
Concurrent DASSL Applied to Dynamic Distillation Clolumn Simulation

Anthony Skjellum Manfred Morari

California Institute of Technology
Chemical Engineering; mail code 210-41

Pasadena, California 91125
e-mail: tony@perseus. ccsf. caltech. edu

Abstract

The accurate, high-speed solution of systems of or-
dinary differential-algebraic equations (DAE’s) of low
index is of great importance in chemical, electrical and
other engineering disciplines. Petzold’s Fortran-based
DASSL is the most widely used sequential code for
solving DAE’s. We have devised and implemented a
completely new C code, Concurrent DASSL, specifi-
cally for multicomputers and patterned on DASSL. In
this work, we address the issues of data distribution
and the performance of the overall algorithm, rather
than just that of individual steps. Concurrent DASSL
is designed ils an open, application-independent envi-
ronment below which linear algebra algorithms may be
added in addition to standard support for dense and
sparse algorithms. The user may furthermore attach
explicit data interconversions between the main com-
putational steps, or choose compromise distributions.
A “problem formulator” (simulation layer) must be
constructed above Concurrent DASSL, for any specific
problem domain. We indicate performance for a par-
ticular chemical engineering application, a sequence of
coupled distillation columns. Future efforts are cited
in conclusion.

Introduction

In this paper, we discuss the design of a general-
purpose integration system for ordinary differential-
algebraic equations of low index, following up on
our more preliminary discussion in [16]. The new
solver, Concurrent DASSL, is a parallel, Glanguage
implementation of the algorithm codified in Petzold’s
DASSL, a widely used Fortran-based solver for DAE’s

[11,4], and based on a loosely synchronous model of
communicating sequential processes [9]. Concurrent
DASSL retains the sa,me numerical properties as the
sequential algorithm, but introduces important new
degrees of freedom compared to it. We identify the
main computational steps in the integration process;
for each of these steps, we specify algorithms that have
correctness independent of data distribution.

We cover the computational aspects of the major
computational steps, ,and their data distribution pref-
erences for highest performance. We indicate the
properties of the concurrent sparse linear algebra as
it relates to the rest of the calculation. We de-
scribe the proto-Cdyn simulation layer, a distillation-
simulation-oriented Concurrent DASSL driver which,
despite specificity, exposes important requirements for
concurrent solution oil ordinary DAE’s; the ideas be-
hind a template formulation for simulation are, for ex-
ample, expressed.

We indicate formulation issues and specific features of
the chemical engineering problem - dynamic distilla-
tion simulation. We indicate results for an example
in this area, which demonstrates the feasibility of this
method, but the need for additional future work, both
on the sparse linear algebra, and on modifying the
DASSL algorithm to reveal more concurrency, thereby
amortizing the cost alf linear algebra over more time
steps in the algorithm.

Mat hematical Formulation

We address the following initial-value problem consist-
ing of combinations of N linear and nonlinear coupled,
ordinary differential-algebraic equations over the inter-
val t E [To, TI]:

595
0-8186-21 13-3/90/0000/0595$01 .OO (8 1990 IEEE

rVP(F, U, zo, [To, T11; N, P) :

F(Z, Z , U ; ~) = Q , t E [To,Ti],
Z(t = To) E zo, Z(t = To) i o ,

(1)

with unknown state vector Z(t) E SN, known ex-
ternal inputs u(t) E S p , where F(o;t) H SN and
Z O , & E SN are the given initial-value, derivative vec-
tors, respectively. We will refer to Equation 1’s devi-
ation from Q as the residuals or residual vector. Eval-
uating the residuals means computing F(Z, Z, U; t)
(“model evaluation”) for specified arguments Z, Z, U

and t .
DASSL’s integration algorithm .can be used to solve
systems fully implicit in Z and Z and of index zero or
one, and specially structured forms of index two (and
higher) [4, Chapter 51, where the index is the minimum
number of times that part or all of Equation 1 must
be differentiated with respect to t in order to express
2 as a continuous function of Z and t [4, page 171.

By substituting a finite-difference approximation Viz
for 2, we obtain:

F n (Z i ; ~ i) E F (Z i , V i Z ; , q ; t = ~ i) = 0, (2)

a set of (in general) nonlinear statacazed equations. A
sequence of Equation 2’s will have to be solved, one
at each discrete time t = rj, i = 1 , 2 , . . . ,M1, in the
numerical approximation scheme; neither M nor the
q ’ s need be pre-determined. In DASSL, the variable
step-size integration algorithm picks the rj’s as the in-
tegration progresses, based on its assessment of the lo-
cal error. The discretization operator for 2, D, varies
during the numerical integration process and hence is
subscripted as Di.
The usual way to solve an instance of the staticieed
equations, Equation 2, is via the familiar Newton-
Raphson iterative method (yielding Zi = 27):

z;+l = z; - c { v ~ F ~ (z ~ ~ ; r i) } - l ~ D (~ ; ; r j) ,

k = o , l , ... (3)

given an initial, sufficiently goad approximation Zp .
The classical method is recovered for m k = k and
c = 1, whereas a modified (damped) Newton-Raphson
method results for mk < k (respectively, c < 1).
In the original DASSL algorithm and in Concurrent
DASSL, the Jacobian VZFD(Z) is computed by fi-
nite differences rather than analytically; this departure
leads in another sense to a modified Newton-Raphson
method even though m k = k and c = 1 might al-
ways be satisfied. For termination, a limit k <_ k*

