
Parallel Algorithms for One and Two-Vehicle Navigation

Eitan Gurewitz*, Geoffrey Fox, Yiu-fai Wong

Caltech Concurrent Computation Program
California Institute of Technology

Mail Code 206-49, Pasadena, CA 91125

Abstract

A two vehicle navigator on a descrete space
is analyzed. The concept of linking time maps
as source to optimal path planning is discussed.
The rules for constructing these m a p are given
in a cellular automata mode. The implemen-
tation of these rules on a parallel computer is
presented.

1. Introduction.

In this study navigation means determina-
tion of a path on a navigation surface [NS] from
an origin point to a destination point. A cost
function is defined on the NS, measures the cost
of traveling a length segment. The cost can be:
time, length, hazard of traveling the segment
etc. An optimal path on the NS is a path along
which the integration of the cost function from
origin to destination is minimum. The objective
of a navigator is to find the optimal path under
the constraints set by the NS. The problem of
an optimal path for a single vehicle on a contin-
uous surface [l] as well as a discrete surfaces [a]
were solved. This study analyses the two vehicle
navigator and presents the linking time maps as
a tool to deal with these problems.

A discrete solution for navigation on a con-
tinuous space requires mapping of the space into
a finite graph. This is done by choosing a fi-
nite number of points {vi} on the surface as the
nodes of the graph. Each node is connected by
an edge to all the nodes which can be reached,
without traversing another node. The set of all
the nodes {wj} having a common edge with wi
is the set of wi nearest neighbors [nn(i)]. The
value wij of the cost of traveling aiong the di-
rected edge [vi, wj] is assigned to this directed
edge. This procedure maps the suiface onto a
directed graph, Fig. 1. Mapping the NS onto a
directed graph transfered the search for an opti-
mal path to the the search for an optimal path
on a directed graph. This search is solved by a

dynamic programing approach [3], where a "sig-
nal" is initialized at a source point and propa-
gates from a node to all its nn along the edges
joining them. The time the signal travels along
an edge is the weight of the directed edge. Every
node wi records the first time ti it was hit by the
signal. The graph in which all the nodes wi have
their correct time values t i is called: the linking
time map [LTM] with respect to the generating
node.

In fact the linking time ti at the node wi is
the cost of an optimal path from the source to
this node and it depends only on the weights of
the edges and the generating node. The linking
times ti and t j of two sequential nodes wi and
w j on an optimal path, where wi proceeds w j are
related by:

t j = ti + wij (*>

An optimal path from the origin to any
point on the graph is traced from that point back
to the origin. Every step is from a node w j (tj) to
a node wi(td) where ti and t j satisfy (*). Tracing
back ensures that one stays on an optimal path
initialized at the origin.

Let us call the traveling object a vehicle
and consider the case of two vehicles traveling
on the same NS. If the path of each vehicle in-
troduces restrictions to the path of the other ve-
hicle (e.g. collision avoidance) then a search for
an optimal solution is much more complicated.

The layout of this study is : In section
2 we discuss navigation of an autonomous ve-
hicle on an NS which is updated while travel-
ing. In section 3 we intoduce time and deal with
conflicts between vehicles. The resolution of a
conflict by imposing a delay on a vehicle is dis-
cussed and the paths solving a two vehicle nav-
igator are analysed. Section 4 outlines briefly
the algorithm for two vehicle navigator. Section
5 presents the cellular automata rules for con-
structing linking maps. Section 6 deals with the

140
0-8186-21 13-3/90/0000/0140$01 .OO Q 1990 IEEE

actual parallel implementations of the construc-
tion of linking maps, and section 7 presents the
simulation results.

Assuming the two vehicles start at the same
time, then time of travel is the time it takes
until both of them have arrived. This optimum
is restricted to non conflicting paths.

