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Information-theoretic limitations on approximate quantum cloning and broadcasting
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We prove quantitative limitations on any approximate simultaneous cloning or broadcasting of mixed states.
The results are based on information-theoretic (entropic) considerations and generalize the well-known no-cloning
and no-broadcasting theorems. We also observe and exploit the fact that the universal cloning machine on the
symmetric subspace of n qudits and symmetrized partial trace channels are dual to each other. This duality
manifests itself both in the algebraic sense of adjointness of quantum channels and in the operational sense
that a universal cloning machine can be used as an approximate recovery channel for a symmetrized partial
trace channel and vice versa. The duality extends to give control of the performance of generalized universal
quantum cloning machines (UQCMs) on subspaces more general than the symmetric subspace. This gives a way
to quantify the usefulness of a priori information in the context of cloning. For example, we can control the
performance of an antisymmetric analog of the UQCM in recovering from the loss of n − k fermionic particles.
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I. INTRODUCTION

A direct consequence of the fundamental principles of
quantum theory is that a “machine” (unitary map) that can
clone an arbitrary input state [1,2] does not exist. This no-
cloning theorem and its generalization to mixed states, the “no-
broadcasting theorem” [3], exclude the possibility of making
perfect “quantum backups” of a quantum state and are essential
for our understanding of quantum information processing. For
instance, since decoherence is such a formidable obstacle
to building a quantum computer and, at the same time, we
cannot use quantum backups to protect quantum information
against this decoherence, considerable effort has been devoted
to protecting the stored information by way of quantum error
correction [4–6].

Given these no-go results, it is natural to ask how well
one can do when settling for approximate cloning or broad-
casting. Numerous theoretical and experimental works have
investigated such “approximate cloning machines” (see [7–16]
and references therein). These cloning machines can be of
great help for state estimation. They can also be of great
help to an adversary who is eavesdropping on an encrypted
communication, so knowing the limitations of approximate
cloning machines is relevant for quantum key distribution.

In this paper, we derive quantitative limitations posed
on any approximate cloning or broadcast (defined below)
by quantum information theory. Our results generalize the
standard no-cloning and no-broadcasting results for mixed
states, which are recalled below (Theorems 1 and 2). We draw
on an approach of Kalev and Hen [17], who introduced the
idea of studying no broadcasting via the fundamental principle
of the monotonicity of the quantum relative entropy [18,19].
When at least one state is approximately cloned while the other
is approximately broadcast, we derive an inequality which
implies rather strong limitations (Theorem 3). The result can be
understood as a quantitative version of the standard no-cloning
theorem. The proof uses only fundamental properties of the

relative entropy. By invoking recent developments linking the
monotonicity of relative entropy to recoverability [20–25], we
can derive a stronger inequality (Theorem 4). Under certain
circumstances, this stronger inequality provides an explicit
channel which can be used to improve the quality of the
original cloning or broadcast (roughly speaking, how close
the output is to the input) a posteriori. This cloning- or
broadcasting-improving channel is nothing but the parallel
application of the rotation-averaged Petz recovery map [24],
highlighting its naturalness in this context.

Related results proved in the present work (Theorems 6
and 7) compare a given state of n qudits to the maximally
mixed state on the (permutation-)symmetric subspace of n

qudits. We establish a duality between universal quantum
cloning machines (UQCMs) [7–9] and symmetrized partial
trace channels in the operational sense that a UQCM can be
used as an approximate recovery channel for a symmetrized
partial trace channel and vice versa. It is also immediate to
observe that these channels are adjoints of each other, up to
a constant. A context different from ours in which a duality
between partial trace and universal cloning has been observed
is in quantum data compression [26].

As a special case of Theorem 6, we recover one of the main
results of Werner [9] regarding the optimal fidelity for k → n

cloning of tensor-product pure states φ⊗k . We also draw an
analogy between these results and previous results from [27]
regarding photon loss and amplification, the analogy being that
cloning is like particle amplification and partial trace is like
particle loss.

The methods generalize to subspaces beyond the symmetric
subspace: Theorem 8 controls the performance of an analog
of the UQCM in recovering from a loss of n − k particles
when we are given a priori information about the states (in the
sense that we know on which subspaces they are supported,
e.g., because we are working in an irreducible representation
of some symmetry group). As an application of this, we obtain

2469-9926/2017/96(1)/012304(9) 012304-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.012304


MARIUS LEMM AND MARK M. WILDE PHYSICAL REVIEW A 96, 012304 (2017)

an estimate of the performance of an antisymmetric analog of
the UQCM for k → n “cloning” of fermionic particles.

The methods also yield information-theoretic restrictions
for general approximate broadcasts of two mixed states.

II. BACKGROUND

The well-known no-cloning theorem for pure states estab-
lishes that two pure states can be simultaneously cloned iff they
are identical or orthogonal. It is generalized by the following
two theorems, a no-cloning theorem for mixed states and a
no-broadcasting theorem [3,17].

Let σ be a mixed state on a system A. By definition, a
(twofold) broadcast of the input state σ is a quantum channel
�A→AB , such that the output state

ρout
AB := �A→AB(σA)

has identical marginals ρout
A = ρout

B = σ .
A particular broadcast corresponds to the case ρout

AB = σA ⊗
σB , which is called a cloning of the state σ . We call two mixed
states σ1 and σ2 orthogonal if σ1σ2 = 0.

Theorem 1. No cloning for mixed states [3,17]. Two
mixed states σ1,σ2 can be simultaneously cloned iff they are
orthogonal or identical.

Theorem 2. No broadcasting [3]. Two mixed states σ1,σ2

can be simultaneously broadcast iff they commute.
By a “simultaneous” cloning or broadcast, we mean that

the same choice of �A→AB is made for broadcasts of σ1

and σ2.
These results were essentially first proved in [3], albeit

under an additional minor invertibility assumption. Alternative
proofs were given in [17,28–30]. Sometimes Theorem 2 is
called the “universal no-broadcasting theorem” to distinguish
it from local no-broadcasting results for multipartite sys-
tems [31]. Quantitative versions of the local no-broadcasting
results for multipartite systems were reviewed very recently
by Piani [32] (see also [16]).

