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Abstract 

The accurate, high-speed solution of systems of or- 
dinary differential-algebraic equations (DAE’s) of low 
index is of great importance in chemical, electrical and 
other engineering disciplines. Petzold’s Fortran-based 
DASSL is the most widely used sequential code for 
solving DAE’s. We have devised and implemented a 
completely new C code, Concurrent DASSL, specifi- 
cally for multicomputers and patterned on DASSL. In 
this work, we address the issues of data distribution 
and the performance of the overall algorithm, rather 
than just that of individual steps. Concurrent DASSL 
is designed ils an open, application-independent envi- 
ronment below which linear algebra algorithms may be 
added in addition to standard support for dense and 
sparse algorithms. The user may furthermore attach 
explicit data interconversions between the main com- 
putational steps, or choose compromise distributions. 
A “problem formulator” (simulation layer) must be 
constructed above Concurrent DASSL, for any specific 
problem domain. We indicate performance for a par- 
ticular chemical engineering application, a sequence of 
coupled distillation columns. Future efforts are cited 
in conclusion. 

Introduction 

In this paper, we discuss the design of a general- 
purpose integration system for ordinary differential- 
algebraic equations of low index, following up on 
our more preliminary discussion in [16]. The new 
solver, Concurrent DASSL, is a parallel, Glanguage 
implementation of the algorithm codified in Petzold’s 
DASSL, a widely used Fortran-based solver for DAE’s 

[11,4], and based on a loosely synchronous model of 
communicating sequential processes [9]. Concurrent 
DASSL retains the sa,me numerical properties as the 
sequential algorithm, but introduces important new 
degrees of freedom compared to it. We identify the 
main computational steps in the integration process; 
for each of these steps, we specify algorithms that have 
correctness independent of data distribution. 

We cover the computational aspects of the major 
computational steps, ,and their data distribution pref- 
erences for highest performance. We indicate the 
properties of the concurrent sparse linear algebra as 
it relates to the rest of the calculation. We de- 
scribe the proto-Cdyn simulation layer, a distillation- 
simulation-oriented Concurrent DASSL driver which, 
despite specificity, exposes important requirements for 
concurrent solution oil ordinary DAE’s; the ideas be- 
hind a template formulation for simulation are, for ex- 
ample, expressed. 

We indicate formulation issues and specific features of 
the chemical engineering problem - dynamic distilla- 
tion simulation. We indicate results for an example 
in this area, which demonstrates the feasibility of this 
method, but the need for additional future work, both 
on the sparse linear algebra, and on modifying the 
DASSL algorithm to reveal more concurrency, thereby 
amortizing the cost alf linear algebra over more time 
steps in the algorithm. 

Mat hematical Formulation 

We address the following initial-value problem consist- 
ing of combinations of N linear and nonlinear coupled, 
ordinary differential-algebraic equations over the inter- 
val t E [To, TI]: 
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rVP(F, U, zo, [To, T11; N, P ) :  

F(Z,  Z , U ; ~ )  = Q ,  t E [To,Ti], 
Z(t = To) E zo, Z(t  = To) i o ,  

( 1) 

with unknown state vector Z(t) E SN, known ex- 
ternal inputs u(t) E S p ,  where F(o;t )  H SN and 
Z O , &  E SN are the given initial-value, derivative vec- 
tors, respectively. We will refer to Equation 1’s devi- 
ation from Q as the residuals or residual vector. Eval- 
uating the residuals means computing F(Z, Z, U; t )  
(“model evaluation”) for specified arguments Z,  Z, U 

and t .  
DASSL’s integration algorithm .can be used to solve 
systems fully implicit in Z and Z and of index zero or 
one, and specially structured forms of index two (and 
higher) [4, Chapter 51, where the index is the minimum 
number of times that part or all of Equation 1 must 
be differentiated with respect to t in order to express 
2 as a continuous function of Z and t [4, page 171. 

By substituting a finite-difference approximation Viz 
for 2, we obtain: 