2. Autonomous vehicle in uncertain envi-
ronment

An autonomous vehicle in an uncertain en-
vironment start with an estimate of the edges
weights. The estimate reflects the prior knowl-
edge or model it has for the terrain to be trans-
versed. The estimate is improved as more infor-
mation is obtained. The vehicle knows its posi-
tion and destination and at each instance of time
the vehicle is doing the following: 1) updates
the database of the weights { w i j } . 2) Based on
the updated data it determines the optimal path
from its current position to the destination. 3)
Moves on the chosen optimal path. 4) Collects
data.

Updated weights { w i j } change the LTM,
but a change in the linking time of a node may
effect the linking times of only part of the other
nodes. In section 5 we show how to update the
LTM in a cellular automata fashion, based on
local decisions of each node.

The navigator for an autonomous vehicle is
based on the reversed linking time map [RLTM].
The construction of the RLTM is similar to the
construction of the LTM. Except that in con-
structing the RLTM the signal is initializing at
the destination point and propagates from vi to
vj with traveling time of wji . The path is traced
from the vehicle position toward the destination,
from vi with reversed linking time Oi to its near-
est neighbour vj with reversed linking time 0,
which satisfies:

0, = ei - wij

Whenever the vehicle gets new information it
updates the { w i j } database and its RLTM, and
determines an optimal path, Fig. 2.

3.
conflicting paths for two vehicles.

Navigation in Space-Time, and non

Assume that the cost function is time, i.e.
the weights { w i j } are the time of travel along
the corresponding edges. Then a navigator for
two vehicles aims to find two paths, one for each
vehicle, which yield the minimum time of travel.

A conflict between two paths occurs when
the two vehicles are at the same site at the same
time. The set of points on the graph edges is
partitioned into sites as follows. Each point
is associated to the nearest of the two nodes
terminating the edge. A conflict can occur ei-
ther: a) inside this site or b) a swap conflict on
the boundary between two sites. In the second
case the vehicles are going in opposite directions.
Let U:, v;, v: and v:,, vi', U:, be three sequential
nodes on the paths of vehicle 0 and vehicle 1 re-
spectively. The node vj is on the two paths. A
conflict of type (a) at v j occur if and only if

and
0 W i j wj k' < t : , - - t j - -

2 2
A conflict of type (b) at the boundary between
vj and vk occur if and only if:

i' = k:

To resolve the conflict at vi one vehicle cannot
enter into the site until the other clears the site
of v i . In the graph representation this is done
by imposing a delay w at vi on either one of the
two vehicles:

on vehicle 0, or

on vehicle 1. Imposing a delay w at vi on ve-
hicle k means that t! is set to t! = t! + w and
L T M k is accordingly updated. imposing a delay
on a vehicle and updating its LTM preserves the
characteristic of the LTM to y ie ld , b y the trac-
ing back procedure, the optimal paths under the
imposed restriction.

If the optimal paths of vehicles 0 and 1
have more than one conflicting nodes then: 1)
their path segments from the first to the last
conflict have exactly the same time of travel. 2)
On these equivalent segments they are traveling
in the same direction. When the two paths have

141

more than one conflict, the resolution of each
conflict requires the minimal delay given above.
Therefore, imposing the maximal delay of these
waits on the first node of conflict resolves all the
conflicts between these two paths. However, the
path with the delay on it may not be an optimal
path anymore.

Consider the case where an optimal path of
one vehicle conflicts, at vi with the optimal path
of the other vehicle. Assume that the required
de lay at vi was imposed on one of the vehicles,
its LTM was updated and a new optimal path
was traced. Then one of the following will occur:

The new path does not conflict with the
path of the other vehicle, and the are can-
didates for an optimal solution.

The new path conflicts with the path of the
other vehicle, but it does not pass through
vi.

The new path passes through vi and it con-
flicts with the path of the other vehicle. In
this case the new conflict is a swap conflict
at the boundary between vi and its pro-
ceeding node on the other vehicle path.

In an optimal solution of the two vehicle
navigator there cannot be an instant when the
two vehicles are waiting. Therefore, the paths
solving this problem can be of three types:

1.

2.

3.

Neither of the vehicles waits.

One of the vehicles waits.

The two vehicles have to wait. The last
case happens resolving a swap conflict
when vehicle k has to wait for vehicle 1
to step aside letting k to path and then
looping or detouring.

