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Measurable signatures of quantum mechanics in a classical spacetime
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We propose an optomechanics experiment that can search for signatures of a fundamentally clas-
sical theory of gravity and in particular of the many-body Schroedinger-Newton (SN) equation,
which governs the evolution of a crystal under a self-gravitational field. The SN equation predicts
that the dynamics of a macroscopic mechanical oscillator’s center of mass wavefunction differ from
the predictions of standard quantum mechanics [1]. This difference is largest for low-frequency os-
cillators, and for materials, such as Tungsten or Osmium, with small quantum fluctuations of the
constituent atoms around their lattice equilibrium sites. Light probes the motion of these oscillators
and is eventually measured in order to extract valuable information on the pendulum’s dynamics.
Due to the non-linearity contained in the SN equation, we analyze the fluctuations of measurement
results differently than standard quantum mechanics. We revisit how to model a thermal bath,
and the wavefunction collapse postulate, resulting in two prescriptions for analyzing the quantum
measurement of the light. We demonstrate that both predict features, in the outgoing light’s phase
fluctuations’ spectrum, which are separate from classical thermal fluctuations and quantum shot

noise, and which can be clearly resolved with state of the art technology.

I. INTRODUCTION

Advancements in quantum optomechanics has allowed
the preparation, manipulation and characterization of
the quantum states of macroscopic objects [2-4]. Ex-
perimentalists now have the technological capability to
test whether gravity could modify quantum mechanics.
One option is to consider whether gravity can lead to
decoherence, as conjectured by Diosi and Penrose [5, 6],
where the gravitational field around a quantum mechan-
ical system can be modeled as being continuously moni-
tored. A related proposal is the Continuous Spontaneous
Localization (CSL) model, which postulates that a dif-
ferent mass-density sourced field is being continuously
monitored [7]. In both cases, gravity could be consid-
ered as having a “classical component”, in the sense that
transferring quantum information through gravity could
be impeded, or even forbidden [8]. Another option, pro-
posed by P.C.E. Stamp, adds gravitational correlations
between quantum trajectories [9].

In this paper, we consider a different, and more dra-
matic modification, where the gravitational interaction
is kept classical. Specifically, the space-time geometry is
sourced by the quantum expectation value of the stress
energy tensor [10-12]:

G = 81 <<I>|TW\<I>> : (1)

with G = ¢ = 1, and where G, is the Einstein tensor

of a (3+1)-dimensional classical spacetime. T}, is the
operator representing the energy-stress tensor, and |®P)
is the wave function of all (quantum) matter and fields
that evolve within this classical spacetime. Such a the-
ory arises either when researchers considered gravity to
be fundamentally classical, or when they ignored quan-

tum fluctuations in the stress energy tensor, 1}, in or-
der to approximately solve problems involving quantum
gravity. The latter case is referred to as semiclassical
gravity [13], in anticipation that this approzimation will
break down if the stress-energy tensor exhibits substan-
tial quantum fluctuations. In this article, we propose
an optomechanics experiment that would test Eq. (1).
Other experiments have been proposed [14, 15], but they
do not address the difficulties discussed below.

Classical gravity, as described by Eq. (1), suffers from
a dramatic conceptual drawback rooted in the statistical
interpretation of wavefunctions. In order for the Bianchi
identity to hold on the left-hand side of Eq. (1), the right-
hand side must be divergence free, but that would be
violated if we reduced the quantum state. In light of
this argument, one can go back to an interpretation of
quantum mechanics where the wavefunction does not re-
duce. At this moment, the predominant interpretation
of quantum mechanics that does not have wave-function
reduction is the relative-state, or “many-world” interpre-
tation, in which all possible measurement outcomes, in-
cluding macroscopically distinguishable ones, exist in the
wavefunction of the universe. Taking an expectation over
that wavefunction leads to a serious violation of common
sense, as was demonstrated by Page and Geilker [16].

Another major difficulty is superluminal communica-
tion, which follows from the nonlinearities implied by
Eq. (1) (refer to section §II for explicit examples of non-
linear Schroedinger equations). Superluminal communi-
cation is a general symptom of wavefunction collapse in
nonlinear quantum mechanics [29]. Entangled and iden-
tically prepared states, distributed to two spatially sepa-
rated parties A and B, and then followed by projections
at B and a period of nonlinear evolution at A, can be
used to transfer signals superluminally [17-20].



In this paper, we do not solve the above conceptual
obstacles. Instead,we highlight an even more serious is-
sue of nonlinear quantum mechanics: its dependence on
the formulation of quantum mechanics. Motivated by the
time-symmetric formulation of quantum mechanics [21],
we show that there are multiple prescriptions of assign-
ing the probability of a measurement outcome, that are
equivalent in standard quantum mechanics, but become
distinct in nonlinear quantum mechanics. It is our hope
that at least one such formulation will not lead to su-
perluminal signaling. We defer the search for such a
formulation to future work, and in this paper, we sim-
ply choose two prescriptions, and show that they give
different experimental signatures in torsional pendulum
experiments. These signatures hopefully scope out the
type of behavior classical gravity would lead to if a non
superluminal-signaling theory indeed exists.

This paper is organized as follows. In section II,
we review the non-relativistic limit of Eq. (1), called
the Schroedinger-Newton theory, as applied to optome-
chanical setups, and without including quantum mea-
surements. We determine that the signature of the
Schroedinger-Newton theory in the free dynamics of the
test mass is largest for low frequency oscillators such as
torsion pendulums, and for materials, such as Tungsten
and Osmium, with atoms tightly bound around their re-
spective lattice sites. In section III, we remind the reader
that in nonlinear quantum mechanics the density ma-
trix formalism cannot be used to describe thermal fluc-
tuations. As a result, we propose a particular ensem-
ble of pure states to describe the thermal bath’s state.
In section IV, we discuss two strategies, which we term
pre-selection and post-selection, for assigning a statistical
interpretation to the wavefunction in the Schroedinger-
Newton theory. In section V, we obtain the signatures
of the pre- and post-selection prescriptions in torsional
pendulum experiments. In section VI, we show that is
feasible to measure these signatures in state of the art ex-
periments. Finally, we summarize our main conclusions
in section VII.

II. FREE DYNAMICS OF AN
OPTOMECHANICAL SETUP UNDER THE
SCHROEDINGER-NEWTON THEORY

In this section, we discuss the Schroedinger-Newton
theory applied to optomechanical setups without quan-
tum measurement. We first review the signature of the
theory in the free dynamics of an oscillator, and dis-
cuss associated design considerations. We then develop
an effective Heisenberg picture, which we refer to as a
state dependent Heisenberg picture, where only operators
evolve in time. However, unlike the Heisenberg picture,
the equations of motion depend on the boundary quan-
tum state of the system that is being analyzed. Finally
we present the equations of motion of our proposed op-
tomechanical setup.