F n ( Z i ; ~ i )  E F ( Z i , V i Z ; , q ; t  = ~ i )  = 0,  (2) 

a set of (in general) nonlinear statacazed equations. A 
sequence of Equation 2’s will have to be solved, one 
at each discrete time t = rj, i = 1 , 2 , .  . . ,M1, in the 
numerical approximation scheme; neither M nor the 
q ’ s  need be pre-determined. In DASSL, the variable 
step-size integration algorithm picks the rj’s as the in- 
tegration progresses, based on its assessment of the lo- 
cal error. The discretization operator for 2, D, varies 
during the numerical integration process and hence is 
subscripted as Di. 
The usual way to solve an instance of the staticieed 
equations, Equation 2, is via the familiar Newton- 
Raphson iterative method (yielding Zi = 27): 

z;+l = z; - c { v ~ F ~ ( z ~ ~ ;  r i ) } - l ~ D ( ~ ; ; r j ) ,  

k = o , l ,  ... ( 3) 

given an initial, sufficiently goad approximation Zp . 
The classical method is recovered for m k  = k and 
c = 1, whereas a modified (damped) Newton-Raphson 
method results for mk < k (respectively, c < 1). 
In the original DASSL algorithm and in Concurrent 
DASSL, the Jacobian VZFD(Z)  is computed by fi- 
nite differences rather than analytically; this departure 
leads in another sense to a modified Newton-Raphson 
method even though m k  = k and c = 1 might al- 
ways be satisfied. For termination, a limit k <_ k* 

‘and more at trial timepoints which are discarded by the 
integration algorithm. 

is imposed; a further stopping criterion of the form 
llZF+l - 2411 < 6 is also incorporated (see Brenan et 
al. [4, pages 121-1241). 
Following Brenan et al., the approximation Viz is 
replaced by a BDF-generated linear approximation, 
a Z  + p, and the Jacobian 

From this approximation, we define F,,p(Z; ~ i )  in the 
intuitive way. We then consider Taylor’s Theorem with 
remainder, from which we can easily express a forward 
finite-difference approximation for each Jacobian col- 
umn (assuming sufficient smoothness of F,,p) with a 
scaled difference of two residual vectors: 

By picking bj proportional to ej , the j t h  unit vector in 
the natural basis for g N ,  namely 6j = dj ej , Equation 5 
yields a first-order-accurate approximation in dj of the 
j t h  column of the Jacobian matrix: 

Each of these N Jacobian-column computations is in- 
dependent and trivially parallelizable. It’s well known, 
however, that for special structures such as banded and 
block n-diagonal matrices, and even for general sparse 
matrices, a single residual can be used to  generate mul- 
tiple Jacobian columns [4,8]. We discuss these issues 
as part of the concurrent formulation section below. 

The solution of the Jacobian linear system of equa- 
tions is required for each k-iteration, either through 
a direct (e.g., LU-factorization) or iterative (e .g . ,  
preconditioned-conjugategradient) method. The 
most advantageous solution approach depends on N as 
well as special mathematical properties and/or struc- 
ture of the Jacobian matrix VZF,. Together, the 
inner (linear equation solution) and outer (Newton- 
Raphson iteration) loops solve a single time point; 
the overall algorithm generates a sequence of solution 
points Zi, i = 0, 1,  . . . , M .  
In the present work, we restrict our attention to di- 
rect, sparse linear algebra as described in [13], al- 
though future versions of Concurrent DASSL will sup- 
port the iterative linear algebra approaches by Ashby, 
Lee, Brown, Hindmarsh et al. [3,5]. For the sparse 
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LU factorization, the factors are stored and reused in 
the modified Newton scenario. Then, repeated use of 
the old Jacobian implies just a forward and back-solve 
step using the triangular factors L and U. Practically, 
we can use the Jacobian for up to about five steps [4]. 
The useful lifetime of a single Jacobian evidently de- 
pends somewhat strongly on details of the integration 
procedure [4]. 

proto-Cdyn - Simulation Layer 

To use the Concurrent DASSL system on other than 
toy problems, a simulation layer must be constructed 
above it. The purpose of this layer is to accept a 
problem specification from within a specific problem 
domain, and formulate that specification for concur- 
rent solution as a set of differential-algebraic equa- 
tions, including any needed data. On one hand, such 
a layer could explicitly construct the subset of equa- 
tions needed for each processor, generate the appro- 
priate code representing the residual functions, and 
create a set of node programs for effecting the sim- 
ulation. This is the most flexible approach, allowing 
the user to specify arbitrary nonlinear DAE’s. It has 
the disadvantage of requiring a lot of compiling and 
linking for each run in which the problem is changed 
in any significant respect (including but not limited 
to data distribution), although with sophisticated tac- 
tics, parametric variations within equations could be 
permitted without recompiling from scratch, and in- 
cremental linking could be supported. 