‘and more at trial timepoints which are discarded by the
integration algorithm.

is imposed; a further stopping criterion of the form
llZF+l - 2411 < 6 is also incorporated (see Brenan et
al. [4, pages 121-1241).
Following Brenan et al., the approximation Viz is
replaced by a BDF-generated linear approximation,
a Z + p, and the Jacobian

From this approximation, we define F,,p(Z; ~ i) in the
intuitive way. We then consider Taylor’s Theorem with
remainder, from which we can easily express a forward
finite-difference approximation for each Jacobian col-
umn (assuming sufficient smoothness of F,,p) with a
scaled difference of two residual vectors:

By picking bj proportional to ej , the j t h unit vector in
the natural basis for g N , namely 6j = dj ej , Equation 5
yields a first-order-accurate approximation in dj of the
j t h column of the Jacobian matrix:

Each of these N Jacobian-column computations is in-
dependent and trivially parallelizable. It’s well known,
however, that for special structures such as banded and
block n-diagonal matrices, and even for general sparse
matrices, a single residual can be used to generate mul-
tiple Jacobian columns [4,8]. We discuss these issues
as part of the concurrent formulation section below.

The solution of the Jacobian linear system of equa-
tions is required for each k-iteration, either through
a direct (e.g., LU-factorization) or iterative (e .g . ,
preconditioned-conjugategradient) method. The
most advantageous solution approach depends on N as
well as special mathematical properties and/or struc-
ture of the Jacobian matrix VZF,. Together, the
inner (linear equation solution) and outer (Newton-
Raphson iteration) loops solve a single time point;
the overall algorithm generates a sequence of solution
points Zi, i = 0, 1, . . . , M .
In the present work, we restrict our attention to di-
rect, sparse linear algebra as described in [13], al-
though future versions of Concurrent DASSL will sup-
port the iterative linear algebra approaches by Ashby,
Lee, Brown, Hindmarsh et al. [3,5]. For the sparse

5%

LU factorization, the factors are stored and reused in
the modified Newton scenario. Then, repeated use of
the old Jacobian implies just a forward and back-solve
step using the triangular factors L and U. Practically,
we can use the Jacobian for up to about five steps [4].
The useful lifetime of a single Jacobian evidently de-
pends somewhat strongly on details of the integration
procedure [4].

proto-Cdyn - Simulation Layer

To use the Concurrent DASSL system on other than
toy problems, a simulation layer must be constructed
above it. The purpose of this layer is to accept a
problem specification from within a specific problem
domain, and formulate that specification for concur-
rent solution as a set of differential-algebraic equa-
tions, including any needed data. On one hand, such
a layer could explicitly construct the subset of equa-
tions needed for each processor, generate the appro-
priate code representing the residual functions, and
create a set of node programs for effecting the sim-
ulation. This is the most flexible approach, allowing
the user to specify arbitrary nonlinear DAE’s. It has
the disadvantage of requiring a lot of compiling and
linking for each run in which the problem is changed
in any significant respect (including but not limited
to data distribution), although with sophisticated tac-
tics, parametric variations within equations could be
permitted without recompiling from scratch, and in-
cremental linking could be supported.

We utilize a template-based approach here, as we do
in the Waveform-Relaxation paradigm for concurrent
dynamic simulation [15]. This is akin to the ASCEND
11 methodology utilized by Kuru and many others [lo].
It is a compromise approach from the perspective of
flexibility; interesting physical prototype subsystems
are encapsulated into compiled code as templates. A
template is a conceptual building block with states,
non-states, parameters, inputs and outputs (see be-
low). A general network made from instantiations
of templates can be constructed at runtime without
changing any executable code. User input specifies the
number and type of each template, their interconnec-
tion pattern, and the initial value of systemic states
and extraneous (non-state) variables, plus the value of
adjustable parameters and more elaborate data, such
as physical properties. The addition of templates re-
quires new subroutines for the evaluation of the resid-
uals of their associated DAE’s, and also for interfac-
ing to the remainder of the system (e.g., parsing of
user input, interconnectivity issues). With suitable
automated tools, this addition process can be made

straightforward to tht, user.

Importantly, the use of a templatebased methodology
does not imply a degradation in the numerical qual-
ity of the model equ<ations or solution method used.
We are not obliged to tear equations based on tem-
plates or groups of templates as is done in sequential-
modular simulators [19,6] , where “sequential” refers
in this sense to the stepwise updating of equation sub-
sets, without connection to the number of computers
assigned to the problem solution.

