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Abstract 24 

Understanding the biological underpinnings of movement and action requires 25 

the development of tools for precise, quantitative, and high-throughput 26 

measurements of animal behavior. Drosophila melanogaster provides an ideal 27 

model for developing such tools: the fly has unparalleled genetic accessibility 28 

and depends on a relatively compact nervous system to generate 29 

sophisticated limbed behaviors including walking, reaching, grooming, 30 

courtship, and boxing. Here we describe a method that uses active contours 31 

to semi-automatically track body and leg segments from video image 32 

sequences of unmarked, freely behaving Drosophila. We show that this 33 

approach is robust to wide variations in video spatial and temporal resolution 34 

and that it can be used to measure leg segment motions during a variety of 35 

locomotor and grooming behaviors. FlyLimbTracker, the software 36 

implementation of this method, is open-source and our approach is 37 

generalizable. This opens up the possibility of tracking leg movements in 38 

other species by modifications of underlying active contour models. 39 

 40 

 41 

 42 

  43 
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Author Summary 44 

In terrestrial animals, including humans, fundamental actions like locomotion 45 

and grooming emerge from the displacement of multiple limbs through space. 46 

Therefore, precise measurements of limb movements are critical for 47 

investigating and, ultimately, understanding the neural basis for behavior. The 48 

vinegar fly, Drosophila melanogaster, is an attractive animal model for 49 

uncovering general principles about limb control since its genome and 50 

nervous system are easy to manipulate. However, existing methods for 51 

measuring leg movements in freely behaving Drosophila have significant 52 

drawbacks: they require complicated experimental setups and provide limited 53 

information about each leg. Here we report a new method - and provide its 54 

open-source software implementation, FlyLimbTracker - for tracking the body 55 

and leg segments of freely behaving flies using only computational image 56 

processing approaches. We illustrate the power of this method by tracking fly 57 

limbs during five distinct walking and grooming behaviors and from videos 58 

across a wide range of spatial and temporal resolutions. Our approach is 59 

generalizable, allowing researchers to use and customize our software for 60 

limb tracking in Drosophila and in other species. 61 

  62 
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Introduction 63 

Many terrestrial animals rely on complex limb movements to locomote, groom, 64 

court, mate, and fight. Discovering how these and other fundamental 65 

behaviors are orchestrated by the nervous system will require manipulations 66 

of the genome and nervous system as well as quantitative measurements of 67 

behavior. The vinegar fly, Drosophila melanogaster, is an attractive model 68 

organism for uncovering the neural and genetic mechanisms underlying 69 

behavior. First, it boasts formidable genetic tools that allow experimenters to 70 

remotely activate, silence, visualize and modulate specific gene function in 71 

identified neurons [1]. Second, a number of sophisticated methods have been 72 

developed that permit robust tracking of Drosophila body movements – a 73 

promising set of tools for high-throughput screens [2-7].  74 

By contrast, similarly robust methods with the precision required to 75 

semi-automatically track leg segments are largely absent. State-of-the-art 76 

approaches suffer from several drawbacks. For example, the most precise 77 

methods require the manual placement of visible markers on tethered animals 78 

[8] as well as sophisticated fluorescence-based optics (for another example in 79 

cockroaches see [9]). Marking insect leg segments is a time-consuming 80 

process that limits experimental throughput. On the other hand, the most high-81 

throughput approach for marker-independent leg tracking in freely behaving 82 

Drosophila uses complex optics to measure Total-Internal-Reflection 83 

Fluorescence (TIRF) when the distal leg tips (claws) of walking animals 84 

scatter light transmitted through a transparent floor [10]. Although this method 85 

can resolve the claws of each leg it cannot detect their segments. Thus, it 86 

provides only binary information about whether or not a leg is touching the 87 
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surface and cannot resolve the velocity of legs during swing phases, stance 88 

adjustments, or non-locomotive limb movements such as reaching [11] or 89 

grooming [12]. 90 

Here we describe a new method that permits semi-automated, marker-91 

free tracking of the body and leg segments of freely walking Drosophila. We 92 

implement this method in an open source software plugin for Icy named 93 

FlyLimbTracker. Our approach uses active contours (i.e., snakes) to process 94 

objects in high-frame-rate image sequences. Thus, it does not require 95 

complicated optical setups. While there are a number of active contour 96 

algorithms [13], here we use parametric spline-snakes. These global-purpose, 97 

semi-automated image segmentation algorithms are typically used in two 98 

steps. First, the user roughly initializes a curve to a feature in an image (e.g., 99 

a fly’s body or leg). Second, the curve’s shape is automatically optimized to fit 100 

the boundaries of the object of interest. Therefore, segmentation algorithms 101 

using spline-snakes are composed of two major components: a spline curve 102 

or model that defines how the snake is represented in the image, and a snake 103 

energy that dictates how the curve is deformed in the image plane during 104 

optimization. Spline-snake models have a number of advantages to other 105 

approaches: they are (i) composed of only a few parameters, (ii) very flexible, 106 