We utilize a template-based approach here, as we do 
in the Waveform-Relaxation paradigm for concurrent 
dynamic simulation [15]. This is akin to the ASCEND 
11 methodology utilized by Kuru and many others [lo]. 
It is a compromise approach from the perspective of 
flexibility; interesting physical prototype subsystems 
are encapsulated into compiled code as templates. A 
template is a conceptual building block with states, 
non-states, parameters, inputs and outputs (see be- 
low). A general network made from instantiations 
of templates can be constructed at  runtime without 
changing any executable code. User input specifies the 
number and type of each template, their interconnec- 
tion pattern, and the initial value of systemic states 
and extraneous (non-state) variables, plus the value of 
adjustable parameters and more elaborate data, such 
as physical properties. The addition of templates re- 
quires new subroutines for the evaluation of the resid- 
uals of their associated DAE’s, and also for interfac- 
ing to the remainder of the system (e.g., parsing of 
user input, interconnectivity issues). With suitable 
automated tools, this addition process can be made 

straightforward to tht, user. 

Importantly, the use of a templatebased methodology 
does not imply a degradation in the numerical qual- 
ity of the model equ<ations or solution method used. 
We are not obliged to tear equations based on tem- 
plates or groups of templates as is done in sequential- 
modular simulators [19,6] , where “sequential” refers 
in this sense to the stepwise updating of equation sub- 
sets, without connection to the number of computers 
assigned to the problem solution. 

Ideally, the simulation layer could be made universal. 
That is, a generic layer of high flexibility and structural 
elegance would be created once and for all (and with- 
out predilection for a specific computational engine). 
Thereafter, appropriake templates would be added to 
articulate the simulator for a given problem domain. 
This is certainly possiible with high-quality simulators 
such as ASCEND 11 ilnd Chemsim (a recent Fortran- 
based simulator driving DASSL and MA28 [2,11,7]), 
Even so, we have chosen to restrict our efforts to 
a more modest simulation layer, called proto-Cdyn, 
which can create arbitrary networks of coupled distil- 
lation columns. This restricted effort has required sig- 
nificant effort, and already allows us to explore many 
of the important issues of concurrent dynamic simu- 
lation. General-purpose simulators are for future con- 
sideration. They must address significant questions of 
user-interface in addition to concurrency-formulation 
issues. 

In the next paragraphs, we describe the important fea- 
tures of protcFCdyn. In doing so, we indicate impor- 
tant issues for any Concurrent DASSL driver. 

Template S truct ur’e 

A template is a prototype for a sequence of DAE’s 
which can be used repeatedly in different instantia- 
tions. Normally, but not always, the template cor- 
responds to some subsystem of a physical-model de- 
scription of a system, like a tank or distillation tray. 
The key characteristics of a template are: the number 
of integration states it incorporates (typically fixed) , 
the number of non-stake variables it incorporates ( t y p  
ically fixed), its input and output connections to other 
templates, and external sources (forcing functions) and 
sinks. State variables participate in the overall DASSL 
integration process. Non-states are defined as vari- 
ables which, given the states of a template alone, may 
be computed uniquely. They are essentially local tear 
variables. It is up to t8he template designer whether or 
not to use such local tear variables: They impact the 
numerical quality of the solution, in principle. Alter- 
native formulations, where all variables of a template 
are treated as states, can be posed, and comparisons 



made. Because of the superlinear growth of linear al- 
gebra complexity, the introduction of extra integra- 
tion states must be justified on the basis of numerical 
accuracy. Otherwise, they artificially slow down the 
problem solution, perhaps significantly. Non-states 
are extremely convenient, and practically useful; they 
appear in all the dynamic simulators we have come 
across. 

The template state and non-state structure implies a 
twephase residual computation. First, given a state 
2, the non-states of each template are updated on 
a template-by-template basis. Then, given its states 
and non-states, inputs from other templates and ex- 
ternal inputs, each template’s residuals may be com- 
puted. In the sequential implementation, this poses no 
particular nuisances, other than two evaluation loops 
over all templates. However, in concurrent evaluation, 
a communication phase intervenes between non-state 
updates and residual updates. This communication 
phase transmits all states and non-states appearing as 
outputs of templates to their corresponding inputs at 
other templates. This transmission mechanism is con- 
sidered further below under concurrent formulation. 

Problem Preformulation 

In general, the “optimal” ordering for the equations of 
a dynamic simulation will in general be too difficult to 
establish’, because of the NP-hard issues involved in 
structure selection. However, many important heuris- 
tics can be applied, such as those that precedence or- 
der the nonlinear equations, and those that permute 
the Jacobian structure to a more nearly triangular or 
banded form [8]. For the proto-Cdyn simulator, we 
skirt these issues entirely, because it proves easy to ar- 
range a network of columns to produce a “good struc- 
ture” - a main block tri-diagonal Jacobian structure 
with off- block- diagonal structure for the inter column 
connections, simply by taking the distillation columns 
with their states in tray-by-tray, top-down (or bottom- 
up) order. 