No cloning and no broadcasting are also closely related
to the monogamy property of entanglement via the Choi-
Jamiolkowski isomorphism [29].

In this paper, we study limitations on approximate cloning
or broadcasting, which we define as follows:

Definition 1. Approximate cloning or broadcast. Let σ,σ̃

be mixed states. An n-fold approximate broadcast of σ is a
quantum channel �A→A1···An

such that the output state has
identical marginals σ̃ . That is, we consider the situation

ρout
A1

= · · · = ρout
An

= σ̃ , (1)

where ρout
A1···An

:= �(σA). An approximate cloning is an ap-
proximate broadcast for which ρout

A1···An
= σ̃A1 ⊗ · · · ⊗ σ̃An

.
The main case of interest is n = 2.

Our main results give bounds on (appropriate notions of)
the distance between σ̃i and σi for i = 1,2, given any pair of
input states σ1 and σ2.

Conventions. The notions of approximate cloning and
broadcast stated above are direct generalizations of the
notions of cloning and broadcasting in the literature related
to Theorems 1 and 2. Regarding the input states, these notions
are more general than the one used in the cloning-machine
literature [13]; we allow for the input states to be arbitrary,

whereas they are usually pure tensor-power states ψ⊗n for
cloning machines. Our notion of approximate cloning requires
the output states to be tensor-product states. Hence, some
quantum cloning machines (in particular the universal cloning
machine when acting on general input states) are approximate
broadcasts by the definition given above.

Let us fix some notation. Given two mixed states ρ and
σ , we denote the relative entropy of ρ with respect to σ by
D(ρ‖σ ) := tr[ρ(ln ρ − ln σ )], where ln is the natural loga-
rithm [33]. We define the fidelity by F (ρ,σ ) := ‖√ρ

√
σ‖2

1 ∈
[0,1] [34], where ‖ · ‖1 is the trace norm.

Since all of our bounds involve the relative entropy
D(σ1‖σ2) of the input states σ1 and σ2, they are informative
only when D(σ1‖σ2) < ∞. This is equivalent to ker σ2 ⊆
ker σ1, and we assume this in the following for simplicity.
We note that if this assumption fails, our results can still be
applied by approximating σ2 (in trace distance) with σ ε

2 :=
εσ1 + (1 − ε)σ2 for ε ∈ (0,1), which satisfies ker σ ε

2 ⊆ ker σ1.

III. MAIN RESULTS

We will now present our main results. All proofs are rather
short and deferred to the next section.

A. Restrictions on approximate cloning or broadcasting

Our first main result concerns limitations if σ1 is approx-
imately broadcast n-fold while σ2 is approximately cloned
n-fold.

Theorem 3. Limitations on approximate cloning or broad-
casting. Fix two mixed states σ1 and σ2. Let �A→A1···An

be a
quantum channel such that n � 2 and the two output states
ρout

i,A1···An
:= �(σi,A) for i = 1,2 satisfy

ρout
1,A1

= · · · = ρout
1,An

= σ̃1,

ρout
2,A1···An

= σ̃2,A1 ⊗ · · · ⊗ σ̃2,An
. (2)

Thus, �A→A1···An
approximately broadcasts σ1,A and approxi-

mately clones σ2,A. Then

D(σ1‖σ2) − D(σ̃1‖σ̃2) � (n − 1)D(σ̃1‖σ̃2)

� n − 1

2
‖σ̃1 − σ̃2‖2

1. (3)

The second inequality in (3) follows from the quantum Pinsker
inequality (see [35], Theorem 1.15).

To see that (3) is indeed restrictive for approximate cloning
or broadcasting, let n = 2 and suppose without loss of
generality that σ1 	= σ2, so that δ := 1

6‖σ1 − σ2‖2
1 > 0. We

can use the triangle inequality for ‖ · ‖1 and the elementary
inequality 2ab � a2 + b2 on the right-hand side in (3) to get

D(σ1‖σ2) − D(σ̃1‖σ̃2) + ‖σ1 − σ̃1‖2
1

2
+ ‖σ2 − σ̃2‖2

1

2
� δ.

Since σ1 and σ2 are fixed, the same is true for δ > 0. Hence,
for any approximate cloning or broadcasting operation (2), at
least one of the following three statements must hold: (1) σ1

is far from σ̃1 (i.e., the channel acts poorly on the first state),
(2) σ2 is far from σ̃2 (i.e., the channel acts poorly on the first
state), or (3) there is a large decrease in the distinguishability
of the states under the action of the channel in the sense that
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D(σ1‖σ2) − D(σ̃1‖σ̃2) is bounded from below by a constant.
Thus, we have a quantitative version of Theorem 1 [note that
for σi = σ̃i (i = 1,2), Theorem 4 implies σ1 = σ2].

As anticipated in the Introduction, we can prove a stronger
version of Theorem 3 by invoking recent developments linking
monotonicity of the relative entropy to recoverability [20–25].
The stronger version involves an additional non-negative term
on the right-hand side in (3), and it contains an additional
integer parameter m ∈ {1, . . . ,n} (the case m = n corresponds
to Theorem 3; the case m = 1 is also useful as we explain after
the theorem).

Theorem 4. Stronger version of Theorem 3. Under the same
assumptions as in Theorem 3, for all m ∈ {1, . . . ,n}, there
exists a recovery channel R(m)

A1···Am→A such that

D(σ1‖σ2) − mD(σ̃1‖σ̃2)

� − ln F
(
σ1,

(
R(m)

A1···Am→A ◦ trAm+1···An
◦�

)
(σ1)

)
. (4)

The recovery channel R(m) ≡ R(m)
A1···Am→A satisfies the identity

σ2 = R(m)(σ̃⊗m
2 ). There exists an explicit choice for such an

R(m) with a formula depending only on σ2 and �, as can be
seen from [24] or (20).

One can generalize Theorem 4 to the case of “k → n

cloning” [13] where one starts from k-fold tensor copies
σ⊗k

1 and σ⊗k
2 and broadcasts the former and clones the latter

to states on an n-fold tensor product. That is, we have the
following theorem:

Theorem 5. Consider the more general situation in which
we begin with k � n tensor-product copies of the state σi

for i ∈ {1,2}, and suppose that the channel �A1···Ak→A1···An

approximately broadcasts σ1, in the sense that

trA1···An\Aj

[
�A1···Ak→A1···An

(
σ⊗k

1

)] = σ̃1,

and approximately clones σ2, in the sense that

�A1···Ak→A1···An

(
σ⊗k

2

) = σ̃⊗n
2 .