(iii) amenable to easy manual edits, and (iv) formed from continuously defined 107 

curves that permit refined data analysis. Such models have therefore become 108 

widely used for image segmentation in medium-throughput biological 109 

applications [14,15]. Using this approach, we show that FlyLimbTracker can 110 

semi-automatically track freely walking or grooming Drosophila melanogaster 111 

in video data that spans a wide range of spatial and temporal resolutions. 112 
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FlyLimbTracker is written as a plug-in for Icy, an open-source, community-113 

maintained, and user-friendly image processing environment for biological 114 

applications [16-18]. This makes it amenable to customization for behavioral 115 

measurements in other species.  116 

Materials and Methods 117 

Drosophila behavior experiments 118 

 We performed experiments using adult female Drosophila 119 

melanogaster of the Canton-S strain at 2-4 days post-eclosion. Flies were 120 

raised on a 12 h light:12 h dark cycle at 25°C. Experiments were performed in 121 

the late afternoon Zeitgeber time after flies were starved for 4-6 h in 122 

humidified 25°C incubators.  123 

 During experiments, we placed flies in a custom designed acrylic arena 124 

(pill shaped: 30 mm x 5 mm x 1.2 mm) illuminated by a red ring light 125 

(FALCON Illumination MV, Offenau, Germany). We captured behavioral video 126 

using a high-speed (236 frames-per-second), high-resolution (2560 x 918 127 

pixels) camera (Gloor Instruments, Uster Switzerland). 128 

 129 

Automated body and leg tracking 130 

FlyLimbTracker is implemented in Java as a freely available plug-in for 131 

Icy, a cross-platform, multi-purpose image processing environment [16]. 132 

Briefly, FlyLimbTracker performs leg segment tracking in several steps. First, 133 

the user is asked to manually initialize the position of a fly’s body and leg 134 

segments in a single frame of the image sequence. This information is 135 

combined with image features to propagate body and leg segmentation to the 136 
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frames immediately preceding, or following this first frame. At any time, the 137 

user can stop, edit, and restart automated segmentation. Manual corrections 138 

are taken into account when tracking is resumed.  139 

To perform image segmentation, FlyLimbTracker uses active contour 140 

models (i.e., snakes). A snake [19] is defined as a curve that is optimized from 141 

an initial position - usually specified by the user - toward the boundary of an 142 

image object. Evolution of the curve’s shape results from solving an 143 

optimization problem in which a cost function, or snake energy, is minimized. 144 

Thus, snakes are an effective hybrid, semi-automated algorithm in which user 145 

interactions define an initial position from which automated segmentation 146 

proceeds [20,21]. Specifically, FlyLimbTracker first uses a closed snake to 147 

segment the Drosophila body into a head, thorax, and abdomen. Then, open 148 

snakes are used to model each of the fly’s legs. Manual mapping of these 149 

snakes onto the fly in an initial frame is the basis for subsequent tracking.  150 

Drosophila body model 151 

We designed a custom snake model to segment and track the 152 

Drosophila body. In our model, the fly’s body is defined as a 2-dimensional 153 

closed curve 𝐫:  154 

𝐫 t = r! t
r! t

= 𝐜[k]φ!(Mt− k)!!!
!!! , 155 

with 𝑡 ∈ [0,𝑀),  where 𝐜 𝑘 = {(c![𝑘]  c![𝑘])!}!∈ℤ is an 𝑀-periodic sequence of 156 

control points and 𝜑! 𝑡 = 𝜑(𝑡 −𝑀𝑛)!
!!!!  the 𝑀-periodization of a basis 157 

function 𝜑. For a thorough description of the spline snake formalism, see [13]. 158 

The proposed model for the body of the fly consists of an 𝑀=18 nodes snake 159 

using the ellipse-reproducing basis [22]  160 
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𝜑 𝑡 =

cos 2𝜋 𝑡
𝑀 cos 𝜋

𝑀 − cos 2𝜋
𝑀

1− cos 2𝜋
𝑀

, 0 ≤ 𝑡 <
1
2 ,

1− cos
2𝜋 3

2− 𝑡
𝑀

2 1− cos 2𝜋
𝑀

,                                                            
1
2
≤ 𝑡 <

3
2
,

0,                                                                                                               𝑡 ≥
3
2 .

 

 To optimize the snake automatically from a coarse initial position to the 161 

precise boundaries of the fly’s body, we define a snake energy composed of 162 

three elements: 163 

𝐸!"#$ = 𝐸!"#! + 𝐸!"#$%& + 𝐸!"#$%. 164 

 The first element 𝐸!"#!  is an edge-based energy term relying on 165 

gradient information to detect the body contour, which is formally expressed 166 

as  167 

𝐸!"#! = − 𝐤!𝐫 ∇𝐼 𝑥,𝑦   ×  𝑑𝐱 , 168 

where 𝑑𝐱 is the infinitesimal vector tangent to the snake, ∇𝐼 𝑥,𝑦  the in-plane 169 

gradient of the image at position 𝑥,𝑦 , and 𝐤   =    (0, 0, 1)  is the vector 170 

orthonormal to the image plane. The energy term is negative since it has to be 171 

minimized during the optimization process. Using Green's theorem, we can 172 

transform the line integral into a surface integral: 173 

𝐸!"#! = − ∆𝐼 𝐱! 𝑑𝐱 . 174 

 The second term, 𝐸!"#$%&, is a region energy term that uses region 175 

statistics to segment the object from the background. Specifically, it is 176 

computed as the intensity difference between the region enclosed by the 177 

snake and the region surrounding it, as 178 
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𝐸!"#$%& =
!
!