Given a set of DAE’s, and an ordering for the equa- 
tions and states (i.e., rows and columns of the Jaco- 
bian, respectively), we need to partition these equa- 
tions between the multicomputer nodes, according to 
a two-dimensional process grid of shape PxQ = R. 
The partitioning of the equations forms, in main part, 
the so-called “concurrent database.” This grid struc- 
ture is illustrated in [13, Figure 2.1. In proto-Cdyn, we 

20ptimality p e r  s e  hinges on what our objective is. If, for 
instance, we want minimum time for LU factorization, still the 
objective of minimum fill-in does not guarantee minimum time 
in a concurrent setting. 

utilize a single process grid for the entire Concurrent 
DASSL calculation. That is, we don’t currently ex- 
ploit the Concurrent DASSL feature which allows ex- 
plicit transformations between the main calculational 
phases (see below). In each process column, the en- 
tire set of equations is to be reproduced, so that any 
process column can compute not only the entire resid- 
ual vector for a prediction calculation, but also, any 
column of the Jacobian matrix. 

A mapping between the global equations and local 
equations must be created. In the general case, it will 
be difficult to generate a closed-form expression for ei- 
ther the global-to-local mapping or its inverse (that 
also require < O ( N )  storage). At most, we will have 
on a hand a partial (or weak) inverse in each process, so 
that the corresponding global index of each local index 
will be available. Furthermore, in each node, a partial 
global-to-local list of indices associated with the given 
node will be stored in global sort order. Then, by bi- 
nary search, a weak global-to-local mapping will be 
possible in each process. That is, each process will 
be able to identify if a global index resides within it, 
and the corresponding local index. A strong mapping 
for row (column) indices will require communication 
between all the processes in a process row (respec- 
tively, column). In the foregoing, we make the tacit 
assumption that is is an unreasonable practice to use 
storage proportional to the entire problem size N in 
each node, except if this unscalability can be removed 
cheaply when necessary for large problems. 

The proto-Cdyn simulator works with templates of 
specific structure - each template is a form of a dis- 
tillation tray and generates the same number of inte- 
gration states. It therefore skirts the need for weak 
distributions. Consequently, the entire row mapping 
procedure can be accomplished using the closed-form 
general two-parameter distribution function family [ 
described in [13], where the block size B is chosen as 
the number of integration states per template. The 
column mapping procedure is accomplished with the 
one-parameter distribution function family < also de- 
scribed in [13]. The effects of row and column degree- 
of-scattering are described in [13] with attention to 
linear algebra performance. 

Concurrent Formulation 

Overview 

Next, we turn to Equation 1’s (that is, IVP’s) concur- 
rent numerical solution via the DASSL algorithm. We 
cover the major computational steps in abstract, and 
we also describe the generic aspects of proto-Cdyn in 



this connection. In the subsequent section, we discuss 
issues peculiar to the distillation simulation. 

Broadly, the concurrent solution of IVP consists of 
three block operations: startup, dynamic simulation, 
and a cleanup phase. Significant concurrency is appar- 
ent only in the dynamic simulation phase. We will as- 
sume that the simulation interval requested generates 
enough work so that the startup and cleanup phases 
prove insignificant by comparison and consequently 
pose no serious Amdahl’s-law bottleneck. Given this 
assumption, we can restrict our attention to a single 
step of IVP as illustrated schematically in Figure 0. 

In the startup phase, a sequential host program inter- 
prets the user specification for the simulation. From 
this it generates the concurrent database: the tem- 
plates and their mutual interconnections, data needed 
by particular templates, and a distribution of this in- 
formation among the processes that are to participate. 
The processes are themselves spawned and fed their re- 
spective databases. Once they receive their input in- 
formation, the processes rebuild the data structures 
for interfacing with Concurrent DASSL, and for gener- 
ating the residuals. Tolerances, and initial derivatives 
must be computed and/or estimated. Furthermore, in 
each process column, the processes must rendezvous to 
finalize their communication labeling for the transmis- 
sion of states and non-states to be performed during 
the residual calculation. This provides the basis for 
a reactive, deadlock-free update procedure described 
below. 
The cleanup phase basically retrieves appropriate state 
values and returns them to the host for propagation 
to the user. Cleanup may actually be interspersed in- 
termittently with the actual dynamic simulation. It 
provides simple bookkeeping of the results of simula- 
tion and terminates the concurrent processes at the 
simulation’s conclusion. 

