
 1 

Structure of the archaellar motor and associated cytoplasmic cone in 1 

Thermococcus kodakaraensis 2 

 3 

Ariane Briegel1,2, Catherine M. Oikonomou1, Yi-Wei Chang1, Andreas Kjær1,3, Audrey N. 4 

Huang1, Ki Woo Kim4, Debnath Ghosal1, Robert P. Gunsalus5, and Grant J. Jensen1,6,* 5 

 6 

 7 

 8 

1 Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. 9 

California Blvd., Pasadena, CA 91125 10 

2 Current:  Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands 11 

3 Current address:  University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark  12 

4 School of Ecology and Environmental System, Kyungpook National University, Sangju 37224, 13 

South Korea 14 

5 Department of Microbiology, Immunology and Molecular Genetics, the Molecular Biology 15 

Institute, University of California, Los Angeles, 609 Charles E. Young Dr. S., Los Angeles, CA 16 

90095 17 

6 Howard Hughes Medical Institute, 1200 E. California Blvd., Pasadena, CA 91125 18 

* Correspondence:  jensen@caltech.edu 19 

 20 

Keywords: electron cryotomography, cryo-EM, archaea, archaella, flagella, T4P, motility, 21 

Thermococcus kodakaraensis, Thermococcus kodakarensis 22 

  23 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/108209doi: bioRxiv preprint first posted online Feb. 13, 2017; 

http://dx.doi.org/10.1101/108209
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

ABSTRACT 24 

Archaeal swimming motility is driven by rotary motors called archaella.  The structure of these 25 

motors, and particularly how they are anchored in the absence of a peptidoglycan cell wall, is 26 

unknown.  Here, we use electron cryotomography to visualize the archaellar motor in vivo in 27 

Thermococcus kodakaraensis.  Compared to the homologous bacterial type IV pilus (T4P), we 28 

observe structural similarities as well as several unique features.  While the position of the 29 

cytoplasmic ATPase appears conserved, it is not braced by linkages that extend upward through 30 

the cell envelope as in the T4P, but rather by cytoplasmic components that attach it to a large 31 

conical frustum up to 500 nm in diameter at its base.  In addition to anchoring the lophotrichous 32 

bundle of archaella, the conical frustum associates with chemosensory arrays and ribosome-33 

excluding material and may function as a polar organizing center for the coccoid cells. 34 

  35 
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INTRODUCTION 36 

Motility is a fundamental property of single-celled organisms.  In archaea, swimming motility is 37 

driven by a rotary motor called the archaellum.  Archaella are functionally analogous to bacterial 38 

flagella, but evolutionarily homologous to the type IV pilus (T4P) and type II secretion system 39 

(T2SS) machineries of bacteria [1].  Recently, an atomic structure of the archaellum fiber 40 

purified from the euryarchaeon Methanospirillum hungatei revealed differences compared to the 41 

bacterial T4P fiber, including lack of a central pore and more extensive inter-subunit interactions 42 

[2].  The structure of the archaellar basal body, and its similarity to the T4P basal body remains 43 

unknown. 44 

 45 

Unlike T4P fibers that only assemble and disassemble, archaella assemble and can then rotate in 46 

both directions to either push or pull the cell [3, 4].  Light microscopy of Halobacterium 47 

salinarum revealed discrete steps during rotation, likely corresponding to ATP hydrolysis events 48 

by the basal body ATPase, FlaI [5].  While the bacterial T4P contains two distinct ATPases for 49 

assembly and disassembly of the pilus fiber, the single ATPase FlaI drives both assembly and 50 

rotation of the archaellum [6].  The N-terminal domain of the archaellum/T2SS/T4P superfamily 51 