Then, for every m ∈ {1, . . . ,n}, there exists a recovery channel
R(m,k)

A1···Am→A1···Ak
such that

kD(σ1‖σ2) − mD(σ̃1‖σ̃2)

� − ln F
(
σ1,

(
R(m,k)

A1···Am→A1···Ak
◦ trAm+1···An

◦�
)(

σ⊗k
1

))
,

and the recovery channel R(m,k)
A1···Am→A1···Ak

satisfies

σ⊗k
2 = R(m,k)

A1···Am→A1···Ak

(
σ̃⊗m

2

)
.

To see how the additional remainder term in (4) can be
useful, we apply Theorem 4 with m = 1. It implies that there
exists a recovery channel R(1) such that

D(σ1‖σ2) − D(σ̃1‖σ̃2) � − ln F (σ1,R(1)(σ̃1)),

σ2 = R(1)(σ̃2). (5)

Now suppose that we are in a situation where the left-hand
side in (5) is less than some ε > 0. Then, (5) implies
that σ1 ≈ R(1)(σ̃1) and σ2 = R(1)(σ̃2), where ≈ stands for
− ln F (σ1,R(1)(σ̃1)) < ε. In other words, we can (approxi-
mately) recover the input states σi from the output marginals
σ̃i . Therefore, in the next step, we can improve the quality of the
cloning or broadcasting channel � by postcomposing it with
n parallel uses of the local recovery channel R(1). Indeed, the

improved cloning channel �impr := (R(1))⊗n ◦ � has the new
output states ρ

impr
i,A1...An

:= �impr(σi) (i = 1,2), which satisfy

ρ
impr
1,A1

= · · · = ρ
impr
1,An

= R(1)(σ̃1) ≈ σ1,

ρ
impr
2,A1···An

= σ2,A1 ⊗ · · · ⊗ σ2,An
.

Here, ≈ again stands for − ln F (σ1,R(1)(σ̃1)) < ε.
That is, we have found a strategy to improve the output of

the cloning channel �, namely, to the output of �impr.

B. Universal cloning machines and symmetrized
partial trace channels

In our next results, we consider a particular example of an
approximate broadcasting channel well known in quantum
information theory [9,11,13], a universal quantum cloning
machine. We connect the UQCM to relative entropy and
recoverability.

We recall that the UQCM is the optimal cloner for tensor-
power pure states in the sense that the marginal states of its
output have optimal fidelity with the input state [9,11]. Let
k and n be integers such that 1 � k � n. In general, one
considers a k → n UQCM as acting on k copies ψ⊗k of an
input pure state ψ of dimension d (a qudit), which produces an
output density operator ρ(n), a state of n qudits. From Werner’s
work [9], the UQCM is known to be

Ck→n(ω(k)) ≡ d[k]

d[n]

d,n

sym

[

d,k

symω(k)
d,k
sym ⊗ I n−k

]

d,n

sym. (6)

Here 
d,n
sym is the projection onto the (permutation-)symmetric

subspace of (Cd )⊗n, which has dimension d[n] := ( d+n−1
n

).
We note that Ck→n is trace preserving when acting on the
symmetric subspace.

The main results here are Theorems 6 and 7, which
highlight the duality between the UQCM (6) and the following
symmetrized partial trace channel:

Pn→k(·) ≡ 
d,k
sym trn→k

[

d,n

sym(·)
d,n
sym

]

d,k

sym. (7)

In addition to the operational sense of duality between the
partial trace channel Pn→k and the UQCM Ck→n which is
established by Theorems 6 and 7, the two are dual in the
sense of quantum channels (up to a constant). That is, P†

n→k =
(d[n]/d[k])Ck→n.

Our results will quantify the quality of the UQCM for
certain tasks in terms of the relative entropy D(ω(n)‖πd,n

sym),
which is between a general n-qudit state ω(n) and the
maximally mixed state πd,n

sym of the symmetric subspace. We
consider the maximally mixed state πd,n

sym as a natural “origin”
from which to measure the “distance” D(ω(n)‖πd,n

sym) since it is
a (Haar-)random mixture of tensor-power pure states.

We recall what one obtains from the standard monotonicity
of the relative entropy, namely,

D
(
ω(n)

∥∥πd,n
sym

)
� D

(
Pn→k(ω(n))

∥∥Pn→k

(
πd,n

sym

))
. (8)

Our next main result is the following strengthening of the
entropy inequality in (8):

Theorem 6. Let ω(n) be a state with support in the symmetric
subspace of (Cd )⊗n, let πd,n

sym denote the maximally mixed
state on this symmetric subspace, let Ck→n denote the UQCM
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from (6), and letPn→k be the symmetrized partial trace channel
from (7). Then

D
(
ω(n)

∥∥πd,n
sym

)
� D

(
Pn→k(ω(n))‖Pn→k

(
πd,n

sym

))
+D(ω(n)‖(Ck→n ◦ Pn→k)(ω(n))). (9)

The entropy inequality in (9) can be interpreted as follows:
The ability of a k → n UQCM to recover an n-qubit state ω(n)

from the loss of n − k particles is limited by the decrease of
distinguishability between ω(n) and πd,n

sym under the action of the
partial trace Pn→k . Thus, a small decrease in relative entropy
[i.e., D(ω(n)‖πd,n

sym) − D(P(ω(n))‖P(πd,n
sym)) ≈ ε] implies that

a k → n UQCM Ck→n will perform well at recovering ω(n)

from Pn→k(ω(n)). We can also observe that Ck→n is the Petz
recovery map corresponding to the state σ = πd,n

sym and channel
N = trn→k , as defined in (20).

