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Abstract 

A two vehicle navigator on a descrete space 
is analyzed. The concept of linking time maps 
as source to  optimal path planning is discussed. 
The rules for constructing these m a p  are given 
in a cellular automata mode. The implemen- 
tation of these rules on a parallel computer is 
presented. 

1. Introduction. 

In this study navigation means determina- 
tion of a path on a navigation surface [NS] from 
an origin point to a destination point. A cost 
function is defined on the NS, measures the cost 
of traveling a length segment. The cost can be: 
time, length, hazard of traveling the segment 
etc. An optimal path on the NS is a path along 
which the integration of the cost function from 
origin to destination is minimum. The objective 
of a navigator is to find the optimal path under 
the constraints set by the NS. The problem of 
an optimal path for a single vehicle on a contin- 
uous surface [l] as well as a discrete surfaces [a] 
were solved. This study analyses the two vehicle 
navigator and presents the linking time maps as 
a tool to deal with these problems. 

A discrete solution for navigation on a con- 
tinuous space requires mapping of the space into 
a finite graph. This is done by choosing a fi- 
nite number of points {vi} on the surface as the 
nodes of the graph. Each node is connected by 
an edge to all the nodes which can be reached, 
without traversing another node. The set of all 
the nodes {wj} having a common edge with wi 
is the set of wi nearest neighbors [nn(i)]. The 
value wij of the cost of traveling aiong the di- 
rected edge [vi, wj]  is assigned to this directed 
edge. This procedure maps the suiface onto a 
directed graph, Fig. 1. Mapping the NS onto a 
directed graph transfered the search for an opti- 
mal path to  the the search for an optimal path 
on a directed graph. This search is solved by a 

dynamic programing approach [3], where a "sig- 
nal" is initialized at a source point and propa- 
gates from a node to all its nn along the edges 
joining them. The time the signal travels along 
an edge is the weight of the directed edge. Every 
node wi records the first time ti it was hit by the 
signal. The graph in which all the nodes wi have 
their correct time values t i  is called: the linking 
time map [LTM] with respect to the generating 
node. 

In fact the linking time ti at the node wi is 
the cost of an optimal path from the source to 
this node and it depends only on the weights of 
the edges and the generating node. The linking 
times ti and t j  of two sequential nodes wi and 
w j  on an optimal path, where wi proceeds w j  are 
related by: 

t j  = ti + wij (*> 

An optimal path from the origin to any 
point on the graph is traced from that point back 
to the origin. Every step is from a node w j  (tj) to 
a node wi(td) where ti and t j  satisfy (*). Tracing 
back ensures that one stays on an optimal path 
initialized at the origin. 

Let us call the traveling object a vehicle 
and consider the case of two vehicles traveling 
on the same NS. If the path of each vehicle in- 
troduces restrictions to the path of the other ve- 
hicle (e.g. collision avoidance) then a search for 
an optimal solution is much more complicated. 

The layout of this study is : In section 
2 we discuss navigation of an autonomous ve- 
hicle on an NS which is updated while travel- 
ing. In section 3 we intoduce time and deal with 
conflicts between vehicles. The resolution of a 
conflict by imposing a delay on a vehicle is dis- 
cussed and the paths solving a two vehicle nav- 
igator are analysed. Section 4 outlines briefly 
the algorithm for two vehicle navigator. Section 
5 presents the cellular automata rules for con- 
structing linking maps. Section 6 deals with the 
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actual parallel implementations of the construc- 
tion of linking maps, and section 7 presents the 
simulation results. 

Assuming the two vehicles start at the same 
time, then time of travel is the time it takes 
until both of them have arrived. This optimum 
is restricted to non conflicting paths. 