𝐼 𝐱 𝑑𝐱− 𝐼 𝐱 𝑑𝐱!!\!
  ! , 179 

where 𝐼 is the image and Ω  the signed area of the snake, which is defined as  180 

Ω = 𝑥!𝑑𝑥!𝐫 . 181 

Minimizing this term encourages the snake to maximize the contrast between 182 

the area it encloses and the background. For more details about the edge and 183 

region energy derivations, see [23,24]. 184 

 Finally, the last term, 𝐸!"#$%, corresponds to the shape-prior energy 185 

contribution detailed in [25]. This term measures the similarity between the 186 

snake and its projection on a given reference curve. It therefore encourages 187 

the convergence of the contour to an affine transformation of the reference 188 

shape. The smoothness and regularity of the reference are preserved. 189 

Moreover, this term prevents the formation of loops and aggregation of nodes 190 

during the optimization process. In our case, the reference shape is a 191 

symmetric 18-node fly body contour (Fig. 1A,F).  192 

 193 

Figure 1. FlyLimbTracker uses active contour models to annotate the 194 

Drosophila body and legs. (A) The body model is a closed snake consisting 195 

of 18 control points (𝐜[0] to 𝐜[17]). Control points 𝐜[0] and 𝐜[9] correspond, 196 

respectively, to the posterior-most position on the abdomen and the anterior-197 

most position on the head. All other control points are symmetric along the 198 

anteroposterior axis of the body (e.g., control points 𝐜[3] and 𝐜[15]). (B) Six 199 

leg anchor positions (yellow) between the coxa and thorax are defined 200 

empirically based on a linear combination of distances from the head-thorax 201 

boundary, the thorax-abdomen boundary, and a distance from the thoracic 202 

midline. These positions are then shifted depending on how the body model is 203 
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optimally deformed to fit the contours of a specific animal. (C) The leg model 204 

consists of four control points including a thorax-coxa attachment 𝐥[0], the 205 

femur-tibia joint 𝐥 1 , the tibia-tarsus joint 𝐥 2 , and the pretarsus/claw 𝐥[3]. For 206 

simplicity, control points for only a single leg are shown. (D) In sum, 27 207 

positions are calculated for each fly per frame: a centroid (0), anterior point 208 

(A), posterior point (P), as well as the body anchor, first intermediate, second 209 

intermediate and tip for each of the six legs. Our data labeling convention is 210 

as follows. Right and left legs are numbered 1 to 3 (front to rear) and 4 to 6 211 

(front to rear), respectively. Each leg has four control points labeled 1 to 4 in 212 

the units digit that correspond the body anchor (1), leg joints (2 and 3), and 213 

claw (4). In each label, the leg number is shown in the tenths digit and the 214 

control point in the units digit. For example, the label “11” refers to the body 215 

anchor of the right prothoracic leg 1. For simplicity, only the control points for 216 

leg 3 are shown. (E) An example raw image of the ventral surface of a fly 217 

used for segmentation. (F) This image is first segmented using the parametric 218 

body snake consisting of 18 control points (red and blue crosses). (G) 219 

Subsequently, leg segmentation is initialized through automatic tracing from 220 

body anchor points to user-defined leg tips. From this initialization, an 221 

annotation is performed using open snakes consisting of four control points 222 

(yellow crosses). (H) Body and (I) leg segment tracking annotation for flies 223 

during a 455-frame (1.93 s) sequence. Annotation results (red) and the 224 

centroid in H or leg tip positions in I (blue) for each frame are overlaid. 225 

 226 

To automatically optimize the snake, we modified the position of the 227 

control points by minimizing the energy using a Powell-like line-search 228 
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method [26], a standard unconstrained optimization algorithm that converges 229 

quadratically to an optimal solution. First, one direction is chosen depending 230 

on the partial derivatives of the energy, which is computed using finite 231 

differences. Second, a one-dimensional minimization of the energy function is 232 

performed in the selected direction. Finally, a new direction is chosen using 233 

the partial derivatives and enforcing conjugation properties. These steps are 234 

repeated until convergence. The final configuration of the control points 235 

provides an accurate description of the orientation and size of the fly body. 236 

 In practice, the algorithm depends on initial user input to coarsely 237 

locate the fly in a frame of the image sequence. Following a single mouse 238 

click, a two-step multiscale optimization scheme inspired by [24] is initiated. A 239 

spherical active contour composed of 3-control points is first created, centered 240 

at the mouse position. This snake is optimized using 𝐸!"#! + 𝐸!"#$%& to form an 241 

elliptic curve surrounding the fly. In this way, the major axis of the elliptical 242 

snake will be aligned with the anteroposterior axis of the fly, and the minor 243 

axis will be perpendicular to it. 244 

 The 3-point elliptical snake fit to the body of the fly can be expressed 245 

as follows [23]:  246 

𝐫 𝑡 = 𝐑! + 𝐑! cos(2𝜋𝑡)+ 𝐑! sin(2𝜋𝑡), 247 

where 248 

𝐑! =
!
!

𝐜[𝑘]!
!!! ,  𝐑! = ℎ![𝑘]𝐜[𝑘]!

!!! ,   𝐑! = ℎ![𝑘]𝐜[𝑘]!
!!! , 249 

and 250 

ℎ! 𝑘 = !
!
cos !

!
cos !!"

!
,  ℎ! 𝑘 = !

!
cos !

!
sin !!"

!
. 251 

Relating this to the general parametric equation of an ellipse of major axis a, 252 

minor axis b, and center (𝑥!   𝑦!)! allows us to extract the parameters of the 3-253 
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control point snake fit to the fly’s body. Namely, (𝑥!   𝑦!)! = 𝐑! , 254 

𝑎   =   max  ( 𝐑! , 𝐑! )  and 𝑏 =   min  ( 𝐑! , 𝐑! ) . By knowing a, the 255 

orientation of the ellipse in the image can be computed. 256 

The ellipse fit is then replaced by an 18-node fly-shaped closed snake 257 

that has been rotated and dilated to match the ellipse’s length and orientation 258 