The dynamic simulation phase consists of repetitive 
prediction and correction steps, and marches in time. 
Each successful time step requires the solution of one 
or more instances of Equation 2 - additional timesteps 
that converge but fail to satisfy error tolerances, or fail 
to converge quickly enough, are necessarily discarded. 
In the next section, we cover the aspects of these o p  
erations in more detail, for a single step. 

Single Integration Step 

The Integration Computations of DASSL are a 
fixed leading-coefficient, variable-stepsize and order, 
backward-differentiation-formula (BDF) implicit inte- 
gration scheme, described clearly in [4, Chapter 51 and 

outlined in [ll]. Coiicurrent DASSL faithfully imple- 
ments this numerical method, with no significant dif- 
ferences. Test problems run with the DASSL Fortran 
code and the new C code (on one and multiple com- 
puters) certify this degree of compatibility. 

The sequential time complexity of the integration com- 
putations is O ( N ) ,  id considered separately from the 
residual calculation called in turn, which is also nor- 
mally O ( N )  (see below). We pose these operations 
on a PxQ = R grid, where we assume that each pro- 
cess column can compute complete residual vectors. 
Each process column repeats the entire prediction o p  
erations: there is no speedup associated with Q > 1, 
and we replicate all DASSL BDF and predictor vec- 
tors in each process column. Taller, narrower grids are 
likely to provide the overall greatest speedup, though 
the residual calculation may saturate (and slow down 
again) because of excessive vertical communication re- 
quirements - It’s definitely not true that the Rx1 
shape is optimal in at11 cases. 

The distribution of coefficients in the rows has no im- 
pact on the integration operations, and is dictated 
largely by the requirements of the residual calculation 
itself. In practical problems, the concurrent database 
cannot be reproduced in each process (cf., [18]), so a 
given process will onlly be able to compute some of the 
residuals. Furthermore, we may not have complete 
freedom in scattering these equations, because there 
will often be a tradeoff between the degree of scatter- 
ing and the amount of communication needed to form 
the entire residual vector. 
The amount of O ( N )  integration-computation work is 
not terribly large - there is consequently a non-trivial 
but not tremendous effort involved in the integration 
computations. (Residual computations dominate in 
many if not most circumstances.) Integration oper- 
ations consist mainhy of vector-vector operations not 
requiring any interprocess communication and, in ad- 
dition, fixed startup costs. Operations include predic- 
tion of the solution at the time point, initiation and 
control of the Newton iteration that “corrects” the so- 
lution, convergence and error-tolerance checking, and 
so forth. For example, the approximation Vi is cho- 
sen within this bloclk using the BDF formulas. For 
these operations, each process column currently oper- 
ates independently, and repetitively forms the results. 
Alternatively, each process column could stride with 
step Q ,  and row-combines could be used to propagate 
information across the columns [14]. This alternative 
would increase speed for sufficiently large problems, 
and can easily be implemented. However, because of 
load-imbalance in other stages of the calculation, we 
are convinced that including this type of synchroniza- 



tion could be an overall negative rather than positive 
to  performance. This alternative will nevertheless be 
a future user-selectable option. 
Included in these operations are a handful of norm 
operations, which constitute the main interprocess 
communication required by the integration computa- 
tions step; norms are implemented concurrently via 
recursive doubling (combine) [17,14]. Actually, the 
weighted norm used by DASSL requires two recur- 
sive doubling operations, each combines a scalar: first 
to obtain the vector coefficient of maximum absolute 
value, then to sum the weighted norm itself. Each can 
be implemented as Q independent column combines, 
each producing the same repetitive result, or a single 
&-striding norm, that takes advantage of the repeti- 
tion of information, but utilizes two combines over the 
entire process grid. Both are supported in Concurrent 
DASSL, although the former is the default norm. As 
with the original DASSL, the norm function can be 
replaced, if desired. 

Single Residuals are computed in prediction, and 
as needed during correction. Multiple residuals are 
computed when forming the finitedifference Jacobian. 
Single residuals are computed repetitively in each pro- 
cess column, whereas the multiple residuals of a Jaco- 
bian computation are computed uniquely in the pro- 
cess columns. 

Were, we consider the single residual computation re- 
quired by the integration computations just described. 
Given a state vector Z,.and approximation for Z,  we 
need to evaluate F(Z,Z,.ri) E Fn(Z,.ri). The ex- 
ploitable concurrency available in this step is strictly 
a function of the model equations. As defined, there 
are N equations in this system, so we expect to use 
at best N computers for this step. Practically, there 
will be interprocess communication between the pro- 
cess rows, corresponding to the connectivity among the 
equations. This will place an upper limit on P 5 K 
(the number of row processes) that can be used before 
the speed will again decrease: we can expect efficient. 
speedup for this step provided that the cost of the 
interprocess communication is insignificant compared 
to the single-equation grain size. As estimated in [14], 
the granularity Tcomm/Tca~c for the Symult s2010 mul- 
ticomputer is about fifty, so this implies about four 
hundred and fifty floating point operations per commu- 
nication in order to achieve 90% concurrent efficiency 
in this phase. 