ATPases is the most variable, and the first 29 residues of FlaI, located on the outer edge of the 52 

hexamer, were found to be essential for motility but not assembly, although the basis of this 53 

functional separation remains unclear [6]. 54 

 55 

FlaI is predicted to interact with the integral membrane protein FlaJ [7].  Structural studies of the 56 

bacterial T4P suggest that ATPase-driven rotation of the FlaJ homolog, PilC, incorporates pilin 57 

subunits from the membrane into the growing fiber [8].  This is possible because the ATPase 58 
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itself is clamped in an integrated structure that spans the inner and outer membranes and 59 

periplasm and anchors on the cell-encompassing peptidoglycan cell wall [8].  A similar cell-wall-60 

attached structure anchors the rotation of the bacterial flagellar motor [9].  Without knowing the 61 

structure of the archaellar basal body, it is unclear how similar anchoring could occur in the 62 

envelope of archaea, which consists of a single membrane and thin proteinaceous surface (S-63 

)layer.  It was recently proposed that FlaF might anchor the archaellum through interactions with 64 

the S-layer [10].  Others have suggested that a cytoplasmic structure mechanically stabilizes the 65 

motor [3].  Supporting this idea, cytoplasmic structures underlying the archaella have been 66 

observed by traditional electron microscopy (EM) of Halobacteria [11, 12]. 67 

 68 

Electron cryotomography (ECT) can image intact cells in a frozen, fully-hydrated state, 69 

providing macromolecular-resolution (~4-6 nm) details about native cellular structures [13].  70 

Here, we used ECT to visualize the structure of the archaellar basal body in vivo in 71 

Thermococcus kodakaraensis cells. T. kodakaraensis (originally designated Pyrococcus sp. 72 

strain KOD1 and later identified as belonging to the Thermococcus genus [14]; also known as T. 73 

kodakarensis) is one of the best-studied archaeal species.  It was isolated from a Japanese 74 

solfatara in 1994 [15], and has proven readily amenable to genetics (well-developed gene 75 

manipulation techniques exploit its natural competence [16]) and the isolation of thermostable 76 

enzymes (e.g. high-fidelity DNA polymerase for PCR [17]). In addition to revealing the overall 77 

structure of the archaellar basal body in vivo, we discovered a novel cytoplasmic conical 78 

structure in T. kodakaraensis associated with archaellar motility and potentially other polar 79 

organizing activities. 80 

 81 
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RESULTS  82 

We imaged T. kodakaraensis cells by ECT in a native, frozen-hydrated state.  Many cells 83 

appeared to be lysed prior to plunge-freezing for ECT, but out of 18 apparently intact cells, we 84 

observed a lophotrichous bundle of archaella in 13.  Each bundle contained between four and 14 85 

archaella.  Due to the relatively large size of T. kodakaraensis cells (cells are irregular cocci ~1.5 86 

µm in diameter), only a portion of the cell was visible in the limited field of view of our high-87 

magnification cryotomograms.  We therefore think it likely that in the remaining five cells, the 88 

archaellar bundle was present but not located in the portion of the cell imaged.  In addition, we 89 

observed well-preserved archaellar bundles in eight apparently lysed cells. 90 

 91 

We consistently observed a prominent conical structure associated with the archaellar bundle in 92 

the cytoplasm (Figure 1).  We never observed archaella unassociated with a cone, or vice versa.  93 

The conical structure showed a consistent morphology and localization inside the cell:  closely 94 

associated with, but not touching, the cytoplasmic membrane at its narrow end and expanding a 95 

variable length to a wide base, which varied from 220 to 525 nm in diameter.  The central axis 96 

was perpendicular to the membrane, as seen in cross-sectional side views (Figure 1A-C, 97 

additional examples in Figure EV1).  The edges, seen in cross-section, frequently exhibited 98 

periodic densities suggestive of individual protein subunits (Figure 1C), with a thickness of 3-4 99 

nm.  We observed that while cones in different cells had different heights, the opposite edges 100 

within each cone were always symmetric (of similar lengths).  Tomographic slices capturing the 101 

central axis of the conical structure in side view showed an angle of 109 ± 6o (mean ± s.d., n=5) 102 

between opposite edges.  The structures were not complete cones but rather conical frusta:  they 103 

did not taper fully to a point, but exhibited a blunt tip.  In top-views, we observed a ring situated 104 
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in the throat of the frustum, just below the tip (Figure 1D,E).  These rings comprised 19 subunits 105 

