pressure broadening
caused by the collisions of the gas particles against each other.
Doppler broadening is well described by a Gaussian function,
whereas pressure broadening can be modeled with a Lorentzian
function. The convolution of these two functions is called the
Voigt profile, and it is commonly used to model spectral line
profiles, yielding a value for the optical depth 7 at different
wavelengths. For reference, Section 4.2 demonstrates the Voigt
profile shape at various spectral line strengths.

The Voigt profile in TRIDENT is calculated consistent with
the method described in Hill (2016) reproduced in part here.
The Voigt profile V(x, o, 7) is the convolution of the Gaussian
profile G(x, o) and the Lorentzian profile L(x, =), where
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X = v — 1y, the range of frequencies relative to the line center
frequency, o is the standard deviation of the Gaussian, and 7y is
the half-width at half-maximum of the Lorentzian,

Gx, o) = L (—xz) (13)
’ o2 P 202 )
v/
L(x,v) = m, (14)
V@, o, ) = foc G\, o)L (x — ¥, )dN. (15)

Let us adopt A as our independent variable instead of x, since
TRIDENT operates in wavelength space. The Voigt profile
possesses no closed form, but it can be numerically calculated
as

_ Rlw ()] u+ ia
o271 o2’

and w(z) is the Faddeeva function, a scaled complex comple-
mentary error function (Poppe & Wijers 1990), defined as

V(A o, 7) , where z = (16)

— 2 20 f R )
w(z) = exp(—z )(l + = e'dt|. a7
The complex components of z consist of u, our range of
wavelengths relative to line center, and our damping parameter
a:
u = c(& — l)anda = F—AO, (18)
A 7r

where c is the speed of light, )\ is the central wavelength of the
Voigt profile, and I" is the sum of the transition probabilities
(i.e., Einstein A coefficients) for the ionic transition.

This optical depth, 7, for a line is calculated by scaling the
resulting Voigt profile by the peak optical depth 7 at the center
of the spectral line (Armstrong 1967),

T\, 0,7) =1V, 0,7) (19)
2
m= T o 0)
meC

where e and m, are the charge and mass of the electron, c is the
speed of light, N is the absorber’s column density, and £, ,; is the
oscillator strength of the ionic transition.

2.4.2. Voigt Profile Deposition

Each time a spectral feature is added, TRIDENT identifies the
wavelength bin where its deposition will be centered. However,
because there is no closed form for the Voigt profile, it is
difficult to know a priori how wide a spectral absorption feature
will extend in wavelength space. Therefore, TRIDENT adap-
tively increases the size of the window over which it deposits
the spectral feature, sampling the Voigt profile at the center of
each bin location in the spectral window. TRIDENT repeats this
operation until the window is wide enough that the deposited T
values at the edges of the window are lower than 10~ before
depositing the entire Voigt profile into the spectrum.

On the other hand, spectral features that are too small,
narrower than the chosen wavelength bin width, would be
ignored by the algorithm and lost since the SpectrumGen-
erator only calculates the Voigt profile at the centers of each
wavelength bin. Ignoring these narrow features leads to the
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Figure 7. From bottom to top, we show the progression of an increasingly complex synthetic absorption spectrum from a clean, raw spectrum to one with all of the
components described in Section 2.5. The spectral components are added in the following order: composite quasar spectrum (QSO), Milky Way foreground (MW),
line-spread function (LSF), and noise. The left panel shows the entirety of the generated spectrum, while the right panel shows a zoomed-in region of the spectrum to
allow showing the significance of the post-processed modifications of the original spectrum. The light ray used for this spectrum comes from a 1536° cosmological
ENZO data set aimed at probing the nature of the intergalactic medium and traverses a range in redshift from z = 0.0 to z = 0.03295. It includes a set of common UV

spectral lines.

total 7 and flux being dependent on the chosen wavelength bin
width, which is inherently unphysical.

To address this problem, TRIDENT performs subgrid deposition
when it recognizes that the thermal width of a spectral line is
narrower than the spectral bin width in SpectrumGenerator.
Subgrid deposition creates an array of virtual spectral bins, each
smaller than one-tenth of the thermal width of the spectral feature.
TRIDENT deposits the Voigt profile to these virtual bins, and then
numerically integrates them to determine the equivalent width of
the spectral line at the original low-resolution wavelength bin.
This process conserves 7 and total flux regardless of the
wavelength bin width used in the output spectrum. The process
of subgrid deposition is illustrated in Figure 6.