A. The center-of-mass Schroedinger-Newton
equation

The Schrodinger-Newton theory follows from taking
the non-relativistic limit of Eq. (1). The expectation
value in this equation gives rise to a nonlinearity. In par-
ticular, a single non-relativistic particle’s wavefunction,
X (7), evolves as

h2

ihOex (7',t) = “om

V2+V (R +U 7| x(7t), (2)

where V (7) is the non-gravitational potential energy at 7
and U (t,7) is the Newtonian self-gravitational potential
and is sourced by x (7):

V2U (t,x) = 4nGm |x (t,2)|*. (3)

A many-body system’s center of mass Hamiltonian also
admits a simple description, which was analyzed in [1].
If an object has its center of mass’ displacement fluc-
tuations much smaller than fluctuations of the internal
motions of its constituent atoms, then its center of mass,
with quantum state |1¢)), observes

m%ﬁ: gNG%ngN(@_wmwf W) (4)

where M is the mass of the object, ﬁNG is the non-
gravitational part of the Hamiltonian, & is the center of
mass position operator, and wgy is a frequency scale that
is determined by the matter distribution of the object.
For materials with single atoms sitting close to lattice
sites, we have

Gm
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where m is the mass of the atom, and Az, is the stan-
dard deviation of the crystal’s constituent atoms’ dis-
placement from their equilibrium position along each spa-
tial direction due to quantum fluctuations.

Note that the presented formula for wgy is larger than
the expression for wgn presented in [1] by a factor of /2.
As explained in [22], the many body non-linear gravita-
tional interaction term presented in Eq. (3) of [1] should
not contain a factor of 1/2; which is usually introduced
to prevent overcounting. The SN interaction term be-
tween one particle and another is not symmetric under
exchange of both them. For example, consider two (1-
dimensional) identical particles of mass m. The interac-
tion term describing the gravitational attraction of the
first particle, with position operator &1, to the second is
given by

¢ (21, 22)|

|21 — xa|

—sz/dxl dxo



which is not symmetric under the exchange of the indices
1 and 2. Moreover, in Appendix A, we show that the ex-
pectation value of the total Hamiltonian is not conserved.
Instead,

E = <]:]NG + VSN/2> (6)

is conserved, where Vs is the SN gravitational potential
term. As a result, we take E, which contains the factor
of 1/2 present in expressions of the classical many-body
gravitational energy, to be the average energy.

If the test mass is in an external harmonic potential,
Eq. (4) becomes
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where p is the center of mass momentum operator, and
Wem s the resonant frequency of the crystal’s motion in
the absence of gravity.

Eq. (7) predicts distinct dynamics from linear quantum
mechanics. Assuming a Gaussian initial state, Yang et
al. show that the signature of Eq. (7) appears in the

rotation frequency
Wq = \/ wgm + ng (8)

of the mechanical oscillator’s quantum uncertainty ellipse
in phase space. We illustrate this behavior in Fig. 1.

As a consequence, the dynamics implied by the nonlin-
earity in Eq. (4) are most distinct from the predictions of
standard quantum mechanics when wq — wem is as large
as possible. This is achieved by having a pendulum with
as small of an oscillation eigenfrequency as possible, and
made with a material with as high of a wgn as possi-
ble. The former condition leads us to propose the use
of low-frequency torsional pendulums. To meet the lat-
ter condition, we notice that wgn depends significantly
on Az,p, which can be inferred from the Debye-Waller
factor,

B = u?/8x? (9)

where u is the rms displacement of an atom from its equi-
librium position [23]. Specifically, thermal and intrinsic
u? 2 Az, + Axdy
with Ay, representing the uncertainty in the internal
motion of atoms due to thermal fluctuations.

In Table I, we present experimental data on some ma-
terials’ Debye-Waller factor, and conclude that the pen-
dulum should ideally be made with Tungsten (W), with
wd = 27 x 4.04mHz, or Osmium (the densest naturally
occurring element) with a theoretically predicted w$ of
21 x 5.49mHz. Other materials such as Platinum or Nio-
bium, with w&y = 27 x3.2mHz and wi¥ = 27 x 1.56 mHz
respectively, could be suitable candidates.

fluctuations contribute to u, i.e.
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FIG. 1:  Left Panel: according to standard quantum me-

chanics, both the vector ((Z),(p)) and the uncertainty el-
lipse of a Gaussian state for the center of mass of a macro-
scopic object rotate clockwise in phase space, at the same fre-
quency w = wcnm. Right panel: according to Eq.(7), ((z), (p))
still rotates at wem, but the uncertainty ellipse rotates at

Wq = \/Wem? + w2y > wem. (Figure taken from [1]).

B? WSN

Element (103 kﬁ;/m‘?’) (AQ) (10_2 5_1)
Silicon (Si) 2.33 0.1915 4.95
Iron (Fe) (BCC) 7.87 0.12 9.90
Germanium (Ge) 5.32 0.1341 10.39
Niobium (Nb) 8.57 0.1082 13.86
Platinum (Pt) 21.45 0.0677  28.43
Tungsten (W) 19.25 0.0478  35.92
Osmium* (Os) 22.59 0.0323 48.79

TABLE I: Characteristic Schroedinger-Newton angular fre-
quency wsn for several elemental crystals. Density is approx-
imated by values at room temperature, and the Debye-Waller
factor B (at 1K) is provided by Ref. [23]. *: Note that Os-
mium’s Debye-Waller factor is solely obtained from theoreti-
cal calculations.

B. State-dependent Heisenberg picture for
nonlinear quantum mechanics

In this section, we develop an effective Heisenberg pic-
ture for non-linear Hamiltonians similar to the Hamilto-
nian given by Eq.(7). We abandon the Schroedinger pic-
ture because the dynamics of a Gaussian optomechanical
system are usually examined in the Heisenberg picture
where the similarity to classical equations of motion is
most apparent.

We are interested in non-linear Schroedinger equations
of the form

L OIS (10)
) = OIZW), (1)

where the Hamiltonian H is a linear operator that de-
pends on a parameter ¢, which in turn depends on the
quantum state that is being evolved. Note that the
Schroedinger operator Z can depend explicitly on time,
¢ can have multiple components, and the Hilbert space



and canonical commutation relations are unaffected by
the nonlinearities.

1. State-dependent Heisenberg Picture

We now present the effective Heisenberg Picture. Let
us identify the Heisenberg and Schroedinger pictures at
the initial time t = to,

[Yu) = [¢(to)), pu(to) = Ps(to),

(12)
where |¢g) is the quantum state |[¢)) in the Heisen-
berg picture, and we have used the subscripts S and
H to explicitly indicate whether an operator is in the
Schroedinger or Heisenberg picture, respectively. As we
evolve (forward or backward) in time in the Heisenberg
Picture, we fix |1)5(to)), but evolve 2 (t) according to

Ep(to) = &s(to),

L ety = L [, ] + Zon,  (13)
C(t) = (Yu|Zu(B)lvn). (14)

A similar equation holds for py(t). We shall refer to
such equations as state-dependent Heisenberg equations
of motion. Moreover, the Heisenberg picture of an arbi-
trary operator in the Schroedinger picture

Os = [ (#s.Ps,1), (15)

including the Hamiltonian H(((t)), can be obtained from
Zy(t) and py(t) by:

O (t) = f (&g (t),pu (t),1). (16)

2. Proof of the State-Dependent Heisenberg Picture

The state-dependent Heisenberg picture is equivalent
to the Schroedinger picture, if at any given time

(WulOn()lyr) = (Ws()Os®)les(t). (A7)

Before we present the proof, we motivate the existence of
a Heisenberg picture with a simple argument. If we (mo-
mentarily) assume that the nonlinearity ¢ (¢) is known

and solved for, then the non-linear Hamiltonian H (¢ (t))
is mathematically equivalent to a linear Hamiltonian,

HY(C(1) = H(C (1), (18)

with a classical time-dependent drive ¢ (). Since there
exists a Heisenberg picture associated with HE (¢ (¢)),
there exists one for the nonlinear Hamiltonian H (¢ (t)).