Jacobian Computation There is evidently much 
more available concurrency in this computational step 

than for the single residual and integration operations, 
since, for finite differencing, N independent residual 
computations are apparently required, each of which 
is a single-state perturbation of 2. Based on our 
overview of the residual computation, we might naively 
expect to use K x N processes effectively; however, 
the simple perturbations can actually require much 
less model evaluation effort because of latency [8,10], 
which is directly a function of the sparsity structure of 
the model equations, Equation 1. In short, we can at- 
tain the same performance with much less than K x N 
processors. 

In general, we’d like to consider the Jacobian compu- 
tation on a rectangular grid. For this, we can con- 
sider using P x Q = R to accomplish the calculation. 
With a general grid shape, we exploit some concur- 
rency in bolh the column evaluations and in the resid- 
ual computations, with T j a c , p s ~ = ~  the time for this 
step, S J ~ ~ , P ~ Q = R  the corresponding speedup, Tres,p 
the residual evaluation time with P row processes, and 
Sres,p the apparent speedup compared to one row pro- 
cess: 

assuming no shortcuts are available as a result of la- 
tency. This timing is exemplified in the example below, 
which does not take advantage of latency. 

There is additional work whenever the Jacobian 
structure is rebuilt for better numerical stability in 
the subsequent LU factorization (A-mode). Then, 
O ( N 2 / P Q )  work is involved in each process in the fill- 
ing of the initial Jacobian. In the normal case, work 
proportional to the number of local non-zeroes plus 
fill elements is incurred in each process for refilling 
the sparse Jacobian structure. 

Exploitation of Latency has been considered in 
the Concurrent DASSL framework. We currently 
have experimental versions of two mechanisms, both 
of which are designed to work with the sparsematrix 
structures associated with direct, sparse LU factoriza- 
tion (see [13]). The first is called “bandlike” Jacobian 
evaluation. For a banded Jacobian matrix of band- 
width b ,  only b residuals are needed to evaluate the 
Jacobian. This feature is incorporated into the origi- 
nal DASSL, along with a LINPACK banded solver. In 
Concurrent DASSL, collections of Jacobian columns 
are placed in each process column, according to the col- 
umn data distribution, which thus far is picked solely 
to balance LU factorization and triangular-solve per- 
formance [13]. In each process column, there will be 



“compatible” columns that can be evaluated using a 
single, composite perturbation. Identification of these 
compatible columns is accomplished by checks on the 
bandwidth overlap condition. Columns that possess 
off-band structure are stricken from the list and eval- 
uated separately. Presumably, a heuristic algorithm 
could be employed further to increase the size of the 
compatible sets, but this is yet to be implemented. 
The same algorithm “greedy” algorithm of Curtis et 
al. used for the sequential reduction of Jacobian com- 
putation effort would be applied independently to each 
process column (see comments by [8, Section 12.31). 
Then, clearly, the column distribution effects the per- 
formance of the Jacobian computation, and the linear- 
algebra performance can no longer be viewed so readily 
in isolation. 

We have also devised a “blocklike” format, which will 
be applied to block n-diagonal matrices that include 
some off-block entries as well. Optimally, fewer resid- 
ual computations will be needed than for the banded 
case. The same column-by-column compatible sets will 
be created, and the Curtis algorithm can also be ap- 
plied. Hopefully, because of the less restrictive com- 
patibility requirement, the “blocklike” case will pro- 
duce higher concurrent speedups than that attained 
using the conservative bandlike assumption for JaccF 
bians possessing blocklike structure. Comparative re- 
sults will be presented in a future paper. 

The LU Factorization Following the philosophy 
of Harwell’s MA28, we have interfaced a new con- 
current sparse solver to Concurrent DASSL, the de- 
tails of which are quoted elsewhere in this proceedings 
[13]. In short, there is a two-step factorization proce- 
dure: A-mode, which chooses stable pivots according 
to a user-specified function, and builds the sparse data 
structures dynamically; and B-mode, which reuses the 
data structures and pivot sequence on a similar ma- 
trix, but monitors stability with a growth-factor test. 
A-mode is repeated whenever necessary to avoid in- 
stability. We expect sub-cubic time complexity and 
sub-quadratic space complexity in N for the sparse 
solver. We attain acceptable factorization speedups 
for systems that are not narrow banded, and of suf- 
ficient size. We intend to incorporate multiple pivot- 
ing heuristic stategies, following [l], further to improve 
performance of future versions of the solver. This may 
also contribute to better performance of the triangular 
solves. 