As an application of Theorem 6, we consider the spe-
cial case that is most common in the context of quantum
cloning [9,11,13]. We set ω(n) = φ⊗n for a pure state φ. In
this case,

D
(
φ⊗n

∥∥πd,n
sym

) − D
(
Pn→k(φ⊗n)

∥∥Pn→k

(
πd,n

sym

))
= − ln(d[k]/d[n]) � D(φ⊗n‖Ck→n(φ⊗k)). (10)

By estimating D � − ln F , we recover one of the main results
of [9], which is that the k → n UQCM has the following
performance when attempting to recover n copies of φ from k

copies:

F (φ⊗n,Ck→n(φ⊗k)) � d[k]/d[n]. (11)

Given the above duality between the symmetrized partial
trace channel and the UQCM, we can also consider the reverse
scenario.

Theorem 7. With the same notation as in Theorem 6, the
following inequality holds:

D
(
ω(k)

∥∥πd,k
sym

)
� D

(
Ck→n(ω(k))

∥∥Ck→n

(
πd,k

sym

))
+D(ω(k)‖(Pn→k ◦ Ck→n)(ω(k))). (12)

This entropy inequality can be seen as dual to that
in (9), having the following interpretation: if the decrease in
distinguishability of ω(k) and πd,k

sym is small under the action of a
UQCM Ck→n, then the partial trace channel Pn→k can perform
well at recovering the original state ω(k) back from the cloned
version Ck→n(ω(k)).

C. On photon amplification and loss

There is a striking similarity between the inequalities in (9)
and (12) and those from Sec. III A of [27], which apply to
photonic channels (cf. [36]). This observation is based on the
analogy that cloning is like particle amplification and partial
trace is like particle loss.

The partial trace channel is like particle loss, which
for photons is represented by a pure-loss channel Lη with
transmissivity η ∈ [0,1]. Furthermore, a UQCM is like particle
amplification, which for bosons is represented by an amplifier
channel AG of gain G � 1. Let θE denote a thermal state of
mean photon number E � 0, and let ρ denote a state of the
same energy E. A slight rewriting of the inequalities from

Sec. III A of [27], given below, results in the following:

D(ρ‖θE) � D(Lη(ρ)‖Lη(θE)) + D(ρ‖(A1/η ◦ Lη)(ρ)),

(13)

D(ρ‖θE) � D(AG(ρ)‖AG(θE)) + D(ρ‖(L1/G ◦ AG)(ρ)),

(14)

where the symbol � indicates that the entropy inequality holds
up to a term with magnitude no larger than ln(1/η) which
approaches zero as E → ∞. So we see that (13) is analogous
to (9): under a particle loss Lη, we can apply a particle amplifi-
cation procedure A1/η to try and recover the lost particles, with
a performance controlled by (13). Similarly, (14) is analogous
to (12): under a particle amplification AG, we can apply a
particle loss channel L1/G to try and recover the original
state, with a performance controlled by (14). Observe that
the parameters specifying the recovery channels are directly
related to the parameters of the original channels, just like the
case in (9) and (12). Note that an explicit connection between
cloning and amplifier channels was established in [36], and
our result serves to complement that connection.

D. Restrictions on cloning in general subspaces

We can generalize the discussion in the previous sec-
tion to arbitrary subspaces. For 1 � k � n, let Xn be a
dXn

-dimensional subspace of (Cd )⊗n and let Yk be a dYk
-

dimensional subspace of (Cd )⊗k . We write 
Xn
and 
Yk

for
the projections onto these subspaces and πXn

and πYk
for

the corresponding maximally mixed states. We generalize the
definitions in (6) and (7) to

Ck→n(·) ≡ dYk

dXn


Xn

[

Yk

(·)
Yk
⊗ I n−k

]

Xn

, (15)

Pn→k(·) ≡ 
Yk
trn→k

[

Xn

(·)
Xn

]

Yk

. (16)

For definiteness, the partial trace trn→k is taken over the last
n − k qudits. The cloning map Ck→n is a direct analog of the
UQCM for the specialized task of recovering a state in the
subspace Xn from one in the subspace Yk (previously, Xn

and Yk were both taken to be the symmetric subspace). By
inspection, it is completely positive, and if trn→k[πXn

] = πYk
,

then it is trace preserving when acting on any operator with
support in Xn.

The same argument that proves Theorem 6 then gives the
following:

Theorem 8. Let ω(n) be a state with support in Xn, and
suppose that trn→k[ω(n)] is supported in Yk . Then

D
(
ω(n)

∥∥πXn

)
� D

(
Pn→k(ω(n))‖πYk

)

+D(ω(n)‖(Ck→n ◦ Pn→k)(ω(n))). (17)

The assumption that trn→k[ω(n)] is supported in Yk is made
for convenience. Without it, the quantity tr[Pn→k(ω(n))] < 1
would enter in the statement, as can be seen from the proof
in the next section. We can obtain a stronger statement
under the additional assumption trn→k[πXn

] = πYk
: it implies

Pn→k(πXn
) = πYk

and that (Ck→n ◦ Pn→k)(ω(n)) has trace 1.
Theorem 8 controls the performance of the cloning machine

Ck→n (15) in recovering from a loss of n − k particles when a
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priori information about the states is given (in the sense that
we know on which subspaces they are supported). To see this,
consider, e.g., the case of perfect a priori information when
dim Xn = 1. Then D(ω(n)‖πXn

) = 0, so (17) implies that the
cloning is perfect, ω(n) = (Ck→n ◦ Pn→k)(ω(n)).

For nontrivial applications of Theorem 8, a natural class
of subspaces to consider is those associated with irreducible
group representations, e.g., of the permutation group acting
on (Cd )⊗n. To avoid introducing the representation-theoretic
background, we focus here on the case when both Xn and Yk

are taken to be the familiar antisymmetric subspace. Physically,
the antisymmetric subspace describes fermions, and therefore,
our results have bearing on electronic analogs of the photonic
scenarios mentioned above.