(Figure 1D inset), each again 3-4 nm thick, with an overall ring diameter of 31 ± 2 nm (mean ± 106 

s.d., n=10).  The position of the ring in the conical frustum was clearest in tomograms of lysed 107 

cells, which were thinner and contained less cytoplasmic material (Figure 1F-H).  Even in such 108 

tomograms, however, we could not visualize a well-defined connection between the two portions 109 

of the structure, so it is unclear if and how the components are connected. 110 

 111 

Conical structures were surrounded by an ~30-45 nm wide ribosome-excluding zone (REZ) 112 

(Figure 1E, Figure 2).  In nearly all cells, both intact and lysed, we observed filament bundles 113 

near or associated with this REZ (Figure 2B-E).  The bundles were more extensive in lysed cells.  114 

Each filament was ~12 nm wide and made up of a series of disk-like densities spaced ~7 nm 115 

apart.  Chemosensory arrays were also consistently observed near the conical structures (Figure 116 

2A,B).  In one cell, we observed two attached conical structures, each associated with archaella 117 

and each approximately 250 nm in diameter at its base (Figure EV2). 118 

 119 

To characterize the interaction between the archaellar bundle and the conical structure, we 120 

measured the distance from the base of each archaellum in the membrane to the cone.  The 121 

structure of the cone means that the distance between it and the membrane varies – shortest at the 122 

tip of the cone and longest at the base.  Since archaella were located at various radial positions 123 

along the cone, we expected their distance to vary similarly.  Interestingly, however, we 124 

measured a much more consistent distance of 44 ± 5 nm (mean ± s.d., n=29) from the cone to the 125 

base of each archaellum in the membrane (Figure 3).  Consistent with this, we observed a variety 126 

of orientations of archaella in the cell envelope, frequently not perpendicular to the S-layer, 127 
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allowing the conserved distance to the cone (Figure 3, Figure EV3).  In a few cases, we observed 128 

continuous densities connecting the archaella and the cone (Figure EV3E). 129 

 130 

To determine the structure of the archaellar basal body, we calculated a subtomogram average 131 

(Figure 4).  30 particles were used, and an axial two-fold symmetry was applied.  The resulting 132 

average revealed several layers of density extending into the cytoplasm.  Immediately adjacent to 133 

the membrane-embedded density was a ring-like structure (L1 in Figure 4A).  Below the ring 134 

was a disk of similar diameter (L2), followed by a larger diameter component (L3) and finally, at 135 

a greater distance, a less well-defined density.  This density was 44 nm away from the 136 

membrane, corresponding to the cone.  Consistent with our observation that archaella exhibited 137 

various orientations with respect to the S-layer, we did not observe a strong density 138 

corresponding to the S-layer in the average.  As seen in individual particles, the component in L3 139 

does not appear to be a ring, but rather comprises distinct legs, seen on one or both sides, that 140 

appear symmetric in the average (Figure EV4).  Similarly, the density of the cone is more 141 

prominent in individual particles; different angles of the structure in different particles wash out 142 

in the average (Figure EV4). 143 

 144 

DISCUSSION 145 

Structure of the basal body of the T. kodakaraensis archaellum 146 

Here we describe the structure of the archaellar motor in T. kodakaraensis (Figure 4).  We think 147 

it is almost certain that density L1 in the T. kodakaraensis basal body corresponds to the ATPase, 148 