2.5. Post-processing the Spectrum

When a “raw” spectrum has been generated, additional levels of
complexity can be added by TRIDENT. These additional features
are intended to produce progressively more realistic synthetic
spectra that can be directly compared to observational data sets
using the same analysis tools employed by observers. Figure 7
illustrates how TRIDENT can post-process a raw spectrum to make
it more realistic according to the steps below.

First, in order to make comparisons with observational quasar
sightlines, the most basic spectrum modification includes the
addition of an underlying quasar spectrum at a desired redshift,
usually the far redshift z, of the LightRay. This is accomplished
by taking the composite QSO spectrum'® calculated by Telfer
et al. (2002), shifting it to the desired redshift, and computing an
interpolated relative flux as a function of wavelength. This
interpolated and shifted spectra is then multiplied by the raw
spectrum to add the effects of the background quasar. To further
approach realism with our synthetic spectrum, we can also

14 http://www.pha.jhu.edu/~rt19 /composite/

introduce spectral features that are due to foreground contamina-
tion from the Milky Way (MW). Similar to the method introduced
for adding a background QSO spectrum, instead we use the
average MW foreground'®> computed by Danforth et al. (2016).

When a spectrum is produced that contains all of the desired
observational signatures, it can be further modified by applying a
set of instrument-specific properties, as suggested in Section 2.4.
First, to most accurately match the desired instrument, the initial
spectrum uses the known pixel resolution of the instrument for
the wavelength bin size, then, in this post-processing step, the
spectrum is convolved with the LSF of the specified instrument.
TRIDENT can currently convolve TopHat and Gaussian kernels
with its spectra, and it additionally accepts custom kernels. In the
case of mimicking COS, we convolve the spectrum with an
average LSF computed for the kernel of each observing mode. '
Furthermore, TRIDENT readily allows for the addition of other
instrument properties through its built-in Instrument class.

Finally, we allow for the addition of Gaussian random noise.
For a specified value of the signal-to-noise ratio (S/N), random
fluctuations drawn from a Gaussian distribution are added to
the spectrum. Alternatively, an arbitrary noise vector can be
supplied by the user. The resulting spectrum is as realistic as
possible.

3. Demonstration: How to Run TRIDENT

Here we provide an annotated example Python script for a
common use-case of TRIDENT. This script generates a COS
spectrum of a sightline passing through the center of an ART-II
data set. This script and others that are similar can be found in
our documentation to guide through the process with different
simulation codes.

'S hitps: //archive.stsci.edu/prepds/igm/
'® hitp:/ /www.stsci.edu /hst/cos /performance/spectral_resolution/
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Figure 8. Resulting images from our annotated demonstration. Top: density
projection of an isolated galaxy simulation taken from the AGORA team
showing the path of LightRay. Middle: raw spectrum of our LightRay,
featuring lines from H, Si, Mg I1, and the C 11 1335 A line. Bottom: final post-
processed spectrum, also including quasar background, MW foreground, COS
line spread function, and an S/N of 30.

First, we load the relevant Python modules of YT and
TRIDENT. We set the data set filename and load the data set into
YT. The data set used is the publicly available'” initial output of
an ART-I run of an isolated galaxy used in an AGORA paper
(Kim et al. 2016), assumed to be at redshift of 0. We define the
trajectory of our LightRay sightline to cross the full domain
of our simulation, and additionally define which lines, ions, or
atoms we wish to include in our spectrum. TRIDENT is
extremely flexible in terms of which lines we can include. Here
we will include all lines produced by all ions from hydrogen
and silicon, singly ionized magnesium (Mg 1), and the 1335 A
line from singly ionized carbon (CII).

import yt

import trident as tri

fn = ‘AGORA_LOW_000000.art”’

ds =yt.load (fn)

ray_start =ds.domain_left_edge

ray_end = ds.domain_right_edge

line_list = [‘H’, ‘Si’, ‘Mg II’, ‘CII 1335"]