2. Autonomous vehicle in uncertain envi- 
ronment 

An autonomous vehicle in an uncertain en- 
vironment start with an estimate of the edges 
weights. The estimate reflects the prior knowl- 
edge or model it has for the terrain to be trans- 
versed. The estimate is improved as more infor- 
mation is obtained. The vehicle knows its posi- 
tion and destination and at each instance of time 
the vehicle is doing the following: 1) updates 
the database of the weights { w i j } .  2) Based on 
the updated data it determines the optimal path 
from its current position to the destination. 3) 
Moves on the chosen optimal path. 4) Collects 
data. 

Updated weights { w i j }  change the LTM, 
but a change in the linking time of a node may 
effect the linking times of only part of the other 
nodes. In section 5 we show how to update the 
LTM in a cellular automata fashion, based on 
local decisions of each node. 

The navigator for an autonomous vehicle is 
based on the reversed linking time map [RLTM]. 
The construction of the RLTM is similar to the 
construction of the LTM. Except that in con- 
structing the RLTM the signal is initializing at 
the destination point and propagates from vi to 
vj with traveling time of wji .  The path is traced 
from the vehicle position toward the destination, 
from vi with reversed linking time Oi to its near- 
est neighbour vj with reversed linking time 0, 
which satisfies: 

0, = ei - wij 

Whenever the vehicle gets new information it 
updates the { w i j }  database and its RLTM, and 
determines an optimal path, Fig. 2. 

3. 
conflicting paths for two vehicles. 

Navigation in Space-Time, and non 

Assume that the cost function is time, i.e. 
the weights { w i j }  are the time of travel along 
the corresponding edges. Then a navigator for 
two vehicles aims to find two paths, one for each 
vehicle, which yield the minimum time of travel. 

A conflict between two paths occurs when 
the two vehicles are at the same site at the same 
time. The set of points on the graph edges is 
partitioned into sites as follows. Each point 
is associated to the nearest of the two nodes 
terminating the edge. A conflict can occur ei- 
ther: a) inside this site or b) a swap conflict on 
the boundary between two sites. In the second 
case the vehicles are going in opposite directions. 
Let U:, v;, v: and v:,, vi', U:, be three sequential 
nodes on the paths of vehicle 0 and vehicle 1 re- 
spectively. The node vj is on the two paths. A 
conflict of type (a) at v j  occur if and only if 

and 
0 W i j  wj k' < t : ,  - - t j  - - 

2 2 
A conflict of type (b) at the boundary between 
vj and vk occur if and only if: 

i' = k: 

To resolve the conflict at vi one vehicle cannot 
enter into the site until the other clears the site 
of v i .  In the graph representation this is done 
by imposing a delay w at vi on either one of the 
two vehicles: 

on vehicle 0, or 

on vehicle 1. Imposing a delay w at vi on ve- 
hicle k means that t! is set to t! = t! + w and 
L T M k  is accordingly updated. imposing a delay 
on a vehicle and updating its LTM preserves the 
characteristic of the LTM to y ie ld ,  b y  the trac- 
ing back procedure, the optimal paths under the 
imposed restriction. 

If the optimal paths of vehicles 0 and 1 
have more than one conflicting nodes then: 1) 
their path segments from the first to the last 
conflict have exactly the same time of travel. 2) 
On these equivalent segments they are traveling 
in the same direction. When the two paths have 
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more than one conflict, the resolution of each 
conflict requires the minimal delay  given above. 
Therefore, imposing the maximal delay  of these 
waits on the first node of conflict resolves all the 
conflicts between these two paths. However, the 
path with the delay  on it may not be an optimal 
path anymore. 

Consider the case where an optimal path of 
one vehicle conflicts, at vi with the optimal path 
of the other vehicle. Assume that the required 
de lay  at vi was imposed on one of the vehicles, 
its LTM was updated and a new optimal path 
was traced. Then one of the following will occur: 

The new path does not conflict with the 
path of the other vehicle, and the are can- 
didates for an optimal solution. 

The new path conflicts with the path of the 
other vehicle, but it does not pass through 
vi. 