Ideally, the simulation layer could be made universal.
That is, a generic layer of high flexibility and structural
elegance would be created once and for all (and with-
out predilection for a specific computational engine).
Thereafter, appropriake templates would be added to
articulate the simulator for a given problem domain.
This is certainly possiible with high-quality simulators
such as ASCEND 11 ilnd Chemsim (a recent Fortran-
based simulator driving DASSL and MA28 [2,11,7]),
Even so, we have chosen to restrict our efforts to
a more modest simulation layer, called proto-Cdyn,
which can create arbitrary networks of coupled distil-
lation columns. This restricted effort has required sig-
nificant effort, and already allows us to explore many
of the important issues of concurrent dynamic simu-
lation. General-purpose simulators are for future con-
sideration. They must address significant questions of
user-interface in addition to concurrency-formulation
issues.

In the next paragraphs, we describe the important fea-
tures of protcFCdyn. In doing so, we indicate impor-
tant issues for any Concurrent DASSL driver.

Template S truct ur’e

A template is a prototype for a sequence of DAE’s
which can be used repeatedly in different instantia-
tions. Normally, but not always, the template cor-
responds to some subsystem of a physical-model de-
scription of a system, like a tank or distillation tray.
The key characteristics of a template are: the number
of integration states it incorporates (typically fixed) ,
the number of non-stake variables it incorporates (t y p
ically fixed), its input and output connections to other
templates, and external sources (forcing functions) and
sinks. State variables participate in the overall DASSL
integration process. Non-states are defined as vari-
ables which, given the states of a template alone, may
be computed uniquely. They are essentially local tear
variables. It is up to t8he template designer whether or
not to use such local tear variables: They impact the
numerical quality of the solution, in principle. Alter-
native formulations, where all variables of a template
are treated as states, can be posed, and comparisons

made. Because of the superlinear growth of linear al-
gebra complexity, the introduction of extra integra-
tion states must be justified on the basis of numerical
accuracy. Otherwise, they artificially slow down the
problem solution, perhaps significantly. Non-states
are extremely convenient, and practically useful; they
appear in all the dynamic simulators we have come
across.

The template state and non-state structure implies a
twephase residual computation. First, given a state
2, the non-states of each template are updated on
a template-by-template basis. Then, given its states
and non-states, inputs from other templates and ex-
ternal inputs, each template’s residuals may be com-
puted. In the sequential implementation, this poses no
particular nuisances, other than two evaluation loops
over all templates. However, in concurrent evaluation,
a communication phase intervenes between non-state
updates and residual updates. This communication
phase transmits all states and non-states appearing as
outputs of templates to their corresponding inputs at
other templates. This transmission mechanism is con-
sidered further below under concurrent formulation.

Problem Preformulation

In general, the “optimal” ordering for the equations of
a dynamic simulation will in general be too difficult to
establish’, because of the NP-hard issues involved in
structure selection. However, many important heuris-
tics can be applied, such as those that precedence or-
der the nonlinear equations, and those that permute
the Jacobian structure to a more nearly triangular or
banded form [8]. For the proto-Cdyn simulator, we
skirt these issues entirely, because it proves easy to ar-
range a network of columns to produce a “good struc-
ture” - a main block tri-diagonal Jacobian structure
with off- block- diagonal structure for the inter column
connections, simply by taking the distillation columns
with their states in tray-by-tray, top-down (or bottom-
up) order.

Given a set of DAE’s, and an ordering for the equa-
tions and states (i.e., rows and columns of the Jaco-
bian, respectively), we need to partition these equa-
tions between the multicomputer nodes, according to
a two-dimensional process grid of shape PxQ = R.
The partitioning of the equations forms, in main part,
the so-called “concurrent database.” This grid struc-
ture is illustrated in [13, Figure 2.1. In proto-Cdyn, we

20ptimality p e r s e hinges on what our objective is. If, for
instance, we want minimum time for LU factorization, still the
objective of minimum fill-in does not guarantee minimum time
in a concurrent setting.

utilize a single process grid for the entire Concurrent
DASSL calculation. That is, we don’t currently ex-
ploit the Concurrent DASSL feature which allows ex-
plicit transformations between the main calculational
phases (see below). In each process column, the en-
tire set of equations is to be reproduced, so that any
process column can compute not only the entire resid-
ual vector for a prediction calculation, but also, any
column of the Jacobian matrix.

A mapping between the global equations and local
equations must be created. In the general case, it will
be difficult to generate a closed-form expression for ei-
ther the global-to-local mapping or its inverse (that
also require < O (N) storage). At most, we will have
on a hand a partial (or weak) inverse in each process, so
that the corresponding global index of each local index
will be available. Furthermore, in each node, a partial
global-to-local list of indices associated with the given
node will be stored in global sort order. Then, by bi-
nary search, a weak global-to-local mapping will be
possible in each process. That is, each process will
be able to identify if a global index resides within it,
and the corresponding local index. A strong mapping
for row (column) indices will require communication
between all the processes in a process row (respec-
tively, column). In the foregoing, we make the tacit
assumption that is is an unreasonable practice to use
storage proportional to the entire problem size N in
each node, except if this unscalability can be removed
cheaply when necessary for large problems.