We now remove the assumption that ¢ () is known
and consider linear Hamiltonians, H% (p (t)), driven by
general time-dependent classical drives A(t). To each

HL (X (1)) is associated a different unitary operator Uy (t)
and so a different Heisenberg picture

On (M t) =Ul (t) OsUx (1) . (19)

Next, we choose A(t) in such a way that

(r|On (N )lvm) = (s()|0s (1) s (2). (20)

is met. For the desired effective Heisenberg picture to be
self-consistent, A (f) must be obtained by solving

M) = (vulZu (W1 [ ) (21)

which, in general, is a non-linear equation in A. We will
explicitly prove that this choice of A(t) satisfies Eq. (20).
Note that we will present the proof in the case that the
boundary wavefunction is forward time evolved. The
proof for backwards time evolution is similar.

We begin the proof by showing that A and ( are equal
at t = to,

Ato) = (s (to) | Zslibs (t0) ) = € (to)

because the Schrodinger and state-dependent Heisenberg
pictures are, as indicated by Eq. (12), identified at the
initial time ¢t = ¢.

A and ¢ can deviate at later times if the increments 0; A
and 0;C are different. We use the nonlinear Schroedinger
equation to obtain the latter increment:

¢ (1)

Oy <1/)s (t) | Zs|vs (t)> (22)
w1 [AC0), 28] bos (1)) (28)

Note that the equation of motion for ¢ (t) is particularly
simple to solve in the case of the quadratic Hamiltonian
given by Eq. (4), because the non-linear part of H (¢ (t))
commutes with Z.

On the other hand, by Eq. (21),

oe) = 7 (vl [ V(0 2 O.0)] 1)

Making use of Eq. (19), and of

we obtain
oe) = 3 (03 (0) o | [P (A ). Z6] |0 () 0 )

Furthermore,

NGO H> evolves under

ihw = H (A (r)) ‘U/\ (t) ¢H> (25)

Notice the similarity with Eq. (10).
We have established that the differential equations gov-
erning the time evolution of A and ‘(A])\ (t) ¢H>a are of the

same form as those governing the time evolution of {(t)
and [¢g (t)). In addition, these equations have the same



initial conditions. Therefore, A(t) = ((t) for all times
t. Eq. (20) then easily follows because we’ve established

that H (¢ (t)) and

" ((ulZu A1) o))

are mathematically equivalent for all times .

C. Optomechanics without measurements

We propose to use laser light, enhanced by a Fabry-
Perot cavity, to monitor the motion of the test mass of a
torsional pendulum, as shown in Fig. 2. We assume the
light to be resonant with the cavity, and that the cavity
has a much larger linewidth than wq, the frequency of
motion we are interested in.

We will add the non-linear Schroedinger-Newton term
from Eq. (7) to the usual optomechanics Hamiltonian,
obtaining

q = ffomng%N@—w\ﬂwF, (26)

where E[OM is the standard optomechanics Hamiltonian
for our system [4]. We have ignored corrections due to
light’s gravity because we are operating in the Newto-
nian regime, where mass dominates the generation of the
gravitational field. H generates the following linearized
state dependent Heisenberg equations (with the dynam-
ics of the cavity field adiabatically eliminated, and the
"H” subscript omitted):

O = % (27)
Op = —Mw2, & — Mwin(2 — (P|2[9) + adr  (28)
by = iy (29)
by = s + %x (30)

where a1 2 are the perturbed incoming quadrature fields
around a large steady state, and similarly 51,2 are the per-
turbed outgoing field quadratures (refer to section 2 of
[4] for details). The quantity « characterizes the optome-
chanical coupling, and depends on the pumping power
Iy and the input-mirror power transmissivity 7T of the
Fabry-Perot cavity:

2 _ 8@ huwe 1

@ T 2T

(31)

Note that we have a linear system under nonlinear
quantum mechanics because the Heisenberg equations are
linear in the center of mass displacement and momentum
operators, and in the optical field quadratures, including
their expectation value on the system’s quantum state.
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FIG. 2: The proposed low-frequency optomechanical experi-
ment.

III. NONLINEAR QUANTUM
OPTOMECHANICS WITH CLASSICAL NOISE

To study realistic optomechanical systems, we must
incorporate thermal fluctuations. In linear quantum me-
chanics, we usually do so by describing the state of the
bath with a density operator. However, it is known that
the density matrix formalism cannot be used in non-
linear quantum mechanics [18].

Our dynamical system is linear and is driven with light
in a Gaussian state, so all system states are eventu-
ally Gaussian. Moreover, our system admits a state-
dependent Heisenberg picture. Consequently, we can
describe fluctuations with distribution functions of lin-
ear observables which are completely characterized by
their first and second moments. In nonlinear quantum
mechanics, the challenge will be to distinguish between
quantum uncertainty and the probability distribution of
classical forces. The conversion of quantum uncertainty
to probability distributions of measurement outcomes is
a subtle issue in nonlinear quantum mechanics, and will
be postponed until the next section.

Once we have chosen a model for the bath, we will have
to revisit the constraint, required for Eq. (7) to hold, that
the center of mass displacement fluctuations are much
smaller than Az,,. Thermal fluctuations increase the
uncertainty in the center of mass motion to the point
that in realistic experiments, the total displacement of
the test mass will be much larger than Az,,. Nonethe-
less, after separating classical and quantum uncertainties,
we will show that Eq. (7) remains valid, as long as the
quantum (and not total) uncertainty of the test mass is
much smaller than Az,;.

Finally, we ignore the gravitational interactions in the
thermal bath, as they are expected to be negligible.



A. Abandoning the density matrix formalism in
nonlinear quantum mechanics

In standard quantum mechanics, we use the density
matrix formalism when a system is entangled with an-
other system and/or when we lack information about a
system’s state. The density matrix completely describes
a system’s quantum state. If two different ensembles
of pure states, say {|¢;)} and {|¢;)} with correspond-
ing probability distributions py, and pg,, have the same
density matrix

> pu
7

then they cannot be distinguished by measurements.
Furthermore, when either ensemble is time-evolved, they
will keep having the same density matrix. However, this
statement is no longer true in non-linear quantum me-
chanics because the superposition principle is no longer
valid.