(Fig. 1A). An ambiguity results since two potential snake models can be 259 

initialized for a given ellipse, with opposite anteroposterior axis orientation. To 260 

resolve this ambiguity, both potential snake orientations are optimized on the 261 

image using 𝐸!"#$ in addition to 𝐸!"#! and 𝐸!"#$%&. The solution with the lowest 262 

cost (i.e., energy value at convergence) is used.  263 

Drosophila leg model 264 

Once the fly’s body is properly segmented, open snake models for 265 

each of its legs are then added. First, the positions of leg coxa-thorax 266 

attachment points (hereafter referred to as anchors) are automatically 267 

computed based on the body segmentation. The location of the six leg 268 

anchors with respect to the reference body model have been empirically 269 

determined as linear combinations of three axes defined by the head-thorax 270 

junction, the thorax-abdomen junction and the thorax length (Fig. 1B). These 271 

locations are then adapted according to an individual fly-specific deformation 272 

of the body model. 273 

User input is required to initialize the positions of each leg prior to 274 

tracking. Initialization is based on a single click for each leg: the user indicates 275 

the claw (hereafter referred to as tip) of each leg through mouse-clicks on the 276 

selected frame. The click location is assigned to the most likely body anchor 277 

using a probabilistic formulation based on the distance and intersection with 278 
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the fly’s body model and that of other leg models. Once a leg tip and a leg 279 

anchor have been paired, a dynamic programming method [27] is initiated to 280 

automatically trace the leg from the anchor to the tip. To facilitate this process, 281 

the fly’s legs are enhanced by processing the segmented image frame using a 282 

ridge detector [28]. 283 

 Dynamic programming is a method that yields the globally optimal 284 

solution for a given separable problem. In particular, it can be used to 285 

implement algorithms solving shortest path problems. Dynamic programming 286 

relies on a graph-based representation: the shortest path is represented as a 287 

sequence of successive nodes in a graph that minimize a cost function. To 288 

trace a leg from its anchor to its tip, we build a graph by interpolating image 289 

pixels along the two axes using a straight segment linking the anchor to the tip 290 

(axis 𝐤) and its normal vector (axis 𝐮). The cost of the path at index 𝑘 + 1 291 

along axis 𝐤 is then given by: 292 

𝐶 𝑘 + 1 = 𝐶 𝑘 + 𝜆 !
!!

𝐼!"#$%(𝑥,𝑦)!,! ∈  ! + 1− 𝜆 𝑢! − 𝑢!!! , 293 

where 𝐶 𝑖  is the cost of the path at location 𝑖 on axis 𝐤, 𝑆 is the collection of 294 

image pixels 𝑥,𝑦  in the segment between node 𝑘,   𝑢!  and 𝑘 + 1,   𝑢!!! , 𝐿! 295 

is the pixel length of this segment, 𝐼!"#$% is the ridge-filtered version of current 296 

frame, and 𝜆 ∈ [0, 1] is a weighting coefficient. The first term corresponds to a 297 

discretized integral of the image in the segment linking nodes 𝑘 and 𝑘 + 1, 298 

and therefore tends to favor paths going through low pixel values. The second 299 

term is composed of the distance along axis 𝐮  between two successive 300 

nodes. As a result, the optimal path follows relatively bright (or dark) regions 301 

in the image with respect to the background, while retaining a certain level of 302 

smoothness. The relative contribution of each term is determined by 𝜆. 303 
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In contrast to body segmentation, leg segmentation uses open rather 304 

than closed snakes. Fly legs are parameterized by a curve composed of 305 

𝑀 = 4 control points (Fig. 1C,G). For each leg, the body anchor, 𝐥[0], is 306 

considered fixed. The discrete path obtained through dynamic programming is 307 

used to initialize the leg snake. The rationale behind this two-step procedure 308 

is two-fold. First, dynamic programming is very robust and can therefore 309 

effectively trace the leg from a body anchor to its tip. However, since it is a 310 

discrete approach, it is computationally expensive. By contrast, snake-based 311 

methods are more likely to diverge when initialized far from their target but are 312 

computationally inexpensive since only a few control points need to be stored 313 

to characterize a given curve. Therefore, we combined these approaches by 314 

first finding a path to define each leg using dynamic programming and then 315 

transforming this path into a parametric curve for optimization. The parametric 316 

representation of the leg snake curve is defined as 317 

𝐬 𝑡 = 𝑠! 𝑡
𝑠! 𝑡

= 𝐥[𝑘]𝜑(𝑀𝑡 − 𝑘)!!!
!!! , 318 

where 𝑡 ∈ [0,𝑀 − 1]  and 𝐥 𝑘 = {(𝑙![𝑘]  𝑙![𝑘])!}!∈ℤ  are the leg snake control 319 

points. Since Drosophila legs are composed of relatively straight segments 320 

between each joint, we use linear splines as basis functions 𝜑(𝑡). The leg 321 

control points are therefore linked through linear interpolation and each 322 

control point has a unique identifier that can be used for subsequent data 323 

processing (Fig. 1D). Figure 1E-G illustrates the full process of taking a single 324 

raw image (Fig. 1E) and using active contours to segment the body (Fig. 1F) 325 

and legs (Fig. 1G).  326 

 327 

Segmentation propagation (tracking) 328 
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High frame-rate videos ensure that the displacement of a fly’s body 329 

between successive frames is small. FlyLimbTracker takes advantage of this 330 

fact to propagate body and leg snakes from one frame to the next during 331 

tracking. The body snake in frame t+1 is therefore segmented by optimizing a 332 

contour initialized as the corresponding snake from frame t using the body 333 

snake energy previously described. This approach is sufficient to obtain good 334 

segmentation provided that there is some overlap between the animal’s body 335 

in frames t and t+1. 336 

Compared with the body, leg displacement can be larger between 337 

frames. Therefore, leg snakes require a more sophisticated algorithm to be 338 

propagated during tracking. First, the anchor of each leg is automatically 339 

computed from the newly propagated fly body. Since each leg is modeled as 340 

a 4-node snake, the three remaining leg snake control points are optimized 341 

using the snake energy 342 

𝐸!"# = 𝐸!"#$% + 𝐸!"# + 𝐸!"#$"%&! + 𝐸!"#$!%&#'. 343 

The first term corresponds to the integral along the leg in the current frame 344 

filtered by a ridge detector [28], i.e.,  345 

𝐸ridge = 𝐼!"#$%  d𝑠
  
! = 𝐼!"#$% 𝐫 𝑡 𝐫′(𝑡)!