17 http:/ /trident-project.org /data/sample_data
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Now, we create a sightline through the data set, using the
trajectory and field requirements we defined. We will save it to
disk as ray.hb5 as well as use it locally. Note that we have set
our ftype keyword to ‘gas.’ This is the YT-based field type
indicating where TRIDENT should do the ion_balance
calculations. Here we set it to ‘gas’ because this is an ART-II
data set and AMR codes should make the ion interpolations on
the grid, denoted by ‘gas.’ However, for SPH data sets, the
interpolation must occur on the particle itself before being
smoothed to the grid. Thus one would set £t ype to be the field
type associated with the frontend’s gas particles (e.g., Part—
Type0 for GADGET and GIZMO, Gas for GASOLINE, etc.).

ray =tri.make_simple_ray(
ds,
start_position =ray_start,
end_position =ray_end,
lines =line_list,
ftype = ‘gas’)

We can then examine the path of our sightline through the
simulated volume by using YT’s functionality to create an
image of our simulated volume down the x-axis in projected
gas density, zoom-in on the center, overplot the path of the ray
on our projection, and save it to disk.

=yt.ProjectionPlot (ds,
.annotate_ray (ray)

.zoom (20)

.save (‘projection.png’)

‘x’, ‘density’)

's ' '0 T

From this LightRay object we just created, we will
generate an absorption spectrum using the defaults associated
with the COS instrument on board HST. This sets things
according to the G130M observing mode where the spectral
range is 1150-1450 A, the spectral bin size is 0.01 A, and the
appropriate LSF is applied. The user could easily define their
own instrument with arbitrary settings. This raw spectrum is
now saved to a tab-delimited text file, and the spectrum is
plotted to an image.

sg=tri.SpectrumGenerator (*COS’)
sg.make_spectrum(ray, lines =1line_list)
sg.save_spectrum( ‘spec_raw.txt’)
sg.plot_spectrum(‘spec_raw.png’)

Last, we perform some post-processing to the resulting
spectrum, adding in a background quasar and the MW foreground,
applying the defined LSF to it, and adding Gaussian noise with
an S/N of 30. These steps are performed to make our data as much
like spectra an observer would obtain through a real spectrograph.
We then plot and save the “final” spectrum.

sg.add_gso_spectrum()

sg.add _milky_way_foreground ()

sg.apply_lsf ()

sg.add_gaussian_noise (30)
sg.plot_spectrum(‘spec_final.png’, step =True)

Figure 8 displays the three images that are generated by this
working script, showing the path of the LightRay sightline as it
probes the isolated disk galaxy, the raw spectrum, and the post-
processed COS-like spectrum. While this data set and script are
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Figure 9. Top: COS spectrum for a QSO at z = 0.3295 from data made
available by Danforth et al. (2016) Bottom: TRIDENT synthetic spectrum for a
QSO at z = 0.3295 using a light ray from an 1536° cosmological ENZO data set
similar to those presented in Smith et al. (2011). Both of the inset plots show
the same zoomed-in region of wavelength space for each spectrum.

extremely simple, we are able to reproduce the spectrum of a
damped Ly« absorber with several accompanying lines, including
some silicon and oxygen lines. Because this script and data set are
freely available, we encourage readers to reproduce this result on
their own.

4. Discussion
4.1. Comparison with Real Spectra

We can assess how well TRIDENT creates synthetic spectra by
making a direct comparison against equivalent observational data.
IGM LightRays are generally compound rays, sightlines that
pass through several simulation outputs to create a long enough
trajectory to reach high-redshift sources. Figure 9 compares a
publicly available QSO spectrum from Danforth et al. (2016) to a
synthetic spectrum from outputs of a simulation similar to those
of Smith et al. (2011). For the purposes of this comparison, the
synthetic spectrum is generated using the instrument properties of
COS to match the observational characteristics of the true
spectrum. As can be seen, the spectra are similar in shape, in the
location of major features, and in the locations of many spectral
lines. Subsequent analyses can be performed using automated
Voigt profile fitting algorithms (e.g., Davé et al. 1997; Egan et al.
2014) to extract the “observed” properties of the the simulated
IGM. Taken a step further, TRIDENT-generated spectra like the
one in Figure 9 readily enable the creation of community tools
like the MAST Interface to Synthetic Telescopes with yt
(MISTY; Peeples 2014), a public simulation-to-archive pipeline
that simplifies the process of accessing and interacting with
synthetic spectra.