FlaI, since its size and shape match those of the homologous ATPases in the T4P and all three 149 

interact directly with integral membrane proteins. More specifically, FlaI shares domain 150 
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homology with the assembly/disassembly ATPases, PilB and PilT, of the bacterial T4P.  The size 151 

of L1 is comparable to that of the PilB/PilT ring in the bacterial T4P (Figure 4B), consistent with 152 

their conserved hexameric oligomerization [7] and similar sizes of the protein monomers (540 153 

amino acids for FlaI and 566 for PilB).  FlaI is predicted to interact directly with the polytopic 154 

integral membrane protein FlaJ [6, 7].  FlaJ shares sequence homology with the ATPase-155 

interacting inner membrane protein PilC of the T4P [18].  The relative locations of these 156 

components are therefore predicted to be the same in the basal bodies of the archaellum and the 157 

bacterial T4P (Figure 4) [8, 19], and the size and shape and position of density L1 seen here 158 

support that expectation, and the corollary that these two systems likely share a similar assembly 159 

mechanism. 160 

 161 

The identities of the proteins making up L2, L3, and the cone remain unclear.  In the T4P, no 162 

structures were observed in the cytoplasm below the ATPase [8, 19, 20].  In Crenarchaeota, only 163 

one accessory component is not membrane-bound (FlaH).  In Euryarchaeota like T. 164 

kodakaraensis, however, additional soluble proteins, FlaC/D/E, are thought to be components of 165 

the archaellum that receive switching signals from the chemotaxis machinery [21].  All of these 166 

proteins, and potentially others, are candidates for the densities we observed.  It will therefore be 167 

of great interest to obtain a structure of the crenarchaeal basal body, which lacks FlaC/D/E, for 168 

comparison, and/or to dissect the T. kodakaraensis basal body structure through analysis of 169 

deletion mutants. 170 

 171 

Conical structures anchor T. kodakaraensis archaella 172 
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We observed that T. kodakaraensis archaella associate with a large conical structure in the 173 

cytoplasm.  In a few cases, we observed direct connections between archaella and cone.  The fact 174 

that we did not see such a connection for every archaellum may simply reflect variations in 175 

image clarity and orientation of the structures between cells in different cryotomograms.  The 176 

conserved distance from the cone to the archaellar basal body in the membrane suggests a rigid 177 

interaction.  It is an interesting question how archaella are attached to the cone.  We did not 178 

observe strong densities connecting L3 and the cone in the averaged basal body structure, but in 179 

individual particles we observed heterogeneity.  Also, the resolution of the average may be too 180 

low to detect such connections.  If, for example, the links are thin (such as coiled-coils), they 181 

would not be resolved; similar coiled-coil linkages in the bacterial flagellar motor between FlaH 182 

and the C-ring were not resolved even in higher-resolution subtomogram averages [22].   183 

 184 

We propose that the T. kodakaraensis cone anchors the archaellar basal body in part to provide 185 

leverage for rotation.  In the bacterial T4P, the ATPase is clamped by extensive interactions up 186 

through the cell envelope that anchor it to the peptidoglycan cell wall [8] (Figure 5).  Signals 187 

governing disassembly are thought to be processed by sensory elements in the periplasm [8].  In 188 

the absence of a peptidoglycan cell wall and outer membrane, the T. kodakaraensis archaellum 189 

appears to turn the system upside down, with components stacking nearly 50 nm into the 190 

cytoplasm to anchor onto a large cone (Figure 5).  Signals governing rotation and direction are 191 

likely integrated by sensory components in the cytoplasm. 192 

 193 

Similar leveraging structures may exist in other Archaea.  More than twenty years ago, it was 194 

observed that when archaella are dissociated from lophotrichous H. salinarum cells by detergent, 195 
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the bundles remain intact, connected to a large (~500 nm diameter) structure [11].  A similar 196 

structure was also observed below the cell membrane in cell ghosts [12].  More recently, a 197 

spherical structure was observed anchoring Iho670 fibers, T4P-like filaments in Ignicoccus 198 

hospitalis.  This structure is thought to be located in the cytoplasm of the cell and contains a 199 

central ring of similar dimensions to the one observed here [23].  It is possible that either or both 200 

of these structures are related to the T. kodakaraensis cone.  Large cytoplasmic structures have 201 

not been described in other motile archaeal species to date, however, so it will be interesting to 202 

determine how archaella may be anchored in those systems. 203 

 204 

It will also be of great interest to identify the proteins that form the T. kodakaraensis cone and 205 

associated ring.  These subunits must be capable of interacting both circumferentially around the 206 

cone as well as radially with subunits making up the next (larger or smaller diameter) ring.  207 