Let us give an example of how our nonlinear
Schroedinger equation, given by Eq. (7), implies the
breakdown of the density matrix formalism. Suppose Al-
ice and Bob share a collection of entangled states, |®),
between Bob’s test mass’ center of mass degree of free-
dom and Alice’s spin 1/2 particle, with |®) given by

i) (i| = szb,; ®i) (il » (32)

%) = 5 (1) ) + ) [0=r)
= S5 (=) + 1) )
where
-y = 2 (33
oy = Do (34)

V2

and [¢1,) are localized states around xz and —x:

_ 1 ox (T’
|¢ix>—m/ p( 52 >|y>dy. (35)

We choose 0 < z so that (¢,]¥_,) ~ 0. Moreover,

l£) = —= ([¢e) £ [¢-2))- (36)

1
V2
Next, suppose that Alice measures her spins along the
{I1),4)} basis, then Bob will be left with the following
mixture of states:

[l
* {lw_a

On the other hand, if Alice measured her spins along
{|—), |+ )} basis, then Bob will be left with the mixture

- {|+>
-)

with probability 1/2

. N (37)
with probability 1/2.

with probability 1/2

: o (38)
with probability 1/2.

e

FIG. 3: Two ways of forming the same Gaussian density ma-
trix. In the left panel, we have an ensemble of coherent states
parameterized by a complex amplitude «, which is Gaussian
distributed. The red circle depicts the noise ellipse, in phase
space, of one such state. The green ellipse depicts the to-
tal noise ellipse of the density matrix. In the right panel,
we have an ensemble of squeezed states with amplitudes e,
which achieves the same density matrix with a fixed squeeze
amplitude and a uniform distribution of squeeze angles.

In standard quantum mechanics, both mixtures would be
described with the density matrix

p= gl + 3 el (9)
= S5 ) . (40)

However, under the Schroedinger-Newton theory, it is
wrong to use p because under time evolution both mix-
tures will evolve differently. Indeed, under time evolution
driven by Eq. (7) (which has a nonlinearity of (Z)) over an
infinitesimal period dt, x and k no longer remain equiv-
alent because (£|Z|£) = 0, and so & is unaffected by the
nonlinearity.

For this reason, we will have to fall back to providing
probability distributions for the bath’s quantum state.
For a Gaussian state, there are many ways of doing so,
as is for example shown in Fig. 3. Since this distribution
likely has a large classical component (as we argue for in
the next section), we will approach the issue of thermal
fluctuations by separating out contributions to thermal
noise from classical and quantum uncertainty.

B. Quantum versus classical uncertainty
1. Standard Quantum Statistical Mechanics

Let us consider a damped harmonic oscillator in stan-
dard quantum mechanics, which satisfies an equation of
motion of

M (& + ym — wi) = Fun (1), (41)

where 7, is the oscillator’s damping rate and Fi, (t)
a fluctuating thermal force. We have assumed wiscous
damping. Other forms of damping, such as structural



damping, where the retarding friction force is propor-
tional to displacement instead of velocity [24], would re-
duce the classical thermal noise (which will be precisely
defined later in this section) at wq, making the experi-
ment easier to perform.

At a temperature Ty > hwem/kp, which accurately
describes our proposed setup with a test resonant fre-
quency under a Hz, the thermal force mainly consists of
classical fluctuations. We obtain Fiy, (¢)’s spectrum from
the fluctuation-dissipation theorem,

1 1
Sp () = 2R lﬂ +5

eksTo —1

Im[G.(2)]

e - Y

where G.(2) is the response function of Z to the driving
force Fiy, (1),

1

CO=3re @iy W
and Sp 1 () is defined by
(Fon () FL(Q))sym = Sp, 5, (276(Q— Q) (44)
with
- AB + BA
<AB>sym = < 5 > (45)

Note that we have chosen a “double-sided convention”
for calculating spectra.

The fact that the motion of the test mass is damped
due to its interaction with the heat bath also requires that
the thermal force has a (usually small but nevertheless
conceptually crucial) quantum component,

[Fun(t), B ()] £ 0. (46)

which compensates for the decay of the oscillator’s canon-
ical commutation relations due to adding damping in
its equations of motion (refer to section 5.5 of [25] for
details). Note that the second term in the bracket in
Eq. (42) provides the zero-point fluctuations of the oscil-
lator as T' — 0.

2. Quantum Uncertainty

Let the bath be in some quantum state |® ) over which
we will take expectation values. The thermal force oper-
ator acting on the system can then be conveniently de-
composed into

Fth (t) = fa (t) + pr (t) (47)
where we define

fa(t)=(Fn (). fop(t)=Fn (t) — (Fin (£)). (48)

We use the subscripts “cl” and “zp” because fq (t) is

a complex number, while fzp (t) will be later chosen to
drive the “zero-point” quantum fluctuation of the mass.

For any operator A, we shall refer to (A) as the quan-
tum expectation value and

VIA] = (4%) — (4)° (49)

as its quantum uncertainty. We also define the quantum
covariance by

Cov[A, B] = (AB)gym — (A)(B) (50)

Suppose |® ) is a Gaussian quantum state, an assump-
tion satisfied by harmonic heat-baths under general con-
ditions [26], then |®p) is completely quantified by the
following moments: the means

a®) =falt), (Fw@)=0, (1)
the covariances that include f (t)
Cov [fa (£), fa (¢)] = Cov [fa (1), fun ()] =0, (52)
and those that don’t
Cov [Fuy (1), Fun (#)] = Cov | fp (1) fop (#)]
(un (8) fup () # 0.

8. Classical Uncertainty

The state |®p) is drawn from an ensemble with a prob-
ability distribution p(|]®g)). For each member of the
ensemble, we will have a different quantum expectation
fa (t), and a different two-time quantum covariance for
fzp (t). We shall call the variations in these quantities
classical fluctuations, because they are due to our lack of
knowledge about a system’s wavefunction.

The total covariance of the thermal force, using our
terminology, is given by:

<Fth () Fn(t') + P () Fn (1) >

2

:<fZP(t)f2p (t/»sym + fcl(t)fcl(tl) ) (53)

where () denotes taking an ensemble average over dif-
ferent realizations of the thermal bath. Eq. (53) is the
total thermal noise we obtain, and in standard quantum
mechanics there is no way to separately measure quan-
tum and classical uncertainties.

4. Proposed model

We shall assume that fzp’s two-time quantum covari-
ance, fzp(t) fzp(t' ))sym, provides the zero-point fluctua-
tions in the position of the test mass, and that its ensem-
ble average is zero (i.e. the uncertainty in f,, (£) comes



solely from quantum mechanics). This results in fzp (t)
having a total spectrum of:

Im[G. ()]
qu _ c _
St fon (w)y="h G )P = hwM~y, . (54)

Moreover, we shall assume that f.’s two-time ensem-
ble covariance, f.(t)fa(t'), provides the fluctuations pre-
dicted by classical statistical mechanics. This results in
feo1 having a total spectrum of

20 TnGe(9)

Sy, () =
= S TGP

~ 2kgTM~y, . (55)

C. Validity of the quadratic SN equation

In general, the center of mass wavefunction |¢) follows
the SN equation

ih% = e + V] ), (56)

where the gravitational potential V can be approximately
calculated by taking an expectation value of Eq. (8) in
[1] with respect to the internal degrees of freedom’s wave-

function:
V= / (& —

with £ the “self energy” between a shifted version of the
object and itself at the original position. We calculate &£

to be
1 1 orf x
— —er
Az,, = 2Az,,

x? x?