4.2. Code Test: Curve of Growth

Because of the extreme conditions found in the low-density
astrophysical environments probed by absorption-line spectra, it
is very challenging to make explicit tests to ensure that TRIDENT
exactly reproduces the spectra from experimental data. However,
one viable test is to demonstrate how well TRIDENT reproduces
the so-called curve of growth, the relationship between an ion’s
column density and its resulting absorption strength. The curve
of growth is a well-studied problem with a clear empirically
derived physical solution relating the equivalent width W of a
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Figure 10. Top: Voigt profiles of the Ly« line for different neutral hydrogen
column densities at T = 30,000 K (b = 22 km s~ ") as produced by TRIDENT.
Bottom: corresponding curve of growth describing the relationship between the
column density of each line and the line equivalent width. Dashed lines indicate
the linear (left), saturated (center), and logarithmic (right) portions of the curve
of growth as reproduced by TRIDENT.

spectral absorption line to the number density N of that ion along
the probed sightline.

As described in Section 2.4.1, absorption-line shapes follow a
Voigt profile, a combination of the relatively narrow Gaussian
profile with the relatively wide Lorentzian profile. The complex
shape of the Voigt profile leads to a nonlinear relationship
between the column density of an absorber and its corresponding
spectral line strength. Observers commonly use the equivalent
width of a spectral line W = f 1 —xf / fo)d\ as a proxy for its
strength. In Figure 10, we have plotted several Ly« absorption
features deposited at various neutral hydrogen column densities
at a Doppler parameter of 22kms~' on top, and the resulting
curve of growth indicating their corresponding equivalent widths
on bottom.

In the optically thin limit, when an absorption line does not
block out all of the flux at a given wavelength, it is said to be in
the “weak” or “linear” regime of the curve of growth. The Voigt
profile approximates a Gaussian, where increases in column
density cause proportional increases in the equivalent width of
the absorption line. The first three shallow absorption features
(Ngz; = 10"'-10" cm™2) all sit within the “linear” regime of the
curve of growth where W oc N.

As the absorption features increase in strength and become
opaque enough to saturate and block out all flux at a given
wavelength, increases in column density are met with negligible
increases in the line equivalent width. Because the Voigt profile
is still dominated by the Gaussian profile, increases in column
density increase the depth of the line only slightly. This regime is
termed “flat” or “saturated,” and it is visible in Figure 10 as the
middle four absorption features (Ny,= 10"-10" cm™?)
where W o< +/InN.

Finally, very strong lines start to behave more like a
Lorentzian profile, where the wings block increasing amounts
of flux in surrounding wavelengths. This regime is referred to as
“strong” or “damped.” The growth of the equivalent width is
slow in this regime and only increases with the square root of the
column density. The “damped” lines are the three strongest lines
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in Figure 10 for absorption features Ny, = 10'%-10%°cm™?)
where W o< +/N.

The behavior of the curve of growth in TRIDENT perfectly
reproduces the textbook case, thereby validating these aspects
of TRIDENT’s operation.

4.3. Limitations of TRIDENT and its Data Tables
4.3.1. Limitations of TRIDENT

While the availability of a code like TRIDENT is a benefit to
the astrophysical community, it has several limitations that
should be noted when using it and interpreting its results for
scientific research. Many of the limitations listed below can be
addressed in future versions of the code or by including more
detail in the underlying simulations themselves before using
TRIDENT.

TRIDENT does not perform full RT on the simulation. An RT
code approximates how electromagnetic waves propagate
between all of the emitters and absorbers in a simulated
volume over various wavelength photons. RT codes can
produce very realistic photometry, spectroscopy, and IFU data,
but they are computationally expensive to run at comparable
resolution to observational data, and oftentimes, they lack
relevant physics (e.g., line transfer). TRIDENT only tracks the
absorption effects along the desired sightline, but it is fast and
possesses a number of additional features lacking in most RT
codes, making it a good complement to RT analyses.