While it is possible that the conical structure is an assembly of stacked rings, we think it more 208 

likely that the subunits assemble into a filament spiral, similar to what has been proposed for 209 

ESCRT-III polymers [24, 25].  Interestingly, an architecturally similar spiral has been observed 210 

in the basal body of the bacterial flagellar motor:  in Wolinella succinogenes, an Archimedian 211 

spiral forms a bushing for the motor in the periplasm, allowing the flagellum to rotate in the cell 212 

wall.  This spiral is formed by protein subunits interacting both circumferentially and laterally 213 

through nonspecific interactions [26].  While that spiral takes the form of a disk, similar protein 214 

interactions may give rise to a cone in T. kodakaraensis. 215 

 216 

T. kodakaraensis cones are potential polar organizing structures 217 
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In addition to a potential role in rigidly anchoring the basal body of the archaellum, the T. 218 

kodakaraensis cone may function to gather the archaellar bundle to maximize efficiency, either 219 

by concentrating molecules for assembly or signaling, or by concentrating force at one point on 220 

the coccoid cell for directional swimming.  The cone’s structure may also help distribute the 221 

force from archaellar rotation to the larger bulk of the cell’s contents.  This might be more 222 

efficient in a pushing than a pulling mode; swimming speed in another euryarchaeon, H. 223 

salinarum, was found to be approximately twice as fast when the archaella push as when they 224 

pull the cell body [5].  The structurally-similar spiral basal disk in the bacterial flagellar motor of 225 

W. succinogenes was suggested to play a role in dispersing lateral forces created by flagellar 226 

rotation [26]. 227 

 228 

Our results suggest a further role for the cone in breaking the symmetry of the coccoid cell.  In 229 

many rod-shaped bacterial cells, proteins and other macromolecules are specifically localized to 230 

the cell pole for various purposes ranging from cell motility and adhesion to differentiation and 231 

division [27].  One well-studied example of this polar organization occurs in Caulobacter 232 

crescentus, where the oligomeric protein PopZ defines an asymmetric pole, localizing many 233 

cytoplasmic proteins and tethering the chromosomal centromere to facilitate division [28-30].  In 234 

Vibrio cholerae, the HubP protein organizes the polar localization of the chromosomal origin, 235 

chemotaxis machinery, and flagella [31].  Perhaps the T. kodakaraensis cone similarly defines a 236 

pole in the spherical cells, anchoring the chemotaxis and motility machinery.  An intriguing 237 

feature observed in our cryotomograms is the cone-associated REZ.  In bacterial cells, such 238 

REZs are commonly interpreted to be the nucleoid [32, 33].  Supporting this assignment, we 239 

observed bundles of filaments (most extensive in lysed cells) associated with the REZ (Figure 2).  240 
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Such filaments are reminiscent of nucleoprotein filaments formed by various bacterial DNA-241 

binding proteins in stress conditions [34-36]. 242 

 243 

A spatial organizer analogous to PopZ may be especially important for a polyploid species like 244 