12A22,  160Azl, N >

|2)[* dz (57)

£(x) = GMm<

GMm
ol (s

As a result, V is in general difficult to evaluate because
it depends on an infinite number of expectation values.
When the center of mass spread

M= (GO - 69

is much less than Az,,, £ can be approximated to
quadratic order in z, leading to the simple quadratic
Hamiltonian presented in Eq. (4) [1]. In this section,
we show that classical thermal noise does not affect the
condition Azem <K Axyp.

We include classical thermal noise in our analysis
through the following interaction term:

Va (t) = —fa (t) . (59)

We will show that Az, does not depend on f (t), even
when we use the full expression for V.

We first momentarily ignore f/7 and show that under
the non-gravitational Hamiltonian, Hxg, AZcy is unaf-
fected by fc1 (t). Since Hng is quadratic, then the time-
evolved position operator under ]EIN(;, £ is of linear

form
/ G (

O () = 3 (es ()i i ¢
—|—/r(t,z) a1 (2) dz+/s(t, z)az (2)dz, (60)

z) fa (2) dz

where ¢; and k; are canonically conjugate operators of
discrete degrees of freedom such as the center of mass
mode of the test mass, G, (t) is the inverse Fourier trans-
form of the response function defined by Eq. (43), and
r(t) and s(t) are c-number functions. As a result, the
variance of #(9) is unaffected by f. (t).

The full time-evolved position operator (in the state-
dependent Heisenberg picture introduced in section I1.B),
can be expressed in terms of £(9) in the following way:

By (1) = UL (6) 2O (6)Ur (1), (61)
where U; is the (state-dependent) interaction picture
time-evolution operator associated with

Vi(t) = Ul (OV (1) Una (t). (62)
Specifically, U; is defined by
U = UncUi, (63)

where Ung is the time-evolution operator associated with
Hyne. We will show that Vi and U; are independent of
fa (8). A

We begin the proof, of V; independent of f (¢), by
conveniently rewriting |(1|z)|* in Eq. (57) as the expec-
tation value of an operator. We do so by expressing the
projection |z) (z| as a delta function:

V:/S@—

We then express £ and § (& — z) in the Fourier domain:

I — z))dz. (64)

V / F (1) emU@=2) <e*i"~‘<H>>dk didz,  (65)

where F is the Fourier transform of £. Finally, we per-
form the integral over z, obtaining

7 / F (k) e i*% (%) k. (66)

In the interaction picture,
/]_- —zkm(o) t)< | zka(t)|\I, >
o /]—"(k)e*iki( HORY

<\110 ‘ U} ()et*s O, (1) ]\p0> dk, (67)



where |Ug) is the initial wavefunction of the entire sys-
tem. Notice that the linear dependence of #(©) on f (t)
cancels out in Eq. (67). However, V; could still depend

on fq (t) through U;. We will show that this is not the
case.

The operator
Vi(0)=V (68)
and the ket
Ur (0)[Wo) = [Wo) (69)

do not depend on fg (¢) at the initial time ¢ = 0. At
later times, f.(¢t) can only appear through the incre-
ments dV;/dt or dU; |We) /dt. The latter is given by

L d o
Zh@Ul |Wo) = ViU [Wy) , (70)

while

dVI /dk}" ( 7iki(0),ﬁNc.] X
U}‘ <eik:?:(°)>0 0, + o—ika® o
<I_’7} [em(m’ﬁNG + V[} Ul>0>, (71)

where the expectation values ( ), are taken over |Wy).
In both terms in the sum, the dependence of (%) on f,; (¢)
cancels out, and so f. (t) does not explicitly appear in
the system of differential equations (70) and (71). fa (%)
does not also appear in the initial conditions (69) and
(71). Consequently, both V; and U; are independent, of
f cl (t)

We then use Eq. (61) to establish that the center of
mass position operator is independent of fg (t). As a
result, the exact expression for Az.y, is also indepen-
dent of fu(t). If Azem < Az,p holds in the absence
of classical thermal noise, it also holds in the presence
of it. We will have to check this assumption in order
for the linear Heisenberg equation to hold. Otherwise, if
Azcm becomes larger than Ax,p, the effect of V' becomes
weaker, because V becomes shallower than the quadratic
potential

1
§MW§N (@ -
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(2))".

D. Heisenberg equations of motion with thermal
noise included

The dynamics of our proposed model for an open op-
tomechanical system are summarized by the following

state-dependent Heisenberg equations:

dz

P

i 72
dt M (72)
dp N 2 (A A
dt - chmx TmP — MWSN(‘T - <$>)

+Of&1 + fcl + fzp (73)
by =i, (74)
by =ap + — 4, (75)

h

where the spectra of fzp (w) and fq (w) are given by Egs.
(54) and (55), respectively.

We solve Egs. (72)—(75) by working in the frequency
domain, and obtain at each frequency w,

- aG()

b (@) = Aw) + 2 @)+ (Bw).  (76)

We separately discuss the three terms. The operator
A (w) is the linear quantum contribution to bs:

w R ~
T aa+ o @)] o (77)
where as (w) represents shot noise,

. 1
Gow) =57 CERpE—" (78)

is the quantum response function of the damped torsional
pendulum’s center of mass position, & (w), to the ther-
mal force, and ada; and fzp are the quantum radiation-
pressure force and the quantum piece of the thermal force
acting on the test mass, respectively.

The second term in Eq. (76) represents classical ther-
mal noise, with G, (w) defined in Eq. (43). Note that the
classical and quantum resonant frequencies in G.(w) and
G4 (w), respectively, differ from each other.

The third term in Eq. (76), (B(w)), represents the non-
linear contribution to by (w)

B (w) cuAi;1 (w)

0@ (@) + fop @), (79)
where we defined
AG (w) =G (w) — Gg (w) . (80)

In the next section, we discuss the subtle issue of how to
convert the wavefunction average (...) to the statistics of
measurement outcomes.

IV. MEASUREMENTS IN NONLINEAR
QUANTUM OPTOMECHANICS

With the assumption of classical gravity, we will have
to revisit the wavefunction collapse postulate, because



a sudden projective measurement of the outgoing opti-
cal field induces a change in the quantum state of any
of its entangled partners, including possibly the macro-
scopic pendulum’s state. As a result, we might obtain an
unphysical change in the Einstein tensor which violates
the Bianchi identity. Moreover, since the Schroedinger-
Newton equation is nonlinear, we will show that we have
to address an additional conceptual challenge: there is no
unique way of extending Born’s rule to nonlinear quan-
tum mechanics.

In this section, we propose two phenomenological
prescriptions, which we term pre-selection and post-
selection, for determining the statistics of an experiment
within the framework of classical gravity.

A. Revisiting Born’s rule in linear quantum
mechanics

We will use the wavefunction collapse postulate as a
guide. The postulate is mathematically well defined, but
can be interpreted in two equivalent ways, which become
inequivalent in nonlinear quantum mechanics.