The proto-Cdyn simulator works with templates of
specific structure - each template is a form of a dis-
tillation tray and generates the same number of inte-
gration states. It therefore skirts the need for weak
distributions. Consequently, the entire row mapping
procedure can be accomplished using the closed-form
general two-parameter distribution function family [
described in [13], where the block size B is chosen as
the number of integration states per template. The
column mapping procedure is accomplished with the
one-parameter distribution function family < also de-
scribed in [13]. The effects of row and column degree-
of-scattering are described in [13] with attention to
linear algebra performance.

Concurrent Formulation

Overview

Next, we turn to Equation 1’s (that is, IVP’s) concur-
rent numerical solution via the DASSL algorithm. We
cover the major computational steps in abstract, and
we also describe the generic aspects of proto-Cdyn in

this connection. In the subsequent section, we discuss
issues peculiar to the distillation simulation.

Broadly, the concurrent solution of IVP consists of
three block operations: startup, dynamic simulation,
and a cleanup phase. Significant concurrency is appar-
ent only in the dynamic simulation phase. We will as-
sume that the simulation interval requested generates
enough work so that the startup and cleanup phases
prove insignificant by comparison and consequently
pose no serious Amdahl’s-law bottleneck. Given this
assumption, we can restrict our attention to a single
step of IVP as illustrated schematically in Figure 0.

In the startup phase, a sequential host program inter-
prets the user specification for the simulation. From
this it generates the concurrent database: the tem-
plates and their mutual interconnections, data needed
by particular templates, and a distribution of this in-
formation among the processes that are to participate.
The processes are themselves spawned and fed their re-
spective databases. Once they receive their input in-
formation, the processes rebuild the data structures
for interfacing with Concurrent DASSL, and for gener-
ating the residuals. Tolerances, and initial derivatives
must be computed and/or estimated. Furthermore, in
each process column, the processes must rendezvous to
finalize their communication labeling for the transmis-
sion of states and non-states to be performed during
the residual calculation. This provides the basis for
a reactive, deadlock-free update procedure described
below.
The cleanup phase basically retrieves appropriate state
values and returns them to the host for propagation
to the user. Cleanup may actually be interspersed in-
termittently with the actual dynamic simulation. It
provides simple bookkeeping of the results of simula-
tion and terminates the concurrent processes at the
simulation’s conclusion.

The dynamic simulation phase consists of repetitive
prediction and correction steps, and marches in time.
Each successful time step requires the solution of one
or more instances of Equation 2 - additional timesteps
that converge but fail to satisfy error tolerances, or fail
to converge quickly enough, are necessarily discarded.
In the next section, we cover the aspects of these o p
erations in more detail, for a single step.

Single Integration Step

The Integration Computations of DASSL are a
fixed leading-coefficient, variable-stepsize and order,
backward-differentiation-formula (BDF) implicit inte-
gration scheme, described clearly in [4, Chapter 51 and

outlined in [ll]. Coiicurrent DASSL faithfully imple-
ments this numerical method, with no significant dif-
ferences. Test problems run with the DASSL Fortran
code and the new C code (on one and multiple com-
puters) certify this degree of compatibility.

The sequential time complexity of the integration com-
putations is O (N) , id considered separately from the
residual calculation called in turn, which is also nor-
mally O (N) (see below). We pose these operations
on a PxQ = R grid, where we assume that each pro-
cess column can compute complete residual vectors.
Each process column repeats the entire prediction o p
erations: there is no speedup associated with Q > 1,
and we replicate all DASSL BDF and predictor vec-
tors in each process column. Taller, narrower grids are
likely to provide the overall greatest speedup, though
the residual calculation may saturate (and slow down
again) because of excessive vertical communication re-
quirements - It’s definitely not true that the Rx1
shape is optimal in at11 cases.

The distribution of coefficients in the rows has no im-
pact on the integration operations, and is dictated
largely by the requirements of the residual calculation
itself. In practical problems, the concurrent database
cannot be reproduced in each process (cf., [18]), so a
given process will onlly be able to compute some of the
residuals. Furthermore, we may not have complete
freedom in scattering these equations, because there
will often be a tradeoff between the degree of scatter-
ing and the amount of communication needed to form
the entire residual vector.
The amount of O (N) integration-computation work is
not terribly large - there is consequently a non-trivial
but not tremendous effort involved in the integration
computations. (Residual computations dominate in
many if not most circumstances.) Integration oper-
ations consist mainhy of vector-vector operations not
requiring any interprocess communication and, in ad-
dition, fixed startup costs. Operations include predic-
tion of the solution at the time point, initiation and
control of the Newton iteration that “corrects” the so-
lution, convergence and error-tolerance checking, and
so forth. For example, the approximation Vi is cho-
sen within this bloclk using the BDF formulas. For
these operations, each process column currently oper-
ates independently, and repetitively forms the results.
Alternatively, each process column could stride with
step Q , and row-combines could be used to propagate
information across the columns [14]. This alternative
would increase speed for sufficiently large problems,
and can easily be implemented. However, because of
load-imbalance in other stages of the calculation, we
are convinced that including this type of synchroniza-