T. kodakaraensis (chromosome copy number varies depending on growth phase, from 7 to 19 245 

copies [37]).  Fluorescence imaging suggests that the nucleoid is relatively compact in log phase 246 

growth, and nucleoids appear to separate before the cells are deeply constricted [38].  Perhaps 247 

the cones segregate attached structures, including the archaella and possibly chromosomes.  This 248 

function is consistent with the duplicated cone structure we observed in one cell (Figure EV2), 249 

which could represent an intermediate after replication and prior to segregation, or may simply 250 

represent an aberrant structure.  Further studies imaging cells throughout the cell cycle could 251 

shed light on whether, and how, cones function to coordinate archaellar and chromosomal 252 

segregation. 253 

 254 

Understanding the prevalence of this structure among Euryarchaeota and across different 255 

archaeal kingdoms may illuminate its function.  If it is restricted to lophotrichous species, it may 256 

simply be an anchoring mechanism for the archaella in the absence of a peptidoglycan cell wall.  257 

In that case, monotrichous or peritrichous species may exhibit a less extensive plate underneath 258 

the basal bodies of individual archaella.  If it is more widely found in coccoid, and/or highly 259 

polyploid, cells, it may serve an added role in polar specification. 260 

  261 

METHODS 262 

Growth 263 
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Thermococcus kodakaraensis strain KOD1 [JCM 12380] was grown anaerobically in MA-YT 264 

medium supplemented with elemental sulfur as previously described [14, 39]. 265 

 266 

Electron cryotomography and image analysis 267 

Samples of cell cultures in growth media were mixed with bovine serum albumin-treated 268 

colloidal gold fiducial markers (Sigma) and applied to Quantifoil R2/2 200 copper EM girds 269 

(Quantifoil Micro Tools).  After blotting excess liquid, grids were plunge-frozen in a mixture of 270 

liquid ethane and propane [40], and subsequently kept at liquid nitrogen temperature.  Images 271 

were acquired using either an FEI Polara G2 or Titan Krios 300 keV transmission electron 272 

microscope (FEI Company) equipped with a field emission gun, image corrector for lens 273 

aberration, energy filter (Gatan), and K2 Summit direct electron detector (Gatan).  Cumulative 274 

electron dose was 160 e-/Å2 or less for each tilt-series.  Tilt-series were acquired using UCSF 275 

Tomography software [41].  Images were contrast transfer function corrected, aligned, and 276 

reconstructed by weighted back projection with the IMOD software package [42].  SIRT 277 

reconstructions were calculated with TOMO3D [43], subtomogram averages generated using 278 

PEET [44], and segmentations generated with Amira software (FEI Company). 279 

 280 

ACCESSION CODES 281 

The subtomogram average of the T. kodakaraensis archaellar basal body was deposited into the 282 

Electron Microscopy Data Bank (entry number EMD-8603). 283 
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 389 

FIGURE LEGENDS 390 

Figure 1.  Cytoplasmic conical structures in Thermococcus kodakaraensis.  (A) A 391 

tomographic slice shows a side view of a conical structure (c) in the cytoplasm, rotated and 392 

enlarged in (B).   (C) A tomographic slice shows a side view of the cone in another cell, 393 

highlighting the subunit texture along the edge of the cone (arrowheads).  (D, E)  Top views of a 394 

cone at different heights show the inner ring (r; enlarged in inset to highlight 19-subunit 395 

structure) and outer cone.  (F-H) Sequential slices through a side view of a cone in a lysed cell 396 

show the relative location of the ring in the cone. (I, J) Different views of a 3D segmentation of 397 

the cone shown in (A), embedded in a tomographic slice.  s, S-layer; m, membrane; a, archaella; 398 

rib, ribosomes; rez, ribosome-excluding zone.  Scale bars 100 nm; segmentation not to scale. 399 

 400 

Figure EV1.  Additional examples of conical structures in T. kodakaraensis cells.  (A) shows 401 

sequential tomographic slices (1-3) at different heights through a side view of the cone.  402 
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Additional examples of cones in intact (B-C) and lysed (D-E) cells are shown below.  s, S-layer; 403 

m, membrane; c, conical structure; a, archaella; r, ring.  Scale bars 100 nm. 404 