! d𝑡. 346 

Analogous with the first term, the second term is computed as the integral 347 

along the leg of the Euclidean distance transform (EDT, [29]) in the current 348 

frame where  349 

𝐸!"# = 𝐼!"#  d𝑠
  

!
= 𝐼!"# 𝐫 𝑡 𝐫′(𝑡)

!

!
d𝑡. 

Each of the linear segments comprising a fly’s legs should be roughly 350 

constant in length across a video, aside from changes introduced by 351 
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projecting the three-dimensional legs onto two-dimensional images. Taking 352 

this consistency into account, the third term of the leg energy penalizes 353 

solutions for which the leg joint positions result in leg segments whose lengths 354 

vary considerably from one frame to the next. This prevents unrealistic 355 

configurations of the leg joints that yield excessively long leg segments 356 

compared with neighboring annotated frames. 357 

 Finally, the fourth term is used to determine the leg tip position at 358 

time  𝑡, denoted 𝐥! 3 . Since the distal tip of the leg may move considerably 359 

between successive frames, we designed a dedicated energy term to attract 360 

the tip toward candidate locations in the image. These candidate locations are 361 

defined by minima after the image is filtered using a Laplacian-of-Gaussian 362 

(LoG, [30]). A potential map of tip candidates is then created according to:   363 

𝐸extremity = 1− 𝑤𝐩∗e
! 𝐥! ! !𝐩∗ !

!! , 

where  364 

𝐩∗ = argmin
𝐩  ∈  !

   𝐥𝑡 3 − 𝐩 2 

is the tip candidate closest to 𝐥! 3   , 𝑤𝐩∗   ∈ [0,1] its associated weight, and 𝜎! 365 

a fixed parameter determining the width of the attraction potential of the tip 366 

candidates. The weight 𝑤𝐩∗  is a measure of how tip-like 𝐩∗  is, and is 367 

computed based on the magnitude of the LoG filter response. A strong weight 368 

results in a deeper potential, and is therefore more likely to attract 𝐥! 3 .  369 

 In summary, the four anchor points characterizing each leg are 370 

propagated as follows. First, the leg body anchors are determined using the 371 

body model. Second, the remaining three control points (two leg joints and tip) 372 

are shifted by optimizing a cost function that incorporates both image 373 
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information (𝐸!"#$% and 𝐸!"#) and a smoothness constraint (𝐸!"#$"%&!). Finally, 374 

the tip is further constrained using an estimation of how tip-like the image is at 375 

candidate locations. 376 

 377 

Data output 378 

Once the full image sequence is annotated, data can be extracted as a 379 

CSV file for each fly. These measurements include the locations of three 380 

reference points on the fly’s body (A, P, and 0), as well as each of the legs’ 381 

anchor points (see Fig. 1D for the labeling convention).  382 

FlyLimbTracker is linked to Icy’s Track Manager plugin (Publication Id: 383 

ICY-N9W5B7) via the extract tracks buttons (see interface description in the 384 

Appendix), allowing additional data to be extracted. In particular, 385 

segmentations of the fly’s body (Fig. 1H) and legs (Fig. 1I) can be visualized 386 

across the entire sequence, illustrating their entire trajectories. Each individual 387 

control point of the leg snakes or the body snake’s centroid can be 388 

independently visualized. Note that tracks are also numbered according to the 389 

labeling convention in Fig. 1D. 390 

 391 

Software and data availability 392 

 User instructions, FlyLimbTracker software, and sample data can be 393 

found at:  394 

http://bigwww.epfl.ch/algorithms/FlyLimbTracker/ 395 

Results 396 

FlyLimbTracker performs semi-automated body and leg tracking. First, 397 
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the user manually initializes the positions of the fly’s body and leg segments in 398 

a single, arbitrarily chosen frame of the image sequence (Fig. 2A). These 399 

manual annotations are then used to automatically propagate segmentation to 400 

prior, or subsequent frames (Fig. 2B). During automated segmentation, the 401 

user can interrupt tracking to correct errors (Fig. 2C). When FlyLimbTracker is 402 

restarted, the automated segmentation continues, taking into account these 403 

user edits.  404 

 405 

Figure 2. FlyLimbTracker workflow. (A) The user manually indicates the 406 

approximate location of the fly’s body in an arbitrarily chosen video frame (t1). 407 