Let us extend the NS by adding to it
the time dimension Fig. 3. The graph
{vi,ei,j(wi,j)} on the navigation plane is the
projection of the extended graph on the t = 0
plane. The linking time value ti of a node wi is
its t-coordinate in the extended space. The link-
ing times t i and t j of two sequential nodes, vi
and v j , on a legal path in the extended space are
restricted to the condition (1). In the extended
graph delay means that two sequential nodes on
a path have the same NS coordinates but dif-
ferent time coordinate. A loop means that two

non sequential nodes on the path have the same
NS coordinates but different time coordinate. A
detour means that two sequential nodes on the
path do not obey the path rule, i.e. Oi+wji > 0,.

The space-time representation of the paths
depicts the difference between this problem and
the K-disjoint[LZ] problem. In this problem we
do not know the t-coordinates of the destina-
tion points. These points are subjected to the
searching process.

The complexity of a search for an op-
timal solution for multiple vehicles grows
fast with the number of vehicles. For
this reason, other suboptimal methods are
investigated, such as neural networks [5,6].

4. Algorithm for the two vehicle naviga-
tor.

~ The algorithm for the two vehicle naviga-
tor is based on the concepts discussed in the pre-
vious section using the cellular automata rules
of the next section. The idea is to hold LTM
and RLTM for each vehicle and to update them
wenever a restriction is set. The need for a
RLTM arises whenever a swap conflict occur,
and a search for a loop or a detour is regarded.

As was already stated: the two vehicles
cannot wait at the same time, and a solution
which imposes delays on the two vehicles is ob-
tained only when one of the paths is a loop or a
detour. Therefore, the algorithm finds two sep-
arate solutions. A solution when the delays are
imposed on vehicle 1 only and a solution where
the delays are imposed only on vehicle 0. When
imposing a delay to resolve a swap conflict the
algorithm checks for loop or a detour. The best
of these solutions is the optimal solution. In
practice the algorithm will not construct those
two solutions, but to minimize computations, it
will prune the search by always adjusting the
path of the vehicle with the sorter time.

On a binary speed NS the speed of the
vehicle at each point is either 1 or 0. The two
vehicle navigation problem on this NS is much
easier as the rules get simpler form. on this NS
a conflict of type (a) is at the node itself and it
needs w = 1 to be resolved. The swap conflict
(of type (b)) needs w=2 to be resolved. Fig. 4

142

presents the two vehicle navigator solution for a
conflict imposing NS.

process has a propagating nature. The wave
front of the propagating linking signal depend
on the data and the location of the generat-
ing node. Therefore, the scattered decomposi-

5. Cellular automata instruction for the
navigation algorithm

Rule 1: The linking tame of the generating point as
always to = 0.

Rule 2: The Jinkang time t i of every node vii # o
is:

ti = M i n { t i , t j + wjilVj E nn(i) }

,where nn(a) are all vi nearest neighbors.

Rule 2’: The reversed linking time Oi of every node
vii # o is:

ei = M i n { e i , e j + WjiIVj E nn(i)}

Rule 3: If a node other than the generator does not
have a source, it set its linking time to an-
finity. Namely, if i # 0, and t i > t jV j E
nn(i) then ti = W.

Rule 3’: If i # o,andei > OjVj E nn(i) then fli =

Algorithm for constructing the LTM or
RLTM:

CO.

1. Initialize the linking times of all the nodes
to ”infinity”.

2. Set the generator linking time to 0.

3. Apply rule 2 or 2’.

4. When there is not a node which update its
value the LTM or RLTM is done.

Algorithm for updating the LTM or
RLTM where a delay W is imposed on vi:

1. Set ti = ti + W / Bi = ei + W

2. Apply rule 3 / 3’.

3. Apply rule 2 / 2’.

6. Parallel implementation of the time-
linking map

The cellular automata mode of construct-
ing the LTM is asynchronous but the linking

tion[7] would be the most appropriate decompo-
sition approach. The mapping in this approach
is as follows: The NS is tessellated into NCxnTy
congruent templet. Each templet is tessellated
again to K equal tiles, where K is the number
of processors. Each processor is assigned to the
same tile of the templet over all the templets,
Fig. 5. As the computational graph in our case
is very irregular and time dependent, the scat-
tered decomposition will hopefully balance the
work done in each processor.