 405 

Figure 2.  Cones are associated with chemosensory arrays, ribosome-excluding zones and 406 

filament bundles.  Tomographic slices show side (A) and top (B, C) views of cones (c) in three 407 

cells, highlighting associated chemosensory arrays (ca), ribosome-excluding zones (rez) and 408 

filament bundles (f).  For a slice-by-slice view through the tomogram shown in (A), see Movie 409 

S1.  (D) and (E) show different views of a 3D segmentation of the structures shown in (C), with 410 

the conical structure in blue and the filament bundle in red.  s, S-layer; m, membrane; a, 411 

archaellum; o, other filaments.  Scale bar 100 nm; segmentation not to scale. 412 

 413 

Figure EV2.  Double cone structure observed in T. kodakaraensis.  A tomographic slice 414 

through a side view shows two associated conical structures (c1 and c2), both associated with 415 

archaella (a).  Scale bar 100 nm. 416 

 417 

Figure 3.  Archaellum orientation with respect to the cell envelope.  (A-D) show tomographic 418 

slices through side views of cones.  White lines show the angle of the archaellum with respect to 419 

the surface layer, and red dashed lines show the conserved distance from the archaellum at the 420 

membrane to the cone.  Schematic in (E) depicts the 44 nm distance from the cone to the basal 421 

body in the membrane for archaella at different radial positions along the cone.  Since different 422 

radial positions on the cone are located at different distances from the membrane (shorter at the 423 

tip and longer at the base), this results in a range of archaellar orientations in the cell envelope.  424 

Scale bar 100 nm. 425 
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 426 

Figure EV3.  Association of cones with the archaellar bundle.  (A) and (B) show tomographic 427 

slices through two cells, highlighting the association between the cone and the archaella. (C) and 428 

(D) show 3D segmentations of the cells in (A) and (B), respectively, with cones in blue and 429 

archaella in red, embedded in tomographic slices.  (E) Tomographic slices of individual 430 

archaella show the varying orientations of archaella with respect to the cell envelope, as well as 431 

apparent connections to the cone.  Scale bars 100 nm in (A) and (B), 50 nm in (E); segmentations 432 

not to scale. 433 

 434 

Figure 4.  Structure of the T. kodakaraensis archaellum.  (A) A sub-tomogram average of the 435 

archaellum reveals structural features, including four layers of density in the cytoplasm (L1-L3, 436 

cone).  CM, cytoplasmic membrane.  The speculated identity of densities in the archaellum is 437 

proposed:  archaellum fiber = FlaA/B flagellins; integral membrane density = FlaJ; L1 = FlaI; 438 

L2/L3/cone = FlaH/FlaC/D/E.  (B) For comparison, a subtomogram average of the type IVa 439 

pilus machine from Myxococcus xanthus is shown (adapted with permission from [8]).  Arrows 440 

indicate components with recognized homology.  OM, outer membrane; IM, inner membrane.  441 

Scale bar 10 nm. 442 

 443 

Figure EV4.  Individual particles from the subtomogram average show heterogeneity in the 444 

L3 density and angle of cone density.  The L3 density appears as either two dots of similar 445 

(first two panels) or different intensity (third panel), a single dot (fourth panel), or a dot and an 446 

extended line (fifth panel).  Scale bar 10 nm. 447 

 448 
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Figure 5.  Schematic comparing organization of the related archaellum and type IVa pilus 449 

basal bodies.  In the bacterial T4P (right), an integrated system of components spanning the 450 

outer and inner membranes (OM, IM) uses the peptidoglycan cell wall (PG) to brace the ATPase, 451 

allowing rotation of PilC (orange) in the membrane to assemble the pilus fiber.  In the T. 452 

kodakaraensis archaellum (left), our results suggest that an integrated system of components 453 

extends from the single membrane (CM) inward to a large conical structure in the cytoplasm to 454 

similarly brace the ATPase.  Sensory components (purple) are proposed to be located in the 455 

periplasm for the T4P and the cytoplasm for the archaellum. 456 
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