Forward- and Back-solving Steps 
tored form 

take the fac- 

PRAPT, = L U ,  

with L unit lower-triamgular, fi upper-triangular, and 
permutation matrices PR, Pc, and solve A c  = b ,  us- 
ing the implicit pivolhg approach described in [13]. 
Sequentially, the triangular solves each require work 
proportional to the number of entries in the respec- 
tive triangular factor, including fill-in. We have yet to 
find an example of sufficient size for which we actually 
attain speedup for these operations, at least for the 
sparse case. At most, we try to prevent these opera- 
tions from becoming competitive in cost to the B-mode 
factorization; we detail these efforts in [13]. In brief, 
the optimum grid shape for the triangular solves has 
Q = 1, and P somewhat reduced than what we can 
use in all the other steps. As stated, P small seems 
better thus far, though for many examples, the in- 
creasing overhead as (a function of increasing P is not 
unacceptable (see [1311 and the example below). 

Residual Communkation is an important aspect 
of the proteCdyn layer. As indicated in the s tar tup 
phase discussion, the, members of a process column 
initially share informcation about the groups of states 
and non-states they will exchange during a residual 
computation. For residual communication, a reactive 
transmission mechaniism is employed, to avoid dead- 
locks. Each process transmits its next group of states 
to the appropriate process and then looks for any re- 
ceipt of state information. Along with the state val- 
ues are indices that directly drive the destinations for 
these values. This index information is shared during 
the startup phase and allows the messages to drive the 
operation. Through non-blocking receives, this proce- 
dure avoids problems of transmission ordering. Re- 
gardless of the template structure, at most one send 
and receive is needed between any pair of column pro- 
cesses. 

Chemical Engineering Example 

The algorithms and formalism needed to run this ex- 
ample amount to about 70,000 lines of C code includ- 
ing the simulation layer, Concurrent DASSL, the linear 
algebra packages, ancl support functions [14,13,12]. 

In this simulation, we consider seven distillation 
columns arranged in a tree-sequence [12], work- 
ing on the distillation of eight alcohols: methanol, 
ethanol, propan-1-011, propan-2-01, butan-1-01, 2- 
methyl propan-1-01, butan-sol, and 2-methyl propan- 
2-01. Each column h i a s  143 trays. Each tray is ini- 
tialized to a non-steady condition, and the system is 
relaxed to the steady state governed by a single feed 
stream to the first column in the sequence. This setup 

601 



generates suitable dynamic activity for illustrating the 
cost of a single “transient” integration step. 
We note the performance in Table 0. Because we 
have not exploited latency in the Jacobian computa- 
tion, this calculation is quite expensive, as seen for 
the sequential times on a Sun 31260 depicted there. 
(The timing for the Sun 3/260 is quite comparable 
to a single Symult s2010 node and was lightly loaded 
during this test run.) As expected, Jacobian calcula- 
tions speedup efficiently, and we are able to get a p  
proximately a speedup of 100 for this step using 128 
nodes. The A-mode linear algebra also speeds up sig- 
nificantly. The B-mode factorization speeds up negli- 
gibly and quickly slows down again for more than 16 
nodes. Likewise, the triangular solves are significantly 
slower than the sequential time. It should be noted 
that B-mode reflects two orders of magnitude speed 
improvement over A-mode. This reflects the fact that 
we are seeing almost linear time complexity in €3-mode, 
since this example has a narrow block tri-diagonal Ja- 
cobian with too little off-diagonal coupling to gener- 
ate much fill-in. It seems hard to imagine speeding 
up B-mode for such an example, unless we can exploit 
multiple pivots. We expect multiple-pivot heuristics 
to do reasonably well for this case, because of its nar- 
row structure, and nearly block tri-diagonal structure. 
We have used Wilson Equation Vapor-Liquid Equilib- 
rium with the Antoine Vapor equation. We have found 
that the thermodynamic calculations were much less 
demanding than we expected, with bubble-point com- 
putations requiring “1+? iterations to converge. Con- 
sequently, there was not the greater weight of Jacobian 
calculations we expected beforehand. Our model as- 
sumes constant pressure, and no enthalpy balances. 
We include no flow dynamics and include liquid and 
vapor flows as states, because of the possibility of feed- 
backs. 
Were we to utilize latency in the Jacobian calcula- 
tion, we could reduce the sequential time by a fac- 
tor of about 100. This improvement would also carry 
through to the concurrent times for Jacobian solution. 
At that ratio, Jacobian computation to B-mode fac- 
torization has a-sequential ratio of about 1O:l. As is, 
we achieve legitimate speedups of about five. We ex- 
pect to improve these results using the ideas quoted 
elsewhere here and in [13]. 
From a modeling point-of-view, two things are im- 
portant to note. First, the introduction of more 
non-ideal thermodynamics would improve speedup, 
because these calculations fall within the Jacobian 
computation phase and Single- Residu al Computation. 
Furthermore, the introduction of a more realistic 
model will likewise bear on concurrency, and likely im- 