The first interpretation is widely used, and describes a
quantum measurement experiment in the following way:
a preparation device initializes a system’s quantum state
to |i), which evolves for some period of time under a

unitary operator, U, to
i) — Uld). (81)

The system then interacts with a measurement device,
which collapses the system’s state into an eigenstate, | f),
of the observable associated with that device. The prob-
ability of the collapse onto |f) is

pirs = {101, (82)

We will refer to this expression of Born’s rule as pre-
selection.

Second, the unitarity of quantum mechanics allows us
to rewrite Eq. (82) to

pimss = (AU )]? = picy-. (83)

Interpreting this expression from right to left, as we did
for Eq. (82), we can form an alternate, although unfamil-
iar, narrative: |f) evolves backwards in time to UT|f),
and is then projected by the preparation device to the
state |i), as is illustrated in Fig. 4. We will refer to
the formulation of Born’s rule based on p;; as post-
selection.

B. Pre-selection and post-selection in non-linear
quantum mechanics

In non-linear quantum mechanics, the Hamiltonian,
and so the time evolution operator, depends on the quan-
tum state of the system. As a result, the pre-selection

10

-

|’L> Deterministic
evolution

Projected to | f)

’i

Projected to |7)

Deterministic (backwards) |f>
evolution

FIG. 4: The two prescriptions, pre-selection (top) and post-
selection (bottom), that can be used to calculate measure-
ment probabilities. Both prescriptions are equivalent in linear
quantum mechanics, but become different under non-linear
quantum mechanics.

version of Born’s rule, Eq. (82), has to be revised to

Pisss = | (10w l0) | (84)

where Um is the (non-linear) time evolution operator

which evolves i) forward in time to Uli> |4).
Furthermore, the post-selection version of Born’s rule,
Eq. (83), is modified to

pic g o G070, (85)

where U‘Jrf) is the (non-linear) time evolution operator

which evolves |f) backwards in time to UITf> |f). The
evolution can still be interpreted as running backwards in
time, because the non-linear Hamiltonians we are work-
ing with, such as in Eq. (7), are Hermitian. Moreover,
the proportionality sign follows from

ij |Gl 1))

being not, in general, normalized to unity.

Notice that p;y and py.; are in general different.
Consequently, in non-linear quantum mechanics, we can
no longer equate the pre-selection and post-selection pre-
scriptions, and we will have to consider both separately.

C. Pre-selection and post-selection in non-linear
quantum optomechanics

In our proposed optomechanical setup, the state |é)
is a separable state consisting of the initial state of the
test object, and a coherent state of the incoming optical
field, which has been displaced to vacuum, |0);, by the
transformation G 2 — 01,2+ (G1,2). In the pre-selection
measurement prescription, as we reach steady state, the
test-mass’ initial state becomes irrelevant, and the sys-
tem’s state is fully determined by the incoming optical
state.



The set of possible states |f) are eigenstates of the field
quadrature bs(t), which can be labeled by a time series

[€)out = [{&(t) : —o0 < t < 4+00})out- (86)

Similarly to what we discussed for pre-selection, as we
reach steady state, the test-mass’ initial state becomes
irrelevant. This statement can easily be demonstrated
if piy is recast in a form, ¢f. Eq. (90), where the test
mass’ state is forward-time evolved and so is driven by
light, and undergoes thermal dissipation.

Since |£)out labels a collection of Gaussian quantum
states, the distribution of the measurement results £(t)
will be that of a Gaussian random process, characterized
by the first and second moments. In standard quantum
mechanics, they are given by the mean (by(t)) and the
correlation function

(b2 (Db (t'))symm — (b2(1)) b2 (1))
In nonlinear quantum mechanics, the situation is sub-
tle because <32 (t)> could depend on the measurement

results £(t).

To determine the expression for the second moment,
we will explicitly calculate p;—,; and p;. . Since our
proposed setup eventually reaches a steady state, we can
simplify our analysis by working in the Fourier domain,
where fluctuations at different frequencies are indepen-
dent. Note that we first ignore the classical force fq (t).
We will incorporate it back into our analysis at the end
of this section.

The probability of measuring £ in the pre-selection
measurement prescription,

O>in ‘2 (87)

Pi—f = Po—¢ = |out <E‘U\O)m

is characterized by the spectrum of the Heisenberg Op-
erator of by in the following way:

1 / A9 E(2) — (ba()o?

X € ——=
Po—¢ Xp[ 2 2 SA,A

] o (88)

where (b2(£2))0 is the quantum expectation value of the
Heisenberg operator Z;Q(w), calculated using the state-
dependent Heisenberg equations associated with an ini-
tial boundary condition of |0)i,, and Sa, 4 is the spectral
density of the linear part of by(Q2), A, evaluated over vac-
uum:

2184, 4(w)o (w —w/) = <O‘fl(w) Af (w,)‘0>

Note that the derivation of Eq. (88) is presented in Ap-
pendix B. In the same Appendix, we also show that in
the limit of wgny — 0, po—¢ recovers the predictions of
standard quantum mechanics.

In post-section, the probability of obtaining a particu-
lar measurement record is given by

sym

~ 2
Di—f = DPo—¢ = <O‘U‘T§)O |£>0ut y (89)

ut
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which can be written as

N 2
0ut<§|U‘f>out|0>’ (90)

Po¢ =

where U‘ €)ous 18 the time-evolution operator specified by
the end-state |€)ous. In Appendix B, we show that po.¢
is given by

1 /CKZIS(Q)—<32(Q)>£|2 . (on)

Poeg X €Xp [—2 o San

where (by(Q))¢ is the quantum expectation value of
by (©2)’s Heisenberg operator, obtained with the state-
dependent Heisenberg equations associated with the final
state |£), but evaluated on the incoming vacuum state |0)
for &1’2.

Note that because (b2(£2))s depends on &, the probabil-
ity density given by Eq. (91) is modified. We extract the
inverse of the new coefficient of |£2(Q2)| as the new spec-
trum. We will follow this procedure in section §V C. The
normalization of pp.¢ is taken care of by the Gaussian
function.

Finally, we incorporate classical noise by taking an en-
semble average over different realizations of the classical
thermal force, f. (w). For instance, the total probability
for measuring & in pre-selection is

Po—¢ = /Dx p(fa(w) =2 (W) X poce@w), (92)

where p (fo (w) = z (w)) is the probability that f. at fre-
quency w is equal to z(w), and &(z(w)) is the measured
eigenvalue of the observable by given that the classical
thermal force is given by z. The above integral can be
written as a convolution and so is mathematically equiva-
lent to the addition of Gaussian random variables. Thus,
assuming independent classical and quantum uncertain-
ties, the total noise spectrum is given by adding the ther-
mal noise spectrum to the quantum uncertainty spectrum
calculated by ignoring thermal noise.

V. SIGNATURES OF CLASSICAL GRAVITY

With a model of the bath and the pre- and post-
selection prescriptions at hand, we proceed to determine
how the predictions of the Schroedinger Newton theory
for the spectrum of phase fluctuations of the outgoing
light differ from those of standard quantum mechanics.
We expect the signatures to be around w,, the frequency
where the Schroedinger Newton dynamics appear at, as
was discussed in section §IT and in [1].