SPH codes deposit ion fields to a grid before sightline
integration. Because TRIDENT operates as an extension of YT,
it inherits YT’s treatment of particle-based codes. At present, YT
converts particle-based codes outputs into a grid-based format
in order to leverage the extensive framework of YT for
processing and analyzing grid data. The process is performed
conservatively, depositing the particles to an adaptive grid
using a scatter operation at the cell centers to preserve the
inherent dynamic resolution of the data set and use the unique
smoothing kernel of the original simulation code for the
deposition. Furthermore, the ionic abundance calculations of
ion_balance (see Section 2.2) take place on the particles
themselves before their deposition to the grid. Most particle-
based absorption-line synthetic spectral generators (e.g.,
Oppenheimer & Davé 2006) calculate the column density of
a sightline by directly integrating its trajectory through the
smoothing kernel of each intersected SPH particle. Preliminary
analysis indicates agreement between this traditional
SPH integration method and the grid-based method adopted
by TRIDENT to <~10% (B. Dong et al. 2017, in preparation).
Therefore, the grid-based treatment of SPH particles is not a
limitation per se, but it requires explanation. The next version
of TRIDENT, expected to be out by end of 2017, will incorporate
particle kernel direct integration consistent with other particle-
based spectral generation codes.

4.3.2. Limitations of the Current ion_balance Data Tables

It is impossible to calculate the exact abundance of a given ion
by simply knowing the instantaneous gas density, temperature, and
metallicity fields, but TRIDENT estimates this fairly well. However,
there are several assumptions built into the currently available data
tables used by the ion_balance module to approximate ionic
species abundances. We recall that ion_balance operates by
plugging the density, temperature, and radiation field (vis-a-vis
redshift) of a gas parcel into a three-dimensional data table to
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interpolate and determine the relative abundance of its desired
ionic species. The lookup table is populated by thousands of
individual CLOUDY runs varied over these gas densities,
temperatures, and radiation fields. For a full description of how
ion_balance operates, see Section 2.2 and Appendix C.
TRIDENT provides a few data tables assuming different UV
background models (Faucher-Giguere et al. 2009; Haardt &
Madau 2012), but at present, they suffer from some limitations.
To avoid the following data table limitations, one can simulate
and track the desired ion species in the simulations, avoiding
use of the 1on_balance module entirely. Furthermore, users
can generate their own data tables with publicly available
code'® (Smith et al. 2008). The following limitations apply
when using ion_balance with the default lookup tables.
Current ion_balance data tables assume that UV
background radiation operates in the optically thin limit. At
present, the data tables provided to ion_balance were
produced by including the full effect of the UV background,
ignoring any self-shielding effects of gas deeply embedded in a
high-opacity envelope. Gas with neutral hydrogen columns
Ny < 10'7%cm™? shields nearby gas from ionizing radiation
E < 13.6 eV (Faucher-Giguere & Kere§ 2011). This effect has
been approximated in previous work (Rahmati et al. 2013), and
the next version of TRIDENT, due out by the end of 2017, will
account for it. Currently ignoring the effects of self-shielding
will artificially raise the ionization state of the various low ions
present to some degree, particularly in clumped regions.
Current ion_balance data tables ignore local photo-
ionizing sources. Currently, the strength and the spectrum of
the UV background radiation field used to generate the lookup
tables does not account for additional local sources of ionizing
radiation that may be present in the simulation, like AGN and
massive stars. This is a common approach used by other
groups, since including additional radiation source terms (and
additional dimensions) in the ion_balance data table would
make it extremely large. Notably, Shen et al. (2013) calculated
that local photoionizing effects from an L* galaxy with a
galactocentric star formation rate of SFR = 20 M, yr' were
only dominant over the metagalactic UV radiation field within
45 kpc of the galactic center. Therefore, by not accounting for
local photoionizing sources in the data tables, ion_balance
artificially reduces the ionization state of gas in the interiors of
AGN and starburst galaxies.
ion_balance data tables assume ionization equilibrium.
In the absence of fields in the original simulation that
explicitly follow the evolution of a desired ionic species, it is
impossible to calculate its non-equilibrium state instanta-
neously. Thus, ion_balance estimates an ion abundance
by using the aforementioned photoionization from a UV
background coupled with collisional ionization. Ionization
equilibrium remains valid in high-density, low-temperature
regime where the cooling time is short, but it breaks down in
the low-density parts of the IGM (Cen & Fang 2006). Studies
suggest that ionization fractions can vary between equilibrium
and non-equilibrium treatment of high-ionization species of
oxygen gas in the CGM and IGM at the <30% level (Cen &
Fang 2006; Oppenheimer et al. 2016; D. Silvia et al. 2017, in
preparation). In these studies, the equilibrium models predict a
reduced ionization state of gas for high ions in low-density
environments.