prove it. For example, introducing flow dynamics, en- 
thalpy balances and vapor holdups makes the model 
more difficult to solve numerically (higher index). It 
also increases the chance for a wide range of step-sizes, 
and the possible need for additional A-mode factoriza- 
tions to maintain stability in the integration process. 
Such operations are more costly, but also have a higher 
speedup. Furthermore, the more complex models will 
be less likely to have near diagonal dominance; con- 
sequently more pivoting is to be expected, again in- 
creasing the chance for overall speedup compared to 
the sequential case. Mainly, we plan to consider the 
Waveform-€&laxation approach more heavily, and also 
to consider new classes of dynamic distillation simula- 
tions with Concurrent DASSL [12]. 

Conclusions 

We have developed a high-quality concurrent code, 
Concurrent DASSL, for the solution of ordinary 
differential-algebraic equations of low index. This 
code, together with appropriate linear algebra and 
simulation layers, allows us to explore the achievable 
concurrent performance of non-trivial problems. In 
chemical engineering, we have applied it thus far to 
a reasonably large, simple model of coupled distilla- 
tion columns. We are able to  solve this large problem, 
which is quite demanding on even a large mainframe 
because of huge memory requirements and non-trivial 
computational requirements; the speedups achieved 
thus far are legitimately at  least five, when compared 
to an efficient sequential implementation. This illus- 
trates the need for improvements to the linear algebra 
code, which are feasible because sparse matrices will 
admit multiple pivots heuristically. It also illustrates 
the need to consider hidden sources of additional time- 
like concurrency in Concurrent DASSL, perhaps allow- 
ing multiple right-hand sides to be attacked simultane- 
ously by the linear algebra codes, and amortizing their 
cost more efficiently. Furthermore, the performance 
points up the need for detailed research into the novel 
numerical techniques, such as Waveform Relaxation, 
which we have begun to  do as well [15]. 
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I Table 0. Order 9009 Dynamic Simulation Data 
1 

I 
I 1x1 

8x1 

16x1 

32x P 
64x1 

32x4 

64x2 

128x1 

Jacobian 

64672.2 

6870.82 

3505.13 

1829.93 

1060.40 

491.526 

520.029 

608.946 

(time in seconds) 

A-mode B-mode Back-Solve Solve 

5089.96 61.82 2.5 4.7 

1024.41 47.827 15.619 30.825 

547.625 52.402 19.937 39.491 

316.544 56.713 24.383 47.692 

219.148 77.302 39.942 59.553 

181.082 71.482 57.049 101.994 

161.052 82.696 46.013 86.935 

170.022 90.905 37.498 67.982 

Key singlestep calculation times with the 1x1 case run an unloaded Sun 3/260 (similar performance-wise to a single 
Symult s2010 node) for comparison. The Jacobian rows were distributed in block-linea.r form, with B = 9, reflecting the 
distillation-tray structure. The Jacobian columns were scattered. This is an seven column simulation of eight alcohols, 
with a total of 1,001 trays. See [13] for more on data distributions. 
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Figure 0. Major computational blocks of a 
Single Integration Step. 

Error Estimates I Convergence Tests 
Step-size Selection, etc. 

I 

I 

U 
LU Factorization I Procedure 

I Forward I Back I Solution Step 

A single step in the integration begins with a number of 
BDF-related computations, including the solution “predic- 
tion” step. Then, ”correction” is achieved through New- 
ton iteration steps, each involving a Jacobian computation, 
and linear-system solution (LU factorization plus forward- 
/ back-solves). The computation of the Jacobian in turn 
relies upon multiple independent residual calculations, as 
shown. The three items enclosed in the dashed oval (Ja- 
cobian computation (through at-most N Residual compu- 
tations), and LU factorization) are, in practice, computed 
less often than the others- the old Jacobian matrixis used 
in the iteration loop until convergence slows intolerably. 