The new path passes through vi and it con- 
flicts with the path of the other vehicle. In 
this case the new conflict is a swap conflict 
at the boundary between vi and its pro- 
ceeding node on the other vehicle path. 

In an optimal solution of the two vehicle 
navigator there cannot be an instant when the 
two vehicles are waiting. Therefore, the paths 
solving this problem can be of three types: 

1. 

2. 

3. 

Neither of the vehicles waits. 

One of the vehicles waits. 

The two vehicles have to wait. The last 
case happens resolving a swap conflict 
when vehicle k has to wait for vehicle 1 
to step aside letting k to path and then 
looping or detouring. 

Let us extend the NS by adding to it 
the time dimension Fig. 3. The graph 
{vi,ei,j(wi,j)} on the navigation plane is the 
projection of the extended graph on the t = 0 
plane. The linking time value ti of a node wi is 
its t-coordinate in the extended space. The link- 
ing times t i  and t j  of two sequential nodes, vi 
and v j  , on a legal path in the extended space are 
restricted to the condition (1). In the extended 
graph delay  means that two sequential nodes on 
a path have the same NS coordinates but dif- 
ferent time coordinate. A loop means that two 

non sequential nodes on the path have the same 
NS coordinates but different time coordinate. A 
detour means that two sequential nodes on the 
path do not obey the path rule, i.e. Oi+wji > 0,. 

The space-time representation of the paths 
depicts the difference between this problem and 
the K-disjoint[LZ] problem. In this problem we 
do not know the t-coordinates of the destina- 
tion points. These points are subjected to the 
searching process. 

The complexity of a search for an op- 
timal solution for multiple vehicles grows 
fast with the number of vehicles. For 
this reason, other suboptimal methods are 
investigated, such as neural networks [5,6]. 

4. Algorithm for the two vehicle naviga- 
tor. 

~ The algorithm for the two vehicle naviga- 
tor is based on the concepts discussed in the pre- 
vious section using the cellular automata rules 
of the next section. The idea is to hold LTM 
and RLTM for each vehicle and to update them 
wenever a restriction is set. The need for a 
RLTM arises whenever a swap conflict occur, 
and a search for a loop or a detour is regarded. 

As was already stated: the two vehicles 
cannot wait at the same time, and a solution 
which imposes delays  on the two vehicles is ob- 
tained only when one of the paths is a loop or a 
detour. Therefore, the algorithm finds two sep- 
arate solutions. A solution when the delays are 
imposed on vehicle 1 only and a solution where 
the delays are imposed only on vehicle 0. When 
imposing a delay  to resolve a swap conflict the 
algorithm checks for loop or a detour. The best 
of these solutions is the optimal solution. In 
practice the algorithm will not construct those 
two solutions, but to minimize computations, it 
will prune the search by always adjusting the 
path of the vehicle with the sorter time. 

On a binary speed NS the speed of the 
vehicle at each point is either 1 or 0. The two 
vehicle navigation problem on this NS is much 
easier as the rules get simpler form. on this NS 
a conflict of type (a) is at the node itself and it 
needs w = 1 to be resolved. The swap conflict 
(of type (b)) needs w=2 to be resolved. Fig. 4 
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presents the two vehicle navigator solution for a 
conflict imposing NS. 

process has a propagating nature. The wave 
front of the propagating linking signal depend 
on the data and the location of the generat- 
ing node. Therefore, the scattered decomposi- 

5. Cellular automata instruction for the 
navigation algorithm 

Rule 1: The linking tame of the generating point as 
always to  = 0. 

Rule 2: The Jinkang time t i  of every node vii # o 
is: 

ti  = M i n { t i , t j  + wjilVj E nn( i ) }  

,where nn(a) are all vi nearest neighbors. 

Rule 2’: The reversed linking time Oi of every node 
vii # o is: 

ei = M i n { e i , e j  + WjiIVj E nn(i)} 

Rule 3: If a node other than the generator does not 
have a source, it set its linking time to an- 
finity. Namely, if i # 0, and t i  > t jV j  E 
nn(i) then ti = W. 