tion could be an overall negative rather than positive
to performance. This alternative will nevertheless be
a future user-selectable option.
Included in these operations are a handful of norm
operations, which constitute the main interprocess
communication required by the integration computa-
tions step; norms are implemented concurrently via
recursive doubling (combine) [17,14]. Actually, the
weighted norm used by DASSL requires two recur-
sive doubling operations, each combines a scalar: first
to obtain the vector coefficient of maximum absolute
value, then to sum the weighted norm itself. Each can
be implemented as Q independent column combines,
each producing the same repetitive result, or a single
&-striding norm, that takes advantage of the repeti-
tion of information, but utilizes two combines over the
entire process grid. Both are supported in Concurrent
DASSL, although the former is the default norm. As
with the original DASSL, the norm function can be
replaced, if desired.

Single Residuals are computed in prediction, and
as needed during correction. Multiple residuals are
computed when forming the finitedifference Jacobian.
Single residuals are computed repetitively in each pro-
cess column, whereas the multiple residuals of a Jaco-
bian computation are computed uniquely in the pro-
cess columns.

Were, we consider the single residual computation re-
quired by the integration computations just described.
Given a state vector Z,.and approximation for Z, we
need to evaluate F(Z,Z,.ri) E Fn(Z,.ri). The ex-
ploitable concurrency available in this step is strictly
a function of the model equations. As defined, there
are N equations in this system, so we expect to use
at best N computers for this step. Practically, there
will be interprocess communication between the pro-
cess rows, corresponding to the connectivity among the
equations. This will place an upper limit on P 5 K
(the number of row processes) that can be used before
the speed will again decrease: we can expect efficient.
speedup for this step provided that the cost of the
interprocess communication is insignificant compared
to the single-equation grain size. As estimated in [14],
the granularity Tcomm/Tca~c for the Symult s2010 mul-
ticomputer is about fifty, so this implies about four
hundred and fifty floating point operations per commu-
nication in order to achieve 90% concurrent efficiency
in this phase.

Jacobian Computation There is evidently much
more available concurrency in this computational step

than for the single residual and integration operations,
since, for finite differencing, N independent residual
computations are apparently required, each of which
is a single-state perturbation of 2. Based on our
overview of the residual computation, we might naively
expect to use K x N processes effectively; however,
the simple perturbations can actually require much
less model evaluation effort because of latency [8,10],
which is directly a function of the sparsity structure of
the model equations, Equation 1. In short, we can at-
tain the same performance with much less than K x N
processors.

In general, we’d like to consider the Jacobian compu-
tation on a rectangular grid. For this, we can con-
sider using P x Q = R to accomplish the calculation.
With a general grid shape, we exploit some concur-
rency in bolh the column evaluations and in the resid-
ual computations, with T j a c , p s ~ = ~ the time for this
step, S J ~ ~ , P ~ Q = R the corresponding speedup, Tres,p
the residual evaluation time with P row processes, and
Sres,p the apparent speedup compared to one row pro-
cess:

assuming no shortcuts are available as a result of la-
tency. This timing is exemplified in the example below,
which does not take advantage of latency.

There is additional work whenever the Jacobian
structure is rebuilt for better numerical stability in
the subsequent LU factorization (A-mode). Then,
O (N 2 / P Q) work is involved in each process in the fill-
ing of the initial Jacobian. In the normal case, work
proportional to the number of local non-zeroes plus
fill elements is incurred in each process for refilling
the sparse Jacobian structure.

Exploitation of Latency has been considered in
the Concurrent DASSL framework. We currently
have experimental versions of two mechanisms, both
of which are designed to work with the sparsematrix
structures associated with direct, sparse LU factoriza-
tion (see [13]). The first is called “bandlike” Jacobian
evaluation. For a banded Jacobian matrix of band-
width b , only b residuals are needed to evaluate the
Jacobian. This feature is incorporated into the origi-
nal DASSL, along with a LINPACK banded solver. In
Concurrent DASSL, collections of Jacobian columns
are placed in each process column, according to the col-
umn data distribution, which thus far is picked solely
to balance LU factorization and triangular-solve per-
formance [13]. In each process column, there will be

“compatible” columns that can be evaluated using a
single, composite perturbation. Identification of these
compatible columns is accomplished by checks on the
bandwidth overlap condition. Columns that possess
off-band structure are stricken from the list and eval-
uated separately. Presumably, a heuristic algorithm
could be employed further to increase the size of the
compatible sets, but this is yet to be implemented.
The same algorithm “greedy” algorithm of Curtis et
al. used for the sequential reduction of Jacobian com-
putation effort would be applied independently to each
process column (see comments by [8, Section 12.31).
Then, clearly, the column distribution effects the per-
formance of the Jacobian computation, and the linear-
algebra performance can no longer be viewed so readily
in isolation.