As the information propagates from a node
to its neighbors the smaller the tiles in each tem-
plet are the greater the number of nodes propa-
gating the correct linking time is. On the other
hand the smaller the tile is the greater the num-
ber of nodes on the boundary is. Therefore, for
givennumber of processors and dimension of the
descrete NS there is an optimal size of tile. The
bigger the number of processors is the smaller
the size of the tile.

In planning the broadcast of the infor-
mation one has to decide how many inform-
ing nodes to accumulate before transmitting the
new data. On the one hand accumulating the in-
formation saves transmition time. On the other
hand getting the information as soon as possi-
ble save updating and enables more templets to
participate in the propagation process. In our
simulation, we adopt the strategy of broadcast-
ing the new information to the neighboring pro-
cessor whenever a node on the boundary was
updated. When the communication overhead is
not too large, as in the case of the Meiko trans-
puter board, the number of updates are kept to
a minimum since the information delay is very
small.

7. Simulation results

Extensive simulations have been carried
out on an NS which was tessellated into 145 by
145 nodes. Fig. 6, is a plot of the speedup versus
number of processors under different tile sizes.
This plot shows that the 4 processors are the
natural choice for the two-dimensional NS. For
a given patch size, the speedup decreases with
the number of processors. This is expected be-
cause of the propagated nature of the problem at

143

hand. The simulation shows, as depicted in Fig.
6, the optimal sizes of the example simulation.
These sizes are: 19x19 for 4 processors, 13213
for 8 processors, and approximatly 9x9 for 16
processors. It shows the general trend that in-
creasing the number of processors decreases the
optimal size of the tile.

7. References

[l] Jones S. T, “Solving Problems involving
Variable Terrain. Part 1: A General Al-
gorithm”, Byte, Vol. 5, No. 2, February
1980.

[2] Mitchell J. S. B and Papadimitriou C.
H., “ The weighted region problem”,
Tech. Rep., Department op Operations
Research, Stanford University, Stanford,
CA, 1985.

[3] Bellman, R., Dynamic Progrrum-
ing Princeton University Press, Princeton,
New Jersey, 1957.

[4] Seymour, P. D., “Disjoint paths in
graphs”, Discrete Math. 29, pp. 293-309,
1980.

[5] Wong, Y. F., and Fox, G. C., “ Use of Neu-
ral Network for Path Planning,’’ Technical
Report C3P-784, 1989.

[6] Fox, G. C., Gurewitz, E., and Wong, Y.
F., “A neural network approach to multi-
vehicle navigation”, SPIE Vol. 1196, pp.
164-169, 1989.

[7] Salmon J., and Goldsmith J . , “ A hy-
percube Ray-Tracer”, 3ed Conf. on Hy-
percube Concurrent Computers an Appli-
cations”, pp. 1194-1206, Pasadena, CA
1988.

Figure 1. mapping of a terrain onto a graph

* On a leave of absence from NRCN Israel.

144

Figure 2. Autonomous vehicle in uncertain environment. The gray level of an area is proportinal to its cost.
The white lines are the equi-cost contours After a short travel along the optimal path (a) the vehicle
updated its data and determined a new optimal path (b).

145

cost

Figure 3. Nodes, terrain’s directional values (gray level arrows) and a path in the Cost-Terrain space.

Figure 4. The twevehicle navigator solution for a conflict imposing terrain and a path in the Cost-Terrain space.

Figure 5. Scattered decomposition, the basic template of 4 processors is repeated over the terrain.

Processors

* 8 -- 16

8

1 - I I I

4 x 4 8 x 8 12x 12 16 x 16
block size for decomposition

Figure 6. Speedup for decomposition scheme for different block sizes on 16-node Meiko Computing Surface

147