For this part, we let d � n. An example system for which d

can be larger than n is a tight-binding model on d lattice sites,
where each site can host a single electron. The antisymmetric
subspace Xn has dimension dXn

= ( d

n
). The analog of a tensor-

power pure state in the antisymmetric subspace is a Slater
determinant |�n〉 ≡ |φ1〉 ∧ · · · ∧ |φn〉, where the states {|φi〉}i
are orthonormal. Appendices A and B review the background
and how the marginal trn→k[�n] is again antisymmetric and
has quantum entropy ln( n

k
). Thus, (17) in Theorem 8 applies

to establish the first inequality of the following:

ln

(
d − k

d − n

)
= − ln

{(
d

k

)
·
[(

n

k

)(
d

n

)]−1
}

� D(�n‖(Ck→n ◦ Pn→k)(�n)). (18)

Using D � − ln F again, we conclude that the performance of
the antisymmetric cloning machine Ck→n in recovering from a
loss of n − k fermionic particles is controlled by

F (�n, (Ck→n ◦ Pn→k)(�n)) �
[(

d − k

d − n

)]−1

. (19)

We mention that (Ck→n ◦ Pn→k)(�n) has trace 1; this follows
from the identity trn→k[πXn

] = πYk
for the antisymmetric

subspace (see Lemma 2 in Appendix B). We also mention
that the standard symmetric UQCM would produce the zero
state in this case and thus yields a (minimal) fidelity of zero.

E. General restrictions on approximate broadcasts

As the Introduction mentioned, our methods imply
information-theoretic restrictions on any approximate twofold
broadcast. These are relegated to Appendix C.

IV. PROOFS OF THE MAIN RESULTS

An important tool for us will be the lower bound from [24]
on the decrease of the relative entropy for a quantum channel
N and states ρ and σ :

Theorem 9 [24]. Let β(t) := π
2 [1 + cosh(πt)]−1. For any

two quantum states ρ,σ and a channel N , the following bound
holds:

D(ρ‖σ ) � D(N (ρ)‖N (σ ))

−
∫
R

ln F
(
ρ,Rt

N ,σ (N (ρ))
)
dβ(t),

where the rotated Petz recovery map Rt
N ,σ is defined as

Rt
N ,σ (·) := σ

1+it
2 N†{[N (σ )]−

1+it
2 (·)[N (σ )]−

1−it
2

}
σ

1−it
2 ,

(20)

where N† is the completely positive, unital adjoint of the
channelN . Every rotated Petz recovery map perfectly recovers
σ from N (σ ):

Rt
N ,σ (N (σ )) = σ.

In the special case when the applied quantum channel is the
partial trace, the inequality becomes the following:

Theorem 10 [24]. Let β(t) := π
2 [1 + cosh(πt)]−1. For any

two quantum states ρAB,σAB , we have

D(ρAB‖σAB) � D(ρB‖σB) −
∫
R

ln F
(
ρAB,Rt

A,σ (ρB)
)
dβ(t),

where the rotated Petz recovery map Rt
A,X is defined in (C4).

We are now ready to give the proof of Theorems 3 and 4.
Proof of Theorems 3 and 4. Theorem 3 follows from the

m = n case of Theorem 4. Hence, it suffices to prove Theorem
4. We start by noting the following general inequality that
holds for states ω and τ , a channel N , and a recovery
channel R:

D(ω‖τ ) − D(N (ω)‖N (τ )) � − ln F (ω,(R ◦ N )(ω)), (21)

τ = (R ◦ N )(τ ), (22)

which is a consequence of convexity of − ln and the fidelity
applied to Theorem 9, taking

R :=
∫
R
Rt

N ,τ dβ(t), (23)

with Rt
N ,τ as in Theorem 9. To get the inequality, we take

ω = σ1, τ = σ2, and N = trAm+1···An
◦�. This then gives the

inequality

D(σ1‖σ2) − D
((

trAm+1···An
◦�

)
(σ1)

∥∥(
trAm+1···An

◦�
)
(σ2)

)

� − ln F
(
σ1,

(
R(m)

A1···An→A ◦ trAm+1···An
◦�

)
(σ1)

)
,

where the recovery channel R(m)
A1···An→A satisfies

σ2 = (
R(m)

A1···An→A ◦ trAm+1···An
◦�

)
(σ2)

= R(m)
A1···An→A

(
σ̃⊗m

2

)
.

Next, we prove that

−D
((

trAm+1···An
◦�

)
(σ1)

∥∥(
trAm+1···An

◦�
)
(σ2)

)
� −mD(σ̃1‖σ̃2).

We apply ln(X ⊗ Y ) = ln X ⊗ I + I ⊗ ln Y and set H (X) :=
−tr[X ln X] to get

− D
((

trAm+1···An
◦�

)
(σ1)

∥∥(
trAm+1···An

◦�
)
(σ2)

)

= −D
(
ρout

1,A1···Am

∥∥σ̃2,A1 ⊗ · · · ⊗ σ̃2,Am

)
= H

(
ρout

1,A1···Am

) + tr
[
ρout

1,A1···Am
ln

(
σ̃2,A1 ⊗ · · · ⊗ σ̃2,Am

)]
= H

(
ρout

1,A1···Am

)
+

m∑
k=1

tr
{
ρout

1,A1···Am

[
IA1···Am\Ak

⊗ ln
(
σ̃2,Ak

)]}
.
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Recall our assumption from (2) that the channel broadcasts σ1

to σ̃1. It gives for every 1 � k � m

tr
{
ρout

1,A1···Am

[
IA1···Am\Ak

⊗ ln
(
σ̃2,Ak

)]} = tr[σ̃1 ln σ̃2].

By the subadditivity of the entropy H and (2), we obtain

H
(
ρout

1,A1···Am

) + m tr[σ̃1 ln σ̃2]

�
m∑

k=1

H
(
ρout

1,Ak

) + m tr[σ̃1 ln σ̃2] = −mD(σ̃1‖σ̃2). (24)

This proves Theorem 4. �
The more general version, Theorem 5, can be proved along

the same lines. We leave the details to the reader.
Next, we give the proof of Theorem 6.
Proof of Theorem 6. We observe that πd,k

sym = trn→k[πd,n
sym],

which follows easily from the representation πd,n
sym =∫

dψ ψ⊗n [37], with the integral being with respect to the
Haar probability measure over pure states ψ .