We have also devised a “blocklike” format, which will
be applied to block n-diagonal matrices that include
some off-block entries as well. Optimally, fewer resid-
ual computations will be needed than for the banded
case. The same column-by-column compatible sets will
be created, and the Curtis algorithm can also be ap-
plied. Hopefully, because of the less restrictive com-
patibility requirement, the “blocklike” case will pro-
duce higher concurrent speedups than that attained
using the conservative bandlike assumption for JaccF
bians possessing blocklike structure. Comparative re-
sults will be presented in a future paper.

The LU Factorization Following the philosophy
of Harwell’s MA28, we have interfaced a new con-
current sparse solver to Concurrent DASSL, the de-
tails of which are quoted elsewhere in this proceedings
[13]. In short, there is a two-step factorization proce-
dure: A-mode, which chooses stable pivots according
to a user-specified function, and builds the sparse data
structures dynamically; and B-mode, which reuses the
data structures and pivot sequence on a similar ma-
trix, but monitors stability with a growth-factor test.
A-mode is repeated whenever necessary to avoid in-
stability. We expect sub-cubic time complexity and
sub-quadratic space complexity in N for the sparse
solver. We attain acceptable factorization speedups
for systems that are not narrow banded, and of suf-
ficient size. We intend to incorporate multiple pivot-
ing heuristic stategies, following [l], further to improve
performance of future versions of the solver. This may
also contribute to better performance of the triangular
solves.

Forward- and Back-solving Steps
tored form

take the fac-

PRAPT, = L U ,

with L unit lower-triamgular, fi upper-triangular, and
permutation matrices PR, Pc, and solve A c = b , us-
ing the implicit pivolhg approach described in [13].
Sequentially, the triangular solves each require work
proportional to the number of entries in the respec-
tive triangular factor, including fill-in. We have yet to
find an example of sufficient size for which we actually
attain speedup for these operations, at least for the
sparse case. At most, we try to prevent these opera-
tions from becoming competitive in cost to the B-mode
factorization; we detail these efforts in [13]. In brief,
the optimum grid shape for the triangular solves has
Q = 1, and P somewhat reduced than what we can
use in all the other steps. As stated, P small seems
better thus far, though for many examples, the in-
creasing overhead as (a function of increasing P is not
unacceptable (see [1311 and the example below).

Residual Communkation is an important aspect
of the proteCdyn layer. As indicated in the s tar tup
phase discussion, the, members of a process column
initially share informcation about the groups of states
and non-states they will exchange during a residual
computation. For residual communication, a reactive
transmission mechaniism is employed, to avoid dead-
locks. Each process transmits its next group of states
to the appropriate process and then looks for any re-
ceipt of state information. Along with the state val-
ues are indices that directly drive the destinations for
these values. This index information is shared during
the startup phase and allows the messages to drive the
operation. Through non-blocking receives, this proce-
dure avoids problems of transmission ordering. Re-
gardless of the template structure, at most one send
and receive is needed between any pair of column pro-
cesses.

Chemical Engineering Example

The algorithms and formalism needed to run this ex-
ample amount to about 70,000 lines of C code includ-
ing the simulation layer, Concurrent DASSL, the linear
algebra packages, ancl support functions [14,13,12].

In this simulation, we consider seven distillation
columns arranged in a tree-sequence [12], work-
ing on the distillation of eight alcohols: methanol,
ethanol, propan-1-011, propan-2-01, butan-1-01, 2-
methyl propan-1-01, butan-sol, and 2-methyl propan-
2-01. Each column h i a s 143 trays. Each tray is ini-
tialized to a non-steady condition, and the system is
relaxed to the steady state governed by a single feed
stream to the first column in the sequence. This setup