FlyLimbTracker then optimizes a closed active contour model that 408 

encapsulates the fly’s body in the correct orientation. The user then manually 409 

indicates the location of each leg’s tip. FlyLimbTracker then optimizes an 410 

open active contour model that runs across the entirety of each leg. (B) The 411 

user then runs FlyLimbTracker’s automatic tracking algorithm to propagate 412 

body and leg models to subsequent video frames (or prior frames if run in 413 

reverse). (C) Either during or after automated tracking, the user can look for 414 

tracking errors. After manually correcting these errors, the user can re-run 415 

automatic tracking. In each image, the frame number is indicated. 416 

 417 

Algorithm robustness 418 

FlyLimbTracker can be used to segment and track fly bodies and legs 419 

in videos spanning a wide range of spatial and temporal resolutions. 420 

Resolution determines the nature of the annotation process: high-resolution 421 
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data tracking is more automated, while low resolution data requires more user 422 

intervention. To quantify the dependence of computing time and the number 423 

of user interventions on data quality, we systematically varied the spatial and 424 

temporal resolutions of videos featuring five common Drosophila behaviors: 425 

walking straight, turning, foreleg grooming, head grooming, and abdominal 426 

grooming. Raw videos were originally captured at 236 fps and at 2560 x 918 427 

pixel resolution (Supplementary Videos 1-5).  428 

First, we studied FlyLimbTracker’s robustness to variations in spatial 429 

resolution. We down-sampled each of the five videos by a factor of 𝑁, where 430 

𝑁×𝑁  pixels were averaged. This resulted in image sequences 𝑁  times 431 

smaller along both spatial dimensions but with an identical temporal resolution 432 

of 236 fps (Fig. 3A). Alternatively, to vary temporal resolution, we down-433 

sampled each video by a factor of 𝑁, where only one frame from every 𝑁 was 434 

retained. This resulted in image sequences of varying temporal resolution but 435 

consistently high spatial resolution of 2560 x 918 pixels (Fig. 3B).  436 

 437 

Figure 3. Sensitivity of leg tracking to changes in spatial or temporal 438 

video resolution. (A) Sample video image (top-left) after 2x (top-right), 4x 439 

(bottom-left), or 8x (bottom-right) spatial down-sampling. (B) Representations 440 

of the difference between successive images (t1 and t2 overlaid in magenta 441 

and green, respectively) for different frame rate videos after temporal down-442 

sampling. (C-D) The number of corrections required per node per frame as a 443 

function of spatial resolution (C), or temporal resolution (D). (E-F) The 444 

average time required to annotate a single frame as a function of spatial 445 

resolution (E), or temporal resolution (F). In C-F, data for videos depicting a fly 446 
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walking straight, turning, grooming its forelegs, head, or abdomen are shown 447 

in orange, purple, green, cyan, and red, respectively. 448 

 449 

For each movie, body and leg snakes were manually initialized using 450 

the first image frame. Segmentation was then automatically propagated 451 

forward through the remainder of the image sequence. Whenever the 452 

automated tracker made a mistake, the process was interrupted and the user 453 

manually corrected the error. Automated tracking was then restarted from this 454 

frame until the next mistake was observed. In all cases, automated body 455 

tracking did not require manual intervention. Therefore, we only took note of 456 

manual corrections in leg snake annotation.  457 

To quantify FlyLimbTracker’s performance across this range of spatial 458 

and temporal resolutions, we calculated two normalized quantities. First, we 459 

calculated the average number of manual corrections per node per frame 460 

(Fig. 3C-D). To do this, we measured the total number of user interventions 461 

while processing an image sequence and normalized this quantity by 𝑇×6×3, 462 

where 𝑇  is the number of frames, each of which contains eighteen free 463 

parameters: six legs with three editable control points each. As a second 464 

metric we quantified the average time required to annotate a single image 465 

frame (Fig. 3E-F). To do this, we recorded the total time required to annotate 466 

an image sequence and divided this value by the total number of frames. This 467 

normalized quantity combines both the computing time required for automated 468 

annotation as well as the time required to manually correct annotation errors.  469 

Overall, we observed that reducing spatial (Fig. 3A,C,E), or temporal 470 
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(Fig. 3B,D,F) resolution resulted in an increase in the number of manual 471 

interventions (Fig. 3C-D) as well as a longer time required for annotation (Fig. 472 

3E-F). While the numbers of corrections were similar for equivalent amounts 473 

of down-sampling (up to 8-fold), annotation time was appreciably longer for 474 

straight walking and turning. This reflects the importance of having 475 

overlapping images in successive frames for automated tracking: a feature 476 

that may be less common during locomotion where the position of a leg can 477 

vary substantially within a walking cycle. Notably, in a number of other cases 478 

(e.g., grooming), the annotation time per frame flattens across spatial and 479 

temporal resolutions. This is probably due to the trade-off between automated 480 

processing and manual correction times. Resolution strongly influences the 481 

computing time required for automated tracking: smaller or fewer images can 482 

be processed more quickly. However, as resolution decreases, user 483 

interventions required to correct errors begin to dominate annotation time 484 

required to annotate each frame. 485 

Visualization and analysis of leg segment tracking data  486 

FlyLimbTracker provides a user-friendly interface that allows body and 487 

leg segment tracking data to be exported in a CSV file format, simplifying data 488 

analysis and visualization. We illustrate three representations of body and leg 489 

tracking data for annotated videos of the five behaviors previously described 490 