Rule 3’: If i # o,andei > OjVj E nn(i) then fli = 

Algorithm for constructing the LTM or 
RLTM: 

CO. 

1. Initialize the linking times of all the nodes 
to ”infinity”. 

2. Set the generator linking time to 0. 

3. Apply rule 2 or 2’. 

4. When there is not a node which update its 
value the LTM or RLTM is done. 

Algorithm for updating the LTM or 
RLTM where a delay W is imposed on vi: 

1. Set ti  = ti  + W / Bi = ei + W 

2. Apply rule 3 / 3’. 

3. Apply rule 2 / 2’. 

6. Parallel implementation of the time- 
linking map 

The cellular automata mode of construct- 
ing the LTM is asynchronous but the linking 

tion[7] would be the most appropriate decompo- 
sition approach. The mapping in this approach 
is as follows: The NS is tessellated into NCxnTy 
congruent templet. Each templet is tessellated 
again to K equal tiles, where K is the number 
of processors. Each processor is assigned to the 
same tile of the templet over all the templets, 
Fig. 5. As the computational graph in our case 
is very irregular and time dependent, the scat- 
tered decomposition will hopefully balance the 
work done in each processor. 

As the information propagates from a node 
to its neighbors the smaller the tiles in each tem- 
plet are the greater the number of nodes propa- 
gating the correct linking time is. On the other 
hand the smaller the tile is the greater the num- 
ber of nodes on the boundary is. Therefore, for 
givennumber of processors and dimension of the 
descrete NS there is an optimal size of tile. The 
bigger the number of processors is the smaller 
the size of the tile. 

In planning the broadcast of the infor- 
mation one has to decide how many inform- 
ing nodes to accumulate before transmitting the 
new data. On the one hand accumulating the in- 
formation saves transmition time. On the other 
hand getting the information as soon as possi- 
ble save updating and enables more templets to 
participate in the propagation process. In our 
simulation, we adopt the strategy of broadcast- 
ing the new information to the neighboring pro- 
cessor whenever a node on the boundary was 
updated. When the communication overhead is 
not too large, as in the case of the Meiko trans- 
puter board, the number of updates are kept to 
a minimum since the information delay is very 
small. 

7. Simulation results 

Extensive simulations have been carried 
out on an NS which was tessellated into 145 by 
145 nodes. Fig. 6, is a plot of the speedup versus 
number of processors under different tile sizes. 
This plot shows that the 4 processors are the 
natural choice for the two-dimensional NS. For 
a given patch size, the speedup decreases with 
the number of processors. This is expected be- 
cause of the propagated nature of the problem at 
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hand. The simulation shows, as depicted in Fig. 
6, the optimal sizes of the example simulation. 
These sizes are: 19x19 for 4 processors, 13213 
for 8 processors, and approximatly 9x9 for 16 
processors. It shows the general trend that in- 
creasing the number of processors decreases the 
optimal size of the tile. 
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Figure 1. mapping of a terrain onto a graph 

* On a leave of absence from NRCN Israel. 
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Figure 2. Autonomous vehicle in uncertain environment. The gray level of an area is proportinal to its cost. 
The white lines are the equi-cost contours After a short travel along the optimal path (a) the vehicle 
updated its data and determined a new optimal path (b). 
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cost 

Figure 3. Nodes, terrain’s directional values (gray level arrows) and a path in the Cost-Terrain space. 

Figure 4. The twevehicle navigator solution for a conflict imposing terrain and a path in the Cost-Terrain space. 



Figure 5. Scattered decomposition, the basic template of 4 processors is repeated over the terrain. 

Processors 

* 8 -- 16 

8 
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4 x 4  8 x 8  12x 12 16 x 16 
block size for decomposition 

Figure 6. Speedup for decomposition scheme for different block sizes on 16-node Meiko Computing Surface 
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