601

generates suitable dynamic activity for illustrating the
cost of a single “transient” integration step.
We note the performance in Table 0. Because we
have not exploited latency in the Jacobian computa-
tion, this calculation is quite expensive, as seen for
the sequential times on a Sun 31260 depicted there.
(The timing for the Sun 3/260 is quite comparable
to a single Symult s2010 node and was lightly loaded
during this test run.) As expected, Jacobian calcula-
tions speedup efficiently, and we are able to get a p
proximately a speedup of 100 for this step using 128
nodes. The A-mode linear algebra also speeds up sig-
nificantly. The B-mode factorization speeds up negli-
gibly and quickly slows down again for more than 16
nodes. Likewise, the triangular solves are significantly
slower than the sequential time. It should be noted
that B-mode reflects two orders of magnitude speed
improvement over A-mode. This reflects the fact that
we are seeing almost linear time complexity in €3-mode,
since this example has a narrow block tri-diagonal Ja-
cobian with too little off-diagonal coupling to gener-
ate much fill-in. It seems hard to imagine speeding
up B-mode for such an example, unless we can exploit
multiple pivots. We expect multiple-pivot heuristics
to do reasonably well for this case, because of its nar-
row structure, and nearly block tri-diagonal structure.
We have used Wilson Equation Vapor-Liquid Equilib-
rium with the Antoine Vapor equation. We have found
that the thermodynamic calculations were much less
demanding than we expected, with bubble-point com-
putations requiring “1+? iterations to converge. Con-
sequently, there was not the greater weight of Jacobian
calculations we expected beforehand. Our model as-
sumes constant pressure, and no enthalpy balances.
We include no flow dynamics and include liquid and
vapor flows as states, because of the possibility of feed-
backs.
Were we to utilize latency in the Jacobian calcula-
tion, we could reduce the sequential time by a fac-
tor of about 100. This improvement would also carry
through to the concurrent times for Jacobian solution.
At that ratio, Jacobian computation to B-mode fac-
torization has a-sequential ratio of about 1O:l. As is,
we achieve legitimate speedups of about five. We ex-
pect to improve these results using the ideas quoted
elsewhere here and in [13].
From a modeling point-of-view, two things are im-
portant to note. First, the introduction of more
non-ideal thermodynamics would improve speedup,
because these calculations fall within the Jacobian
computation phase and Single- Residu al Computation.
Furthermore, the introduction of a more realistic
model will likewise bear on concurrency, and likely im-

prove it. For example, introducing flow dynamics, en-
thalpy balances and vapor holdups makes the model
more difficult to solve numerically (higher index). It
also increases the chance for a wide range of step-sizes,
and the possible need for additional A-mode factoriza-
tions to maintain stability in the integration process.
Such operations are more costly, but also have a higher
speedup. Furthermore, the more complex models will
be less likely to have near diagonal dominance; con-
sequently more pivoting is to be expected, again in-
creasing the chance for overall speedup compared to
the sequential case. Mainly, we plan to consider the
Waveform-€&laxation approach more heavily, and also
to consider new classes of dynamic distillation simula-
tions with Concurrent DASSL [12].

Conclusions

We have developed a high-quality concurrent code,
Concurrent DASSL, for the solution of ordinary
differential-algebraic equations of low index. This
code, together with appropriate linear algebra and
simulation layers, allows us to explore the achievable
concurrent performance of non-trivial problems. In
chemical engineering, we have applied it thus far to
a reasonably large, simple model of coupled distilla-
tion columns. We are able to solve this large problem,
which is quite demanding on even a large mainframe
because of huge memory requirements and non-trivial
computational requirements; the speedups achieved
thus far are legitimately at least five, when compared
to an efficient sequential implementation. This illus-
trates the need for improvements to the linear algebra
code, which are feasible because sparse matrices will
admit multiple pivots heuristically. It also illustrates
the need to consider hidden sources of additional time-
like concurrency in Concurrent DASSL, perhaps allow-
ing multiple right-hand sides to be attacked simultane-
ously by the linear algebra codes, and amortizing their
cost more efficiently. Furthermore, the performance
points up the need for detailed research into the novel
numerical techniques, such as Waveform Relaxation,
which we have begun to do as well [15].

Acknowledgements

The first author acknowledges the kind assistance and
helpful cooperation of Lionel F. Laroche and Hen-
rik W. Andersen in the area of dynamic simulation
for chemical process flowsheets. We have spent many
hours together over the last twenty months in the dis-
cussion of design goals, features, algorithms, on re-
alizations, post-mortems and re-designs, and in over-

I Table 0. Order 9009 Dynamic Simulation Data
1

I
I 1x1

8x1

16x1

32x P
64x1

32x4

64x2

128x1

Jacobian

64672.2

6870.82

3505.13

1829.93

1060.40

491.526

520.029

608.946

(time in seconds)

A-mode B-mode Back-Solve Solve

5089.96 61.82 2.5 4.7

1024.41 47.827 15.619 30.825

547.625 52.402 19.937 39.491

316.544 56.713 24.383 47.692

219.148 77.302 39.942 59.553

181.082 71.482 57.049 101.994

161.052 82.696 46.013 86.935

170.022 90.905 37.498 67.982

Key singlestep calculation times with the 1x1 case run an unloaded Sun 3/260 (similar performance-wise to a single
Symult s2010 node) for comparison. The Jacobian rows were distributed in block-linea.r form, with B = 9, reflecting the
distillation-tray structure. The Jacobian columns were scattered. This is an seven column simulation of eight alcohols,
with a total of 1,001 trays. See [13] for more on data distributions.

coming the stumbling blocks in our respective simula-
tion codes. Thanks also to Prof. A. W. Westerberg of
CMU, who offered helpful suggestions when he visited
Caltech in 1989.
Thanks to Drs. K. E. Brenan, S. L. Campbell and
Linda Petzold, for sharing advance drafts of their
monograph Numerical Solution of Initial- Value Prob-
lems in Diflerential-Algebraic Equations, which proved
very helpful in the creation of Concurrent DASSL.
The first author acknowledges partial support un-
der DOE grants DEFG03-85ER25009 and DEAC03-
85ER40050.
Concurrent DASSL was developed using machine re-
sources made available by the Caltech Computer Sci-
ence sub-Micron System Architectures Project and the
Caltech Concurrent Supercomputer Facilities (CCSF) .