18 https: / /bitbucket.org /brittonsmith /cloudy_cooling_tools
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5. Summary

In this paper, we have presented TRIDENT, a parallel Python-
based open-source code for producing synthetic observations
from astrophysical hydrodynamical simulation outputs. Its
features include the following:

1. post-processing simulation outputs to include ion density
fields for any desired ion based on instantaneous fluid and
ionizing radiation conditions;

2. creating LightRays, ordered one-dimensional arrays
sampling the fields in a data set along a chosen sightline
or across multiple consecutive simulation outputs to
approximate a sightline spanning a large redshift interval;

3. generating a spectrum from the fluid quantities contained
in a LightRay object and a custom list of relevant ions
and spectral lines;

4. post-processing a spectrum to match the characteristics of
a spectrum observed by a real spectrograph, including its
wavelength range, spectral resolution, LSF, noise, etc.;

5. full support for simulations for all major astrophysical
hydrodynamical code formats;

6. automatic parallelization for both sightline and spectral
generation using MPI;

7. ability to directly trace physical structures to their
resulting spectral features and vice versa (see Figure 5).

We encourage members of the scientific community to both use
and contribute to TRIDENT. For more information on acquiring,
installing, and using TRIDENT, please see Table 1.
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especially grateful to Charles Danforth and Ian McGreer for the
quasar and Milky Way templates they provided. We thank Jacob
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Software: HDF,' H5PY,”’ scIpy,?! NUMPY?? (van der Walt
et al. 2011), MATPLOTLIB*® (Hunter 2007), MPI (Forum 1994),
MPI4PY>* (Dalcin et al. 2005), YT** (Turk et al. 2011), and
ASTROPY>® (Astropy Collaboration et al. 2013).

Appendix A
Parallelism and Performance

The two primary classes of TRIDENT, LightRay and
SpectrumGenerator, are both parallelized using MPI. This
is implemented using the parallel_objects helper function
from YT, which is itself built upon the MPI4PY module. The
parallel_objects function is a loop iterator that divides
iterations between MPI work groups and facilitates the re-joining
of results from all groups at the end of the loop. Use of
parallelism in both YT and TRIDENT scripts requires that yt.
enable_parallelism() be present after module imports.

The LightRay creation step is parallelized by splitting up
the simulation data sets required for compound ray generation
over the available MPI processes, typically in single-process
work groups. When there are more available processes than
data sets (such as for simple rays), multiple processes can be
allocated to an instance of a single data set, making use of the
internal parallelism of YT to partition the work.

The SpectrumGenerator is parallelized using a similar
two-layered approach. First, the generation of a single spectrum
is parallelized over the absorption lines to be deposited (i.e., Lya,
Lyg, etc.). If the number of available processes exceeds the
number of lines to be deposited, then the line deposition task
itself is split among available processes for depositing each
absorber. In the limit where the number of lines and/or absorbers
is much greater than the number of available processes, this
parallelism strategy scales well and is, in practice, limited by the
speed and parallelism of the file system. In addition, the YT
parallel_objects function can be used directly by the user
for the embarrassingly parallel task of operating over multiple
LightRay objects and their subsequent spectra.

As a reference benchmark, we ran TRIDENT on the AGORA
idealized galaxy simulations (Kim et al. 2016). We ran the
script provided in Section 3 (without the ProjectionPlot
step) on the initial outputs for each of the simulations codes
supported in the AGORA study. These scripts were run on two
machines: (1) an early 2015 MacBook Pro with 3.1 GHz Intel
Core i7 processor and 16 GB RAM, and (2) a single Intel Xeon
ES5 Sandy Bridge processor on Stampede, the National Science
Foundation’s flagship supercomputing cluster run by the Texas
Advanced Computing Center (TACC) as part of the Extreme