A proof of (9) then follows from a few key steps:

D
(
ω(n)

∥∥πd,n
sym

) − D
(
Pn→k(ω(n))

∥∥Pn→k

(
πd,n

sym

))
= −H (ω(n)) − tr

[
ω(n) ln πd,n

sym

] + H (Pn→k(ω(n)))

+ tr
[
Pn→k(ω(n)) ln πd,k

sym

]
(25)

= H (Pn→k(ω(n))) − H (ω(n)) − ln(d[k]/d[n])

� D(ω(n)‖(P†
n→k ◦ Pn→k)(ω(n))) − ln(d[k]/d[n])

= D(ω(n)‖(Ck→n ◦ Pn→k)(ω(n))). (26)

The first equality holds by definition of quantum relative
entropy, and in the second equality we used the fact that
tr[Pn→k(ω(n))] = tr[trn→k(ω(n))] = tr[ω(n)] = 1, wherein the
first step holds because trn→k[ω(n)] is supported in the
symmetric subspace. The inequality above is a consequence
of Theorem 1 in [27], which states that

H (N (ρ)) − H (ρ) � D(ρ‖(N† ◦ N )(ρ)) (27)

for any state ρ and positive, trace-preserving map N . (We
remark that Pn→k is indeed trace preserving when considered
as a map on states supported on the symmetric subspace.)
The last equality in (26) follows from the property of relative
entropy that D(ξ‖τ ) − ln c = D(ξ‖cτ ) for states ξ,τ and
c > 0. �

Essentially the same argument, with minor modifications,
also proves Theorems 7 and 8. For the former, we use the
facts that Ck→n(πd,k

sym) = πd,n
sym and Ck→n is trace preserving

when acting on states supported in the symmetric subspace.
For Theorem 8, we use the assumption that trn→k[ω(n)] is
supported in Yk to get tr[Pn→k(ω(n))] = 1. The details are left
to the reader.

Finally, we come to the following proof:
Proof of (13) and (14). A proof of (13) is as follows. The

Hamiltonian here is a†a, which is the photon number operator.
Let ρ be a state of energy E, and let θE be a thermal state
of energy E (i.e., 〈a†a〉ρ = 〈a†a〉θE

= E). Under the action of
a pure-loss channel Lη, the energies of Lη(ρ) and Lη(θE) are
equal to ηE, and we also find that Lη(θE) = θηE . Furthermore,

a standard calculation gives − tr[ρ ln θE] = H (θE) = g(E) :=
(E + 1) ln (E + 1) − E ln E. Putting this together, we find that

D(ρ‖θE) − D(Lη(ρ)‖Lη(θE))

= H (Lη(ρ)) − H (ρ) + g(E) − g(ηE)

� D(ρ‖(A1/η ◦ Lη)(ρ)) − ln(1/η) + g(E) − g(ηE).

The first equality is a rewrite using what we mentioned above,
and the inequality follows from Sec. III A of [27]. When E =
0, g(E) − g(ηE) = 0 also. As E gets larger, g(E) − g(ηE)
monotonically increases and reaches its maximum of ln(1/η)
as E → ∞.

The other inequality in (14) for an amplifier channel follows
similarly. Under the action of an amplifier channel AG, the
energies of AG(ρ) and AG(θE) are GE. We also find that
AG(θE) = θGE . Proceeding as above, we find that

D(ρ‖θE) − D(AG(ρ)‖AG(θE))

= H (AG(ρ)) − H (ρ) + g(E) − g(GE)

� D(ρ‖(L1/G ◦ AG)(ρ)) + ln G − [g(GE) − g(E)]

� D(ρ‖(L1/G ◦ AG)(ρ)).

The first equality is a rewrite, and the inequality follows
from Sec. III A of [27]. The last inequality follows because
g(GE) − g(E) = 0 at E = 0, and it monotonically increases
as a function of E, reaching its maximum value of ln G as
E → ∞. �

We close this proof section with a remark on a so far implicit
assumption.

Remark 1. Nonidentical marginals case. Some of our re-
sults, Theorems 3, 4, and 11 (see below), apply to approximate
clonings and broadcasts in the sense of Definition 1. That is,
we always assume that the marginals of the output state are
identical, i.e.,

ρout
i,A1

= · · · = ρout
i,An

= σ̃i (i = 1,2). (28)

We make this assumption for two reasons: (1) It simplifies
the bounds in our main results, and (2) we believe that it is a
natural assumption for approximate cloning and broadcasting.
However, the methods apply more generally, and they also
yield limitations on approximate clonings and broadcasts
when (28) is not satisfied.

V. CONCLUSION

In this paper, we have proven several entropic inequalities
that pose limitations on the kinds of approximate clonings
and broadcasts that are allowed in quantum information
processing. Some of the results generalize the well-known
no-cloning and no-broadcasting results, restated in Theorems
1 and 2. Other results demonstrate how universal cloning
machines and partial trace channels are dual to each other
in the sense that one can be used as an approximate recovery
channel for the other, with a performance controlled by entropy
inequalities. We can also control the performance of an analog
of the UQCM for cloning between any two subspaces. In
particular, we obtain bounds on its performance in recovering
from a loss of n − k fermionic particles.
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Note added. Recently, we learned of the related and
concurrent work of Marvian and Lloyd [38]. We are grateful
to them for passing their manuscript along to us.
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APPENDIX A: REDUCTIONS OF SLATER
DETERMINANTS AND THEIR QUANTUM ENTROPY

Here we prove the fact that the quantum entropy of the
marginal trn→k[�n] is ln( n

k
) when �n is a Slater determinant.

We can conclude this directly from expression (A4) for the
marginal derived below.

Before beginning, let us suppose that {|φj 〉}dj=1 is an
orthonormal basis for a d-dimensional Hilbert spaceH. Letting
d � n, a Slater determinant state �n corresponding to this
basis and a subset {1, . . . ,n} is as follows:

|�n〉 := |φ1〉 ∧ · · · ∧ |φn〉 (A1)

:= 1√
n!

∑
π∈Sn

sgn(π )|φπ(1)〉 ⊗ · · · ⊗ |φπ(n)〉, (A2)

where Sn is the set of all permutations of {1, . . . ,n} and sgn(π )
denotes its signum. Note that we chose the subset {1, . . . ,n} of
{1, . . . ,d}, but without loss of generality we could have chosen
an arbitrary one.

Formula (A4) below is surely well known. We include an
elementary, but slightly tedious, proof for completeness.