A. Baseline: standard quantum mechanics

We calculate the spectrum of phase fluctuations pre-
dicted by standard quantum mechanics, Sé?x) (w), by



setting wgn to 0 in Eq. (76). Making use of

Sal,al = Sa2,a2 = 1/2 Sa1,az =0 (93)

for vacuum fluctuations of a; and as, we obtain

4
QM 1 «
Szgg,bz) (w) = 3 + 575} |

2
2 | O o

Ge @) + 5585, @), (94)

where the first and second terms on the RHS represent

shot noise and quantum radiation pressure noise respec-

tively, and

Sty (w) = 2kBToIm(GwA, (95)

is the noise spectrum of the center of mass position, &(w),
due to the classical thermal force, fo (w).

We are interested in comparing standard quantum me-
chanics to the SN theory, which has signatures around wy.
Therefore, we would need to evaluate SIS?IZ:/QI) (w) around

wq. The first two terms in Eq. (94) can be easily evalu-
ated at w = wq, and in the limit of wem < wsn,

o? 1 2
8, (wrwy) = BT (96)

where we have defined two dimensionless quantities,

_ o? 2 krTh 772nw§
f=—-—, = 2 oI T (97)
M hrymwq hewq TmWg + Wan

3 characterizes the measurement strength (as o? is pro-
portional to the input power), and T' characterizes the
strength of thermal fluctuations. If @ > 1, we can sim-
plify I'? to

(98)

B. Signature of preselection

In pre-selection, we evaluate the nonlinearity in
Eq. (76), <B (w)>, over the incoming field’s vacuum

state, |0)in:

(0[Bw)o) =o.

n mn

Consequently, we can directly use Eq. (88) to establish
that under the pre-selection measurement prescription,
the noise spectrum of ?)2 is S4 4. Taking an ensemble
average over the classical force f.; adds classical noise to
the total spectrum:

(pre) o?
S @) = Saalw)+ 58 @), (99)
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Making use of Eq. (93), we obtain

1
SA’A (w) = §+SRQ (w) (100)
0[4 2
Sna (@) = 551Gy @)+
a? |Gy (w)]? "
Colel g @), (o

The first term in Sa4 4, 1/2, is the shot noise background
level, and Sgrq (w) is the noise from quantum radiation
pressure forces and quantum thermal forces. Moreover,
S’}ltuh’fm (w), given by Eq. (54), is the noise spectrum
fyom vacuum fluctuations of the quantum thermal force
fop (W).

Around wq, in the narrowband limit v, < wq, the
quantum back action noise dominates and so

N 1
Séffg (w) ~ <2 + BI‘2> x

B(B+2) 1
(/2450 | (0w

47,
As a result, the signature of classical gravity under

the pre-selection prescription can be summarized as a
Lorentzian

1
+2

(102)

with a height and a full width at half maximum (FWHM)
given by

L B(B+2)
" 2 (/24617

respectively. We plot the pre-selection spectrum around
wq in Fig. 5.

(103)

pre — Tm

Limits on the measurement strength

Our results are valid only if the Schroedinger Newton
potential can be approximated as a quadratic potential,
which is necessary for linearizing the state-dependent
Heisenberg equations, as we described in Sec. II1C.

Specifically, we must ensure that the spread of the cen-
ter of mass wavefunction excluding contributions from
classical noise is significantly less than Az, which is on
the order of 107 — 10~!2 m for most materials (as can
be determined from the discussion in section ITA and
Ref. [23]). We calculate Az, at steady state to be

(#%) = (2)° = o® /:o |G (w)] B + Sfaz(w)] ;L:‘:

_B+2 h

2 2Mw,’

(104)



where the expectation value is carried over vacuum of the
input field, |0)i.

C. Signature of post-selection

In post-selection, we evaluate the nonlinearity in
Eq. (76), <E(w)>, over the collection of eigenstates mea-

sured by the detector, |£)ou. To determine

(Be), =, (elBee),,,

we will make use of the fact that |€)oys is also an eigen-
state of A (w) with an eigenvalue we call

(105)

1) =€)~ (BW)), (106)

The equality follows from Eq. (76) with classical thermal
noise ignored, which we will incorporate at the end of the

calculation. Notice that if we express <B(w)> in terms
£

of n (w), we can also express it in terms of £ (w).
Our strategy will be to project B (t) onto the space
spanned by the operators A (z) for all times z:

A T A A
B(t):/_ K(t—2)A()d:+R(t),  (107)

where R (t) is the error operator in the projection. As a
result,

<B(t)>£ :/LK(t—z)n(z) dz+<1:2(t)>£, (108)

where we made use of the definition of 7(¢). In Appendix
C, we show that if we choose K(t) in such a way that
R(t) and A(z) are uncorrelated for all times ¢ and z,

<O‘R(t)fl(z)‘0> +in<0‘fl(z)]:2(t)’0>_ —0 (109)

in in in

then <1f%(t)>5 =0.

In the long measurement time limit, 7' >> 1, we make
use of Eq. (107) to express R(t) in terms of B(t) and A(2)
and then Fourier transform Eq. (109) to solve for K (w).
We obtain

_ SB,A (w)

K(w)= Saa (@)

(110)

Making use of Eq. (106), we express <B (w)>£ in terms
of £(w), '

(111)
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which we then substitute into Eq. (91) to establish
that post-selection’s spectrum (without classical thermal
noise) is given by

1+ K (w)]>Saa(w).

We finally add the contribution of classical thermal
noise to by’s spectrum, and obtain

2
S () = |14 K (@) Saa () + 385, (). (112)

Around wq, we apply a narrowband approximation on
|G, (w)]?, and obtain

SZES,CI);Z“) (W= wy) ~ (; + 6F2> (14D (w)), (113)

where

B(B+2) 7
2(1/24 812) ((8+ 1% 12 +4 (0 —wq)?)

D(w)=-

is a Lorentzian. By comparing Séf(zzt) (w) with Sé?gg) (w),
given by Eq. (94), we conclude that 1+ D (w) is the signa-
ture of post-selection. We summarize it in the following
way:

dOS
14+ D(w)=1- post (114)

(w—wq)

A2

post

144

with the depth of the dip, and its FWHM given by

B(B+2)
(1/2+ BT2) (B+1)*’

Apost = (ﬁ + 1) Ym

(115)
respectively. A summary of the post-selection spectrum
around wy is depicted in Fig. 5.

dpost = 9

VI. FEASIBILITY ANALYSIS

In this section, we determine the feasibility of testing
the Schroedinger-Newton theory with state of the art op-
tomechanics setups. We will evaluate how long a particu-
lar setup would need to run for before it can differentiate
between the flat noise background predicted by standard
quantum mechanics around wq:

SIOD (w mwq) = 1/2 + BT2, (116)
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FIG. 5: A depiction of the predicted signatures of semi-
classical gravity. The pre-selection measurement prescrip-
tion’s signature is a narrow and tall Lorentzian peak, while
the post-selection measurement prescription’s signature is a
shallow but wide Lorentzian dip. Both prescriptions predict
a Lorentzian peak of thermal noise at wem. Note that the
figure is not to scale and throughout this article, we follow
the convention of 2-sided spectra.

and the signatures of the pre- and post- measurement
prescriptions,

re 1 hor
SIES,bQ) CEIE (2 + ﬁl‘2> L+ ((jiw )2
Aplre
(post) ~ ~ 1 2 dpost
baba (05 Wa) & <2+5F> 171+44(W—wq)2
AE)ost

with hpre and Apye defined by Eq. (103), and dpest and
Apost defined by Eq. (115).