1o https: / /hdfgroup.org

20 http:/ /h5py.org

2! http://scipy.org

2 http: / /numpy.org

3 http:/ /matplotlib.org

24 hp: //pythonhosted.org/mpidpy/
5 http:/ /yt-project.org

26 http: / /astropy.org


https://hdfgroup.org
http://h5py.org
http://scipy.org
http://numpy.org
http://matplotlib.org
http://pythonhosted.org/mpi4py/
http://yt-project.org
http://astropy.org

THE ASTROPHYSICAL JOURNAL, 847:59 (17pp), 2017 September 20

180 — T T T T T T T
I MacBook Pro
@ Stampede H

160

140

120

100

80

60

Average Processing Time (s)

0
ARTI ARTII Changa Enzo Gadget Gasoline Gizmo Ramses

Simulation Output

Figure 11. Average TRIDENT processing time to generate a simple ray and
spectrum for different simulation outputs from the AGORA isolated galaxy
simulations (Kim et al. 2016).

Science and Engineering Discovery Environment (XSEDE)
initiative. The script was modified slightly to send ten
sightlines through the central galaxy and create a spectrum
for each. Figure 11 shows the average amount of time TRIDENT
takes to generate a single sightline and spectrum. Stampede
computed cores are substantially slower than the MacBook Pro
cores, which is presumably due to file system load. The
increased processing time required for GASOLINE and CHANGA
particle-based codes reflects the particle deposition step
described in Section 2.2 and the fact that fields are not cached
between sightline generation. As previously noted in
Section 4.3.1, the next TRIDENT release will address these
issues that affect the particle-based code performance by
numerically integrating particle kernels on the fly and avoiding
the particle deposition step altogether.

Subsequent profiling of this benchmark script reveals that
~60% of the processing time is taken by the Spectrum-
Generator, made up of equal parts Voigt profile calculation,
subgrid deposition, and array bookkeeping. Creation of the
LightRay requires about ~20% of the processing time,
which is primarily spent calculating which cells are intersected
by the sightline and then accessing and saving these data. The
remaining time spent is miscellaneous time associated with
applying the LSF, saving the LightRay and spectra to disk
and figures, etc. Notably, less than 1% of the run time is spent
in the ion_balance portion of TRIDENT.

Appendix B
Accuracy of ion balance Tables

The dependency of a given ionization state of gas is a very
complex and nonlinear function of its gas density, temperature,
and incident radiation field. As described in Section 2.2,
TRIDENT approximates this dependency by interpolating over a
large three-dimensional lookup table created by thousands of
one-cell CLOUDY models (Ferland et al. 2013). However, the
resolution of this data table will determine how well this
nonlinear three-dimensional function can be sampled to
provide adequate estimates of ionic abundances.

We estimate the level of error for a data table by taking the
sum of all ionization fractions for a given species over a grid of
random points that span the density/temperature/redshift
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parameter-space of the data table. In reality, all ionization
fractions species for a given species should always add to 1
(e.g., f(H) + f(Hy) = 1.0). We measure by how much the
sum of our ionization fractions for a species deviate from 1 as
an estimate of the error of the data table.

We perform this test using low- and high-resolution data
tables for the Haardt & Madau (2012) UV background model
used by TRIDENT and available for download.”’ The high-
resolution table (296 MB) is the default that we recommend for
users, but the low-resolution table (41 MB) is provided for
users concerned about disk space or bandwidth. Both data
tables span their density, temperature, and redshift dimensions
as —9 < log(ny/cm ™) < 4; 1 < log(T/K) < 9; and 1 < log(1
+ z) < 1.2. The low-resolution table samples the density,
temperature, and redshift dimensions with 27, 161, and 22
points, respectively. The high-resolution table samples the
density, temperature, and redshift dimensions with 105, 321,
and 22 points, respectively, and is thus eight times larger than
the low-resolution table. We find the error to be significantly
dependent on redshift, so we use the same set of random
densities and temperatures within each redshift bin covered by
the input table.