Lemma 1. Marginal of a Slater determinant. Let d � n and
|�n〉 = |φ1〉 ∧ · · · ∧ |φn〉, with {|φj 〉}dj=1 being an orthonormal
basis. A k set Ak is a subset of {1, . . . ,n} consisting of exactly
k elements. For any k set Ak = {i1, . . . ,ik}, we define∣∣�Ak

〉〈
�Ak

∣∣ := (∣∣φi1

〉 ∧ · · · ∧ ∣∣φik

〉)(〈
φi1

∣∣ ∧ · · · ∧ ∣∣φik

∣∣).
(A3)

Then

trn→k[|�n〉〈�n|] = 1(
n

k

) ∑
Ak k−set

∣∣�Ak

〉〈
�Ak

∣∣. (A4)

The orthonormality of the states {|�Ak
〉} for fixed k

then implies that H (trn→k|�n〉〈�n|) = ln( n

k
), where H (ρ) =

−tr[ρ ln ρ] is the quantum entropy.
Proof. By definition of the wedge product, we can write

|�n〉〈�n| as

|�n〉〈�n| = 1

n!

∑
π,σ∈Sn

sgn(π ◦ σ )|φπ(1)〉〈φσ (1)|

⊗ · · · ⊗ |φπ(n)〉〈φσ (n)|.

Here we used the fact that sgn is a group homomorphism, i.e.,
that sgn(π ◦ σ ) = sgn(π )sgn(σ ) for any two permutations π

and σ . Taking the partial trace over the last n − k systems

yields the following:

trn→k[|�n〉〈�n|]

= 1

n!

∑
π,σ∈Sn

sgn(π ◦ σ )|φπ(1)〉〈φσ (1)| ⊗ · · · ⊗ |φπ(k)〉〈φσ (k)|

× δπ(k+1),σ (k+1) · · · δπ(n),σ (n).

In the second equality, we used orthonormality. The product of
δ functions implies that we need to consider only permutations
π and σ which agree on {k + 1, . . . ,n}.

To exploit this, we partition the permutations according
to which k set Ak features as the image of {1, . . . ,k}. More
precisely, given a k set Ak , we define

Sn(Ak) := {π ∈ Sn : π ({1, . . . ,k}) = Ak}.
There is a more useful kind of affine representation of the
elements of Sn(Ak) as tuples in Sk × Sn−k composed of a fixed
bijection fAk

∈ Sn(Ak). For definiteness, we define fAk
to be

the unique bijection in Sn(Ak), which preserves ordering. Then

π ∈ Sn(Ak) ⇐⇒ π = fAk
◦ (πk,πn−k) (A5)

for some πk ∈ Sk, π
n−k ∈ Sn−k . Here we wrote (πk,πn−k) for

the permutation that is obtained by applying πk to the first k

variables and πn−k to the last n − k variables.
This way of bookkeeping permutations is convenient

in (A5) above. Using this representation and the identity (A6)
below, we find that

trn→k[|�n〉〈�n|]

= 1

n!

∑
Ak k−set

∑
π,σ∈Sn(Ak);
πn−k=σn−k

sgn(π ◦ σ )

× |φπ(1)〉〈φσ (1)| ⊗ · · · ⊗ |φπ(k)〉〈φσ (k)|

= 1

n!

∑
Ak k−set

∑
π,σ∈Sn(Ak);
πn−k=σn−k

sgn(πk ◦ σ k)

× |φπ(1)〉〈φσ (1)| ⊗ · · · ⊗ |φπ(k)〉〈φσ (k)|

= (n − k)!

n!

∑
Ak k−set

∑
πk,σ k∈Sk

sgn(πk ◦ σ k)

× ∣∣φ(fAk
◦πk )(1)

〉〈
φ(fAk

◦σ k)(1)

∣∣
⊗ · · · ⊗ ∣∣φ(fAk

◦πk )(k)
〉〈
φ(fAk

◦σ k)(k)

∣∣.
We used the following identity:

sgn(π ◦ σ ) = sgn(πk ◦ σ k). (A6)

This is a consequence of the fact that sgn is a group
homomorphism. Indeed, we have

sgn(π ◦ σ )

= (
sgn

(
fAk

))2
sgn((πk,πn−k))sgn((σ k,σ n−k))

= sgn((πk,πn−k))sgn((σ k,πn−k))

= sgn(πk ◦ σ k).
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This proves (A6). We now return to (A6) to conclude the proof
of (A4). We observe that

Perm(Ak) = {
fAk

◦ πk ◦ f −1
Ak

: πk ∈ Sk

}
.

To exploit this, we order each k set Ak = {i1, . . . ,ik}, with
i1 < · · · < ik . Then, by definition, fAk

(j ) = ij for all 1 � j �
k. From this, we find that

fAk
◦ πk(j ) = fAk

◦ πk ◦ f −1
Ak

(ij ) =: π̃ k(ij )

produces a permutation π̃ k ∈ Perm(Ak). We use this observa-
tion to relabel the sum in (A6), and we also use the identity
sgn(πkσ̃ k) = sgn(π̃ k ◦ σ̃ k), which follows from an argument
similar to (A6) above. We get

(n − k)!

n!

∑
Ak k−set

∑
πk,σ k∈Sk

sgn(πk ◦ σ k)

×|φ(fAk
◦πk )(1)〉〈φ(fAk

◦σ k)(1)|
⊗ · · · ⊗ |φ(fAk

◦πk )(k)〉〈φ(fAk
◦σ k)(k)|

= 1(
n

k

) ∑
Ak k−set

1

k!

∑
π̃ k ,σ̃ k∈Perm(Ak)

sgn(π̃ k ◦ σ̃ k)

×|φπ̃k(i1)〉〈φσ̃k(i1)| ⊗ · · · ⊗ |φπ̃k(ik)〉〈φσ̃k(ik)|

= 1(
n

k

) ∑
Ak k−set

∣∣�Ak

〉〈
�Ak

∣∣. (A7)

This concludes the proof of Lemma 1. �

APPENDIX B: THE MAXIMALLY MIXED STATE
ON THE ANTISYMMETRIC SUBSPACE

The following lemma allows us to conclude that the stronger
form of Theorem 8 applies when considering cloning maps for
the antisymmetric subspace.

Lemma 2. Let Hn denote the antisymmetric subspace of n

qudits and let πn denote the maximally mixed state on Hn.
Then

πk = trn→k[πn].