(Supplementary Videos 6-10). First, within FlyLimbTracker itself, leg joint 491 

and/or body trajectories can be displayed overlaid upon the final raw video 492 

frame (Fig. 4A1-E1). This representation provides a way to project time-493 

varying data onto a static image and illustrates the symmetric or asymmetric 494 

limb motions that control straight walking/grooming or turning, respectively. 495 
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Second, leg segment trajectory data can be exported and processed 496 

externally (e.g., using Matlab or Python). These data can be rotated along 497 

with the fly’s frame of reference (Fig. 4A2-E2) for a direct comparison of leg 498 

segment movements between distinct actions. A similar approach has been 499 

used to visualize how neurogenetic perturbations influence claw movements 500 

during locomotion [10], but can now be used to study the effects of these 501 

manipulations on other previously inaccessible leg segments and behaviors 502 

(e.g., grooming or reaching). In a third visualization, the speeds of each claw 503 

can be plotted to provide an exceptionally detailed characterization of 504 

locomotor gaits (Fig. 4A3-B3), or grooming movements in stationary animals 505 

(Fig. 4C3-E3). 506 

 507 

Figure 4. Analysis and visualization of FlyLimbTracker leg tracking data. 508 

Visualizations of leg segment annotation results for videos of a fly (A) walking 509 

straight, (B) turning, (C) grooming its forelegs, (D) grooming its head, or (E) 510 

grooming its abdomen. (A1-E1) Leg segmentation results (red) and joint 511 

positions (color-coded by frame number) are overlaid on the final frame of the 512 

image sequence. (A2-E2) Leg segment trajectories are rotated and color-513 

coded by frame number. This permits alignment and comparison of leg 514 

movements across different datasets. (A3-E3) The instantaneous speeds of 515 

each leg tip (claw) are color-coded. 516 

 517 

Discussion 518 

Existing methods for tracking insect leg segments rely on sophisticated 519 
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optical equipment and/or laboriously-applied leg markers, often in tethered 520 

animals [8-10]. While these approaches are extremely valuable, they may 521 

potentially disrupt natural behaviors and cannot report the motions of multiple 522 

joints in untethered animals. Here we have introduced a method that uses 523 

computer-vision techniques to address these technical barriers. The software 524 

implementation of this approach, FlyLimbTracker, permits semi-automated 525 

tracking of body and leg segments in freely behaving Drosophila. Use of 526 

FlyLimbTracker only requires a single high-resolution, high-speed camera and 527 

does not require prior marking of leg segments. Additionally, it can be used 528 

with video data across a range of spatial and temporal resolutions, permitting 529 

a flexible blend of automated and manual annotation. Importantly, when 530 

automation has difficulty segmenting low quality data, FlyLimbTracker 531 

remains a powerful tool for manual leg tracking annotation since it uses easily 532 

manipulated spline-snakes and provides an interface for user-friendly data 533 

import and export.  534 

The open-source nature of FlyLimbTracker can facilitate community-535 

driven improvement and customization of the algorithm. We can envision a 536 

number of improvements moving forward. First, tracking currently requires 537 

overlap of a fly’s body between successive frames. This constraint places a 538 

lower bound on video temporal resolution and could be improved by using, for 539 

example, nearest-neighbor matching approaches like the Hungarian algorithm 540 

[31] to link segmentation control points between successive frames. Second, 541 

additional leg control points may be added to FlyLimbTracker to more 542 

precisely annotate thorax-coxa-trochanter segments. Third, FlyLimbTracker’s 543 

requirement of user initialization, makes it only semi-automated and restricts 544 
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batch processing of multiple videos for high-throughput data analysis. This 545 

may be overcome using additional prior information to automatically identify 546 

and optimize body snakes. Fourth, FlyLimbTracker’s snake-based approach 547 

to tracking could easily be adapted for the study of other species (e.g., mice, 548 

stick insects, and cockroaches) by modifying the shape of snake models. 549 
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Supporting Information 656 

Supporting Video Legends 657 

Raw videos used for sensitivity analyses (Fig. 3) and visualization (Fig. 4): 658 

Video 1 – A fly walking straight. 659 

Video 2 – A fly turning. 660 

Video 3 – A fly grooming its forelegs. 661 

Video 4 – A fly grooming its head. 662 

Video 5 – A fly grooming its abdomen. 663 

Video 6 – A fly walking straight (video 1), annotated using FlyLimbTracker. 664 

Video 7 – A fly turning (video 2), annotated using FlyLimbTracker. 665 

Video 8 – A fly grooming its forelegs (video 3), annotated using 666 

FlyLimbTracker. 667 

Video 9 – A fly grooming its head (video 4), annotated using FlyLimbTracker. 668 

Video 10 – A fly grooming its abdomen (video 5), annotated using 669 

FlyLimbTracker. 670 

 671 

Appendix 672 

User interface  673 

FlyLimbTracker’s interface can be used in either basic or advanced 674 

mode. In the basic mode, only the name of the active image is visible. All 675 

parameters are hidden and only default parameter values are used. When 676 

switching to the advanced mode, all parameters become visible and can be 677 

adjusted by the user. Parameters that can be adjusted in the interface include: 678 

• Image parameters 679 
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o Channel: for multichannel images (e.g., bright-field and 680 

fluorescence), this parameter selects the channel upon which 681 

segmentation is performed. In most cases, the bright-field 682 

channel should be selected. 683 

o Smoothing: adjusts the width (standard deviation, in pixels) of a 684 

smoothing filter used to preprocess the image sequence. Larger 685 

values yield smoother images, but likely obscure details such as 686 

the fly’s legs. We recommend choosing a value approximately 687 

equal to the average width (in pixels) of the fly legs. 688 

o Subtract background: performs background subtraction on the 689 

image sequence. The background model used is the median of 690 

each pixel across the whole image sequence. In practice, 691 

background subtraction is not desirable in datasets with a low 692 

signal-to-noise ratio since a fly’s legs typically have low contrast 693 

and can be smoothed out by median filtering. 694 

• Body model parameters 695 

o Annotation method: switches between automated and manual 696 

annotation of the body snake. Automated annotation is obtained 697 

by automatically optimizing the body snake from its initial, 698 

manually chosen position. Manual annotation relies exclusively 699 

on user interactions.  700 

o Energy trade-off: adapts the relative importance of data fidelity 701 

(image-based) and regularization (shape-based) terms in the 702 

body snake energy. A fully image-based snake would be 703 

optimized using image information only, while a fully shape-704 
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based snake would be optimized to retain a fly’s shape 705 