In Figures 12 and 13, we show the distribution of error in
ionization fraction for O and Si. In each case, we use 100,000
random points in log(ny/cm ) and log(T/K) for each redshift
bin. For each redshift bin, we select random redshifts within the
bin. We define the error as

N
error =1—>"f, 1)

i=1

where f; is the ionization fraction of the ith species of any
element with N total ionization states. We find that the total
ionization fraction only ever exceeds 1 by ~10~* at most, and
so we only show situations where the total ionization fraction is
smaller than 1. For both O and Si, the average error is about 1%
for the low-resolution table and about 0.2% for the high-
resolution table. We find rare cases where the error can be
significantly larger. For oxygen, the error can reach ~40/32%
in the low- /high-resolution tables at redshifts z ~ 5.5. This is
even higher for silicon, due mainly to the greater number of
ionization states. However, at redshifts lower than 2, the
maximum error for the high-resolution table never exceeds 5%
for O and 8% for Si.

While interpolation over the data table works well, extrapola-
tion beyond its bounds can create some problems. TRIDENT does
not explicitly support data with densities or temperatures outside
the range provided above. If an extrapolation yields an unphysical
ionization fraction for an ion, for instance, one greater than one,
TRIDENT will cap it at one and warn the user. This can occur for
calculating ionization fractions of low ions at exceptionally cold
temperatures outside our provided temperature ranges (e.g., 1 K).

Appendix C
Ion Density Generation

Here we describe the full algorithm that TRIDENT employs in
the ion_balance module to generate the number density
field for a desired ionic species. The ionic number density
field can be derived in different ways depending on the fields

2 http: / /trident-project.org/data/ion_table/
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Figure 12. Levels of error in oxygen ionization fraction calculations by
ion_balance when using the Haardt-Madau data tables. The error is defined
in Appendix B. Blue shaded regions show the error distribution for the low-
resolution table, and red shaded regions show the high-resolution table. The
solid lines show the median error, dashed lines show £25%, and the dotted line
shows the maximum error. The horizontal gray dotted lines show the redshift
bins of the input data.
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Figure 13. Same as Figure 12, but for silicon.

that exist in the simulation output data set. In short, for a
desired ion field (e.g., O VI), TRIDENT will use the on-disk
field if present in the simulation, otherwise, TRIDENT employs
ion_balance on the appropriate metal field when present
(e.g., oxygen abundance), or when the desired metal fields are
not tracked at all, TRIDENT assumes a solar abundance of the
desired metal from the bulk metallicity field (e.g., Z). Solar
abundance values are extracted from the documentation of
Cloudy (Ferland et al. 1998) based on previous work (Grevesse
& Sauval 1998; Allende Prieto et al. 2001, 2002; Holweger
2001). Hereafter we describe the full algorithm.

Define X; as the ith ion of element X. The total number
density of X; is

(22)

ny, = f. ny,
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where

ny.
fi=—

ny

(23)

and ny is the total nuclei number density of all species of X. In
terms of the mass density, py,

pX = nx my, (24)
where we define the atomic mass of X, My, as
my = MX my, (25 )

and my is the hydrogen mass.
The goal is to generate ny, but different base fields will
exist, depending on the data set. If py exists, then

_Px

ny = 26
Ay (26)
and
ny, = M (27)
MX nmy

If px does not exist, then there are two possibilities. First, we
define the solar abundance of element X, Ay, as

n
Ay = X (28)
nx
X is either H or He.
ny = AX ny. (29)
If we have py, then we can say
ny = Ay 28 (30)
my

If we do not have py, then we will assume the primordial H
mass fraction, y = 0.76. In that case, we have

ny = XL G1)
my
and
ny = Ay X2 (32)
my
If X is a metal, then define the metallicity of X as
Zy = X (33)
p
If we have Zy and Equation (26), then
ny = ﬂ (34)
my My

If we do not have Zx, then we must use the solar abundance
and the total metallicity, Z, given by

7 — pmetals, (35)
p

and

px=Zp %| (36)



THE ASTROPHYSICAL JOURNAL, 847:59 (17pp), 2017 September 20

Taking px and py, we have

Px _ nx My my (37)
Pu nH My
Canceling out the my, we have
b _mM (38)
Pu "H
and
n
X = 20 my, (39)
Pu nH
and with Equation (28), we obtain
PX), = Ax My. (40)
Pu
Equation (36) then becomes
Px = VA Pu AX Mx. (41)
Finally, if we do not have py, we use x to obtain
This gives us
V4 A
ny = X PX (43)
my
and
4 A
ny, = M (44)
my
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