Proof of Lemma 2. The operator trn→k[πn] is supported on
Hk . It also commutes with all unitaries Uk on Hk . Indeed, by
properties of the partial trace and the fact that πn commutes
with all unitaries on Hn,

Uktrn→k[πn] = trn→k

[(
Uk ⊗ IHn−k

)
πn

]
= trn→k

[
πn

(
Uk ⊗ IHn−k

)] = trn→k[πn]Uk.

Since it commutes with all unitaries, trn→k[πn] is proportional
to IHk

. Since

trHk
[trn→k[πn]] = trHn

[πn] = 1,

the proportionality constant must be 1/dimHk = 1/( d

k
). This

proves the lemma. �

APPENDIX C: LIMITATIONS ON APPROXIMATE
TWOFOLD BROADCASTS

As mentioned in the main text, our method also gives
limitations on approximate twofold broadcasting.

Throughout, we restrict our discussion to broadcasts which
receive as their input state only a single copy of σ . In particular,
we are not in a situation where “superbroadcasting” [39,40]
is possible.

Theorem 11. Fix two mixed states σ1 and σ2. Suppose that
the quantum channel �A→AB is a simultaneous approximate
broadcast of σ1 and σ2, i.e., that

ρout
i,A = ρout

i,B = σ̃i , ρout
i,AB := �(σi,A) (C1)

for i = 1,2. Then

D(σ1‖σ2) − D(σ̃1‖σ̃2) � �R(σ̃1,σ̃2), (C2)

where we have introduced the (channel-dependent) “recovery
difference”

�R(σ̃1,σ̃2) := 1

8

∫
R

∥∥Rt
B,ρout

2,AB
(σ̃1,A) −Rt

A,ρout
2,AB

(σ̃1,B)
∥∥2

1 dβ(t),

(C3)

which features the probability distribution β(t) := π
2 [1 +

cosh(πt)]−1 and the rotated Petz recovery map defined by

Rt
A,X(·) := X

(1+it)/2
AB

[
IA ⊗ X

−(1+it)/2
B (·)X−(1−it)/2

B

]
X

(1−it)/2
AB .

(C4)

The proof is given at the end of this Appendix. We
emphasize that the definition (C3) of the recovery difference
�R(σ̃1,σ̃2) is independent of ρout

1,AB . The rotated Petz recovery
map (C4) appears in the strengthening of the monotonicity
of relative entropy [24], recalled here as Theorem 10. The
rotated Petz recovery map is chosen such that the second state
is perfectly recovered, i.e.,

Rt
B,ρout

2,AB
(σ̃2,A) = Rt

A,ρout
2,AB

(σ̃2,B) = ρout
2,AB.

Proof of Theorem 11. The proof is based on the following
key estimate. It is a variant of Theorem 10, which was proved
in [24].

Lemma 4. Key estimate. Fix two quantum states σ1 and σ2.
For any choice of quantum channel �A→AB , we define

ρout
i := �(σi,A) (i = 1,2). (C5)

Let β(t) = π
2 [1 + cosh(πt)]−1.

(i) We have

D(σ1‖σ2) − D
(
ρout

1,B

∥∥ρout
2,B

)
� −

∫
R

ln F
(
ρout

1,AB,Rt
A,ρout

2,AB

(
ρout

1,B

))
dβ(t), (C6)

D(σ1‖σ2) − D
(
ρout

1,A

∥∥ρout
2,A

)
� −

∫
R

ln F
(
ρout

1,AB,Rt
B,ρout

2,AB

(
ρout

1,A

))
dβ(t), (C7)

where the rotated Petz recovery map Rt
A,X was defined

in (C4).
(ii) Suppose that the output state ρout

i,AB has identical
marginals, i.e.,

ρout
i,A = ρout

i,B =: σ̃i (i = 1,2).
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Then we have

D(σ1‖σ2) − D(σ̃1‖σ̃2)

�
{− ∫

R ln F
(
ρout

1,AB,Rt
A,ρout

2,AB

(σ̃1,B)
)
dβ(t),

− ∫
R ln F

(
ρout

1,AB,Rt
B,ρout

2,AB

(σ̃1,A)
)
dβ(t).

(C8)

Proof of Lemma 4. The standard monotonicity of quantum
relative entropy under quantum channels (without a remainder
term) gives

D(σ1‖σ2) � D(�(σ1)‖�(σ2)) = D
(
ρout

1

∥∥ρout
2

)
.

Consider the last expression. When we apply the partial trace
over the A subsystem to both states and use Theorem 10, we
obtain

D
(
ρout

1

∥∥ρout
2

)
�D

(
ρout

1,B

∥∥ρout
2,B

)
−

∫
R

ln F
(
ρout

1,AB,Rt
ρout

2,AB

(
ρout

1,B

))
dβ(t).

This proves (C6), and (C7) follows from the same argument,
except the B subsystem is traced out now. Statement (ii) is
immediate. �

With Lemma 4 at our disposal, we can now prove Theorem
11. We begin by applying Lemma 4, statement (ii), averaging

the two lines in (C8). We get

D(σ1‖σ2) − D(σ̃1‖σ̃2)

� −1

2

∫
R

ln F
(
ρout

1,AB,Rt
B,ρout

2,AB
(σ̃1,A)

)
dβ(t)

− 1

2

∫
R

ln F
(
ρout

1,AB,Rt
A,ρout

2,AB
(σ̃1,B )

)
dβ(t).

By an elementary estimate and the Fuchs–van de Graaf
inequality [41], we have for density operators ω and τ that

− ln F (ω,τ ) � 1 − F (ω,τ ) � 1
4‖ω − τ‖2

1.

We apply this to the integrand above, followed by the estimate

‖X − Y‖2
1 + ‖X − Z‖2

1 � 1
2‖Y − Z‖2

1,

which is a consequence of the triangle inequality and the
elementary bound 2ab � a2 + b2. We conclude

D(σ1‖σ2) − D(σ̃1‖σ̃2)

� 1

8

∫
R

∥∥Rt
B,ρout

2,AB
(σ̃1,A) − Rt

A,ρout
2,AB

(σ̃1,B)
∥∥2

1 dβ(t).

This proves Theorem 11. �
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