Note that our analysis holds when the classical thermal
noise peak is well resolved from the SN signatures at wy.
Specifically, we require that wq — wem be much larger
than ~,,. For torsion pendulums, this is not a difficult
constraint, as wgy is on the order of 0.1 s~! for many
materials, as is shown in Table I.

A. Likelihood ratio test

We will perform our statistical analysis with the likeli-
hood ratio test. Specifically, we will construct an estima-
tor, Y, which expresses how likely the data collected dur-
ing an experiment for a period 7 is explained by standard
quantum mechanics or the Schroedinger-Newton theory.

The estimator Y is given by the logarithm of the ratio
of the likelihood functions associated with each theory:

. p(DIQM)
Y= DN

where p (D|QM) is the likelihood for measuring the data

D={t):0<t<T}
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conditioned on standard quantum mechanics being cor-
rect, and p (D|SN) is the probability of measuring the
data conditioned on the Schroedinger-Newton theory,
under the pre-selection or post-selection measurement
prescription, being true. Note that we will compare
the predictions of standard quantum mechanics with the
Schroedinger Newton theory under each prescription sep-
arately. All likelihood probabilities are normal distribu-
tions characterized by correlation functions which are in-
verse Fourier transforms of the spectra presented at the
beginning of this section.

We can form a decision criterion based on Y. If YV
exceeds a given threshold, y;1,, we conclude that gravity
is not fundamentally classical. If Y is below the nega-
tive of that threshold, we conclude that the data can be
explained with the Schroedinger Newton theory. Other-
wise, no decision is made.

With this strategy, we can numerically estimate how
long the experiment would need to last for before a de-
cision can be confidently made. We call this period Tmin
and define it to be the shortest measurement time such
that there exists a threshold y;, which produces probabil-
ities of making an incorrect decision, and of not making
a decision that are both below a desired confidence level

p-

B. Numerical simulations and results

We determined in the last section that the signatures of
pre-selection and post-selection are both Lorentzians. By
appropriately processing the measurement data, £(t), the
task of ruling out or validating the Schroedinger Newton
theory can be reduced to determining whether fluctua-
tions of data collected over a certain period of time is
consistent with a flat or a Lorentzian spectrum centered
around 0 frequency:

h(—d
Sh(d) (w) =1+ 1-1—51(«02;’}/2 or
where v is the full width at half maximum, Sj,4) corre-
sponds to a Lorentzian peak (dip) with height h (depth
d) on top of white noise.

The data can be processed by filtering out irrele-
vant features except for the signatures of post- and pre-
selection around wq, and then shifting the spectrum:

Sw)=1, (117)

wqto
Eny=cat [T e@etan

wq—0o

(118)

where £(Q) is the Fourier transform of £(t), and o has
to be larger than the signatures’ width but smaller than
the separation between the classical thermal noise fea-
ture at wem and the signatures at wy. Two independent
real quadratures can then be constructed out of linear
combinations of £(t):

: ) +& (1) :



We will carry out an analysis of the measurement time
with &.(¢) in mind.

We numerically generated data whose fluctuations are
described by white noise, or lorentzians of different
heights and depths. For example, in Fig. 6, we show the
distribution of Y for two sets of 10° simulations of £.(t)
over a period of 200/~ (with 7 set to 1). In one set, &(t)
is chosen to have a spectrum of Sy with d = 0.62, and in
the second set, £.(t) has a spectrum of 1. The resultant
distribution for both sets is a generalized chi-squared dis-
tribution which seems approximately Gaussian. Fig. 6 is
also an example of our likelihood ratio test: if the col-
lected measurement data’s estimator satisfies Y < —yqy,
for ygn = 2, we decide that its noise power spectrum is
Sq, if Y > yin, white noise and if —yp, <Y < g, nO
decision is made. In table II, we show the associated
probabilities of these different outcomes. Note that the
choice of yyy, is important, and would drastically vary the
probabilities in this table.

We then determined the shortest measurement time,
Tmin, Needed to distinguish between a lotentzian spec-
trum and white noise, such that the probability of mak-
ing a wrong decision and of not making a decision are
both below a confidence level, p, of 10%. Our analysis is
shown in Fig. 7. Since £.(t) and &s(t) are independent, we
halved Tiin, as an identical analysis to the one performed
on &.(t) can also be conducted on &(t).

As shown in Fig. 7(a), numerical simulations of the
minimum measurement time needed to decide between
white noise and a spectrum of the form .Sy, are well fitted
by

27 1
Tmin (R) = 7,073 X 77/2’

(120)
where 1/(y/2) is the Lorentzian signature’s associated co-
herence time. The fit breaks down for heights less than
about 10. However, as we show in the next section, cur-
rent experiments can easily access the regime of large
peak heights.

In Fig. 7(b), we show that numerical simulations of the
minimum measurement time needed to decide between
white noise and a spectrum of the form Sy, are well fitted
by

183 10.7 1
) (121)

Tmin(d) ~ < 42 - d X 77/2

This fit is accurate, except when d is close to 1. In the
next section, we show that this parameter regime is of no
interest to us.

Moreover, we ran simulations for higher confidence lev-
els p (in %). We show our numerical results for pre-
selection in Fig. 8. For h between 1000 and 4000, a
decrease in p from 10% to 1% results in a 4.5-5.5 fold
increase in Tyin. Our results for post-selection are pre-
sented in Fig. 9. For d = 0.62 (which, as we show in the
next section, is the normalized depth level at which most
low thermal noise experiments will operate at), then 7
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Simulations of Y assuming a
spectrum of Sy

Simulations of Y assuming a
white noise spectrum
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FIG. 6: A histogram showing the distribution of two sets of
10° realizations of £.(t) over a period of 200/~ (with v set to
1), and a time discretization of dt = 0.14/~. In one set, £.(t)
is chosen to have a spectrum of S; with d = 0.62, and in the
second set, &.(t) has a spectrum of 1. yn, which is chosen to
be 2 in this example, allows us to construct a decision crite-
rion: if the collected measurement data’s estimator satisfies
Y < —ysn, we decide that its noise power spectrum is Sq, if
Y > yin, white noise and if —yyn, < Y < yin, no decision is
made.

P (correct) | P (wrong) | P (indecision)
78.7% 1.1% 20.2%

Data has S4 spectrum
Data has S =1
spectrum

80.2% 2.1% 17.7%

TABLE II: The probabilities of the different outcomes of
the likelihood ratio test on a particular measurement data
stream with an estimator following either of the two distri-
butions shown in Fig. 6. The three possible outcomes are
(1) deciding that the data has a spectrum of Sg, (2) deciding
that it has a white noise spectrum (S = 1) or (3) 