References

[l] G. Alaghband. Parallel pivoting combined with
Parallel parallel reduction and fill-in control.

Computing, 11:201-221, 1989.

[2] H. W. Andersen and L. F. Laroche, 1988-1990.
- Private Communications on Chemsim.

[3] S. Ashby, 1990. - Private Communication on

Iterative DASSL.

[4] K . E. Brenan, S. IL. Campbell, and L. R. Petzold.
Numerical Solution of Initial- Value Problems in
Dinerential-Algebraic Equations. North Holland
Elsevier, 1989.

[5] P. N. Brown and A. C. Hindmarsh. Reduced
storage matrix methods in stiff ODE systems. J.
Appl. Math. & Comp., (to appear).

[6] W. J . Cook. A imodular dynamic simulator for
distillation systenns. Master’s thesis, Case West-
ern Reserve University, 1980. Chemical Engineer-
ing.

[7] I. S. Duff. MA28 .- a set of fortran subroutines for
sparse unsymmetric linear equations. Technical
Report R8730, A%RE, HMSO, London, 1977.

[8] I. S. Duff, A. M. IErisman, and J. K. Reid. Direct
Methods for Sparse Matrices. Oxford University
Press, 1986.

[9] C. A. R. Hoare. Communicating sequential pro-
cesses. CACM, 2 1(8):666-677, August 1978.

[lo] S. Kuru. Dynamic Simulation with an Equation
Based Flowsheeiiiag Sysiem. PhD thesis, Carnegie
Mellon University, 1981. Chemical Engineering
Department.

[ll] L. R. Petzold. DASSL: Differential algebraic sys-
tem solver. Technical Report Category #D2A2,
Sandia National Laboratories - Livermore, 1983.

Concurrent Dynamic Simulation:
Multicomputer Algorithms Research Applied to
Differential-Algebraic Process Systems in Chemi-
cal Engineering. PhD thesis, California Institute
of Technology, May 1990. Chemical Engineering.

[13] A. Skjellum and A. P. Leung. LU factorization of
sparse, unsymmetric jacobian matrices on multi-
computers: Experience, Strategies, Performance.
In Proceedings of the Fifth Disiributed Memory
Computing Conference (DMCCS). in press, April
1990.

[12] A. Skjellum.

[14] A. Skjellum and A. P. Leung. Zipcode: a
portable multicomputer communication library
atop the reactive kernel. In Proceedings of the
Fifth Distributed Memory Compuiing Conference
(DMCCS). in press, April 1990.

[15] A. Skjellum, M. Morari, and S. Mattisson. Wave-
form Relaxation for Concurrent Dynamic Simula-
tion of Distillation Columns. In Proceedings ofthe
Third Conference on Hypercube Concurrent Com-
puters and Applicaizons (HCCA3), pages 1062-
1071. ACM Press, January 1988.

[16] A. Skjellum, M. Morari, S. Mattisson, and L. Pe-
terson. Concurrent DASSL: Structure, Applica-
tion, and Performance. In Proceedings of the
Fourth Conference on Hypercubes, Concurrent
Computers and Applications (HCCAd), pages
1321-1328. Golden Gate Enterprises, March 1989.
Simulation Minisymposium.

[17] H. S. Stone. High-Performance Computer Archi-
t ectu re. Addison- Wesley, 1987.

[I81 E. F. Van de Velde and J . Lorenz. Adaptive data
distribution for concurrent continuation. Tech-
nical Report CRPG89-4, California Institute of
Technology, 1989. Caltech/Rice Center for Re-
search in Parallel computation.

[19] A. W. Westerberg, H. P. Hutchison, R. L. Motard,
and P. Winter. Process jlowsheeting. Cambridge
University Press, 1979.

Figure 0. Major computational blocks of a
Single Integration Step.

Error Estimates I Convergence Tests
Step-size Selection, etc.

I

I

U
LU Factorization I Procedure

I Forward I Back I Solution Step

A single step in the integration begins with a number of
BDF-related computations, including the solution “predic-
tion” step. Then, ”correction” is achieved through New-
ton iteration steps, each involving a Jacobian computation,
and linear-system solution (LU factorization plus forward-
/ back-solves). The computation of the Jacobian in turn
relies upon multiple independent residual calculations, as
shown. The three items enclosed in the dashed oval (Ja-
cobian computation (through at-most N Residual compu-
tations), and LU factorization) are, in practice, computed
less often than the others- the old Jacobian matrixis used
in the iteration loop until convergence slows intolerably.