regardless of the underlying image data. For data with low 706 

image quality the regularization term (shape-based) becomes 707 

more important.  708 

o Max iterations/immortal: tunes the maximum number of 709 

iterations used to optimize the body snake. If immortal is 710 

chosen, the snake keeps evolving until it achieves convergence. 711 

Allowing the snake to be immortal usually yields better 712 

segmentation results, but significantly increases computing time. 713 

Conversely, a smaller number of iterations can estimate 714 

segmentation quickly, but not necessarily as effectively. Usually, 715 

4000-5000 iterations provide a good trade-off between 716 

computing time and segmentation quality. However, this value 717 

should be customized according to data quality. 718 

o Freeze snake body: when ticked, locks the control points of the 719 

fly body snake, which then appear as blue instead of red. In this 720 

setting, individual points cannot be further edited. This feature is 721 

useful when the fly body is properly initialized and edits are done 722 

on the legs only, as it prevents displacing body control points 723 

when trying to select a leg control point. However, it remains 724 

possible to translate, move or rotate the entire fly body.  725 

• Leg model parameters 726 

o Annotation method: switches between automated and manual 727 

segmentation of the fly’s legs. Although body segmentation and 728 

tracking is robust even for low resolution or low signal-to-noise 729 
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ratio data, leg tracking is much more sensitive. Therefore, the 730 

user is given the option to restrict automation to body tracking. 731 

In the manual segmentation setting, the legs are simply 732 

propagated by translation along with body motion and can be 733 

manually adjusted post-hoc for each frame. This allows 734 

FlyLimbTracker to be a useful tool for annotating either low-735 

quality or high-quality data. 736 

o DP trade-off: determines the relative importance of data fidelity 737 

(bright) and regularization (straight) terms when performing 738 

dynamic programming (DP) to initialize the leg snakes. The 739 

algorithm tries to find the optimal path between a given leg 740 

anchor and tip by optimizing the trade-off between image 741 

intensity (bright) and straightness (straight). Relying on image 742 

brightness alone typically yields irregular movements of the fly’s 743 

legs since the algorithm becomes very sensitive to image noise 744 

(e.g., isolated pixels of high intensity). Conversely, relying on 745 

straightness alone yields, in the most extreme case, a straight 746 

line between the anchor and tip. Note that this parameter is only 747 

used when initializing a leg. It does not influence tracking. 748 

o Energy trade-off: determines the relative importance of data 749 

fidelity (image-based) and regularization (sequence-based) 750 

terms for the leg snakes. A purely image-based leg snake is 751 

optimized using the image data only. This typically yields 752 

suboptimal solutions that are sensitive to image noise. 753 

Conversely, a fully sequence-based leg snake maximizes its 754 
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resemblance to the corresponding leg snake from previously 755 

annotated frames and ignores image data. More importance 756 

should be given to sequence-based energy for low quality data 757 

when leg snake annotations are readily available. 758 

o Tip propagation mode: determines the relative importance of 759 

data fidelity (image-based) and regularization (sequence-based) 760 

terms while tracking leg tips. We identify potential tips by 761 

searching for candidate locations in a neighborhood 762 

encompassing leg motions from previously annotated, 763 

neighboring frames. The final tip position is chosen as a trade-764 

off between the position predicted by leg motion from previous 765 

annotated frames (sequence-based), and tip candidates 766 

identified by processing the current frame (image-based). 767 

o Max iterations/immortal: tunes the maximum number of 768 

iterations used to optimize the leg snakes in a manner similar to 769 

how the same parameter is used to optimize the body snake. 770 

In both basic and advanced modes, the upper part of the interface 771 

contains several menu items (Analyze, Save/Load and Help): 772 

• Analyze: extracts measurements from the current body 773 

segmentation using Icy’s ROI Statistics plugin (Publication Id: ICY-774 

W5T6J4). 775 

• Save/Load: allows the user to export and save annotations to a 776 

CSV file format (see Output section below). This can also be used 777 

to reload previously saved CSV annotations. 778 
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• Help: contains information about the plugin version (About), and a 779 

link to FlyLimbTracker’s online documentation page 780 

(Documentation (online)). 781 

Finally, several action buttons are located on the lower part of the 782 

interface. These are split into three sections. 783 

• Fly shape editing: the left button enables movement of individual 784 

control points. The middle and right buttons, respectively, enable 785 

resizing and rotation of the body and leg snakes. 786 

• Snake action: automatically optimizes the snake at its current 787 

position (left button), or deletes it (right button). Note that both 788 

actions are applied to the body snake and all leg snakes 789 

simultaneously. If annotation methods for body or leg snakes are 790 

set to manual, the corresponding snakes are left unmodified. 791 

• Tracker action: performs backward (left button) or forward (center-792 

left button) tracking, interrupts tracking (center-right button), or 793 

extracts/displays tracks (right button) using Icy’s Track Manager 794 

plugin (Publication Id: ICY-N9W5B7). The tracking algorithm is 795 

implemented to allow backward and forward tracking, giving the 796 

user flexibility to initialize tracking at any frame of the image 797 

sequence. If any of the body or leg snakes are set to manual 798 

annotation, the forward and backward tracking buttons will only 799 

propagate current annotations to the next or previous frame, 800 

respectively. If all snakes are set to automated annotation, tracking 801 

will be performed in the selected direction until the end/beginning of 802 
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the image sequence is reached, unless it is manually halted using 803 

the tracking interruption button. 804 

 805 










