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PREFERENCE IDENTIFICATION

CHRISTOPHER P. CHAMBERS, FEDERICO ECHENIQUE,

AND NICOLAS S. LAMBERT

Abstract. An experimenter seeks to learn a subject’s preference relation.

The experimenter produces pairs of alternatives. For each pair, the subject

is asked to choose. We argue that, in general, large but finite data do not

give close approximations of the subject’s preference, even when the limiting

(countably infinite) data are enough to infer the preference perfectly. We

provide sufficient conditions on the set of alternatives, preferences, and

sequences of pairs so that the observation of finitely many choices allows

the experimenter to learn the subject’s preference with arbitrary precision.

While preferences can be identified under our sufficient conditions, we show

that it is harder to identify utility functions. We illustrate our results

with several examples, including consumer choice, expected utility, and

preferences in the Anscombe-Aumann model.

1. Introduction

Consider a subject who forms a preference over the objects, or alternatives,

in some set X . The subject participates in an experiment in which he is

presented with a sequence of pairs of alternatives. For each pair, the subject is

asked to choose one of the two alternatives offered. What can an experimenter

learn about the subject’s preference from observing these binary comparisons?

Suppose that, after every observation, the experimenter computes an estimate
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of the subject’s preference consistent with the data observed up that point:

the experimenter chooses a preference rationalizing the choices made by the

subject. Is the estimate a good approximation of the subject’s underlying

preference, for a large but finite experiment?

In this paper, we investigate the asymptotic behavior of preference estimates

from finite experiments. We ask if one can fully identify the preference of a

subject at the limit with finite data. It is a question of preference identification,

in the classical sense of the term.1

To illustrate the key issues, consider the following example. Let X ⊆ Rn

represent a set of consumption bundles. The subject has a preference, denoted

by �∗, over the elements of X . Over time, the subject is asked to choose an

alternative from sets Bk = {xk, yk}, where k is the time index. Together, the

sets B1, B2, . . . , Bk form a finite experiment. The experimenter observes the

subject’s choice of bundle for every pair. Assume the choice is consistent with

the subject’s preference, so that if x is chosen over y, then x �∗ y. Note that

we can only, at best, infer the preference of the subject on the set B ≡ ∪∞k=1Bk.

Thus, if the subject’s preference behaves very differently outside of the set B,

there is no hope to obtain a fine approximation of the subject’s preference over

the entire set X . Two natural conditions emerge. First, we require that �∗

be continuous, so one can hope to approximate the preference from finitely

many samples. Second, we require that the set B is dense in X , so that the

observations are sufficiently spread out. And indeed, we show that, under these

conditions, if one can observe the preference of the subject over the whole set

B, then one can infer precisely �∗ on X .

The two conditions, continuity of �∗ and denseness of B, are, however, not

enough to provide good approximations of �∗ from finitely many observations.

Knowledge of the preference over the infinite set B allows the experimenter

1 Standard decision-theoretic language reserves the term identified for a relation between
preference and utility. In that context, a model is identified if every preference relation is
represented by a unique (up to some class of transformations) set of parameters. Thus,
identification in this sense requires the knowledge of an entire preference relation. In this
paper, we do not assume knowledge of the entire preference relation. Instead, we ask if one
can learn the entire preference relation with a possibly large, but nonetheless finite data set.
We discuss the identification of utility functions in Section 3.4, and the relation to decision
theory in Section 4.2.
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to exploit the continuity assumption on the subject’s preference. With finite

data, continuity does not have enough bite. To illustrate, take X = [0, 1], and

suppose that the preference of the subject over X is captured by the binary

relation ≥ (greater numbers are always preferred). Consider the countable

set of objects B = Q ∩ (0, 1), and B1, B2, . . . an enumeration of pairs of

objects of B. Then, any continuous preference that agrees with ≥ on Q has 1

weakly preferred to 0. However, for any n, one can find a preference �n that

rationalizes the choices of the subject over B1, . . . , Bn, and yet that ranks 0

strictly above 1.

In fact, one can come up with an even more startling example: we show that

no matter the subject’s preference, the experimenter may end up inferring that

the subject is indifferent among all alternatives (see Section 3.1). And yet, as in

the example just described, she would be able to infer the subject’s preference

perfectly, had she access to the subject’s preference over the infinite set B all

at once. The example exhibits a kind of discontinuity. With infinite data in

the form of B, we must conclude that x ≻ y, but any finite data cannot rule

out that y � x.

These examples illustrate the dangers of data-driven estimation. Non-

parametric estimation with finite data can behave very differently from es-

timation with infinite (even countable) data. To derive meaningful estimates,

one must construct a theory that disciplines the preferences, and lays down

the proper conditions for convergence of preference estimates.

This paper includes three sets of results.

Our first and foremost results concern non-parametric estimation. We offer

fairly general conditions so that observing sufficiently many binary choices

allows one to approximate the subject’s preference arbitrarily closely with any

preference that rationalizes the finite data.

We provide two notions of rationalization, a weak and a strong one. Under

strong rationalization, a rationalizing preference must reflect choices perfectly.

So if one alternative is chosen over another, the preference must rank the first

strictly above the second. Under weak rationalization, the first alternative

must only be ranked at least as good as the second. Weak alternatives reflect
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the phenomenon of partial observability (Chambers et al., 2014) whereby one

cannot infer anything from a choice that was not made.

Under both notions of rationalization, it is necessary to add structure on the

environment and on the rationalizing preferences so as to avoid the negative

results of the example above. Importantly, we need a notion of objective ratio-

nality expressed by the monotonicity of preferences. We postulate an exoge-

nous partial ordering of the set of alternatives—for example, standard vector

dominance when the set of alternatives represents consumption bundles, or

stochastic dominance when it is the set of lotteries over monetary amounts—

and we require that the subject’s preference is monotonic with respect to that

exogenous order.

With this structure, finite-experiment rationalizable preferences converge to

the subject’s underlying preference, under conditions that are consistent with

many applications in decision theory, and with experimental implementations

of decision theoretic models. Stronger conditions are needed to obtain the

result for weak rationalization—conditions that hold for preferences over Eu-

clidean spaces, but rule out some common applications in decision theory—yet

it is remarkable that convergence is at all attained under weak rationalization.

By remaining agnostic about choices that were not made, we are inferring a

lot less about the subject’s preferences under the assumption of weak ratio-

nalization than under strong.

Our results on preference identification are relevant to a wide range of con-

texts. For concreteness, we illustrate their application to the special case of

preferences over lotteries, dated rewards, consumption bundles, and Anscombe-

Aumann acts (Anscombe and Aumann, 1963). In all these cases, there is

a natural objective partial order and monotonicity is a sensible assumption.

There are other environments in which one cannot reasonably impose any kind

of monotonicity. For instance, in the literature on discrete allocation (such as

in Hylland and Zeckhauser (1979) or in the recent literature on school choice,

such as in Pathak and Sethuraman (2011)) in which agents are assumed to

choose among lotteries over finitely many heterogeneous objects. Monotonic-

ity would require that all agents agree on a ranking of the discrete objects that

are being allocated, an unreasonable requirement.
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Our second set of results concerns the identification of utility functions.

Given a utility representation for the agent’s preference, we show that it is

possible to carefully select finite-data utility rationalizations so as to approx-

imate the subject’s utility arbitrarily closely. This result also rests on mono-

tonicity assumptions. However, there is a clear difference between estimating

preferences and utilities. While any preference estimate converges to the true

underlying preference, for utilities we only know that a certain selection con-

verges. This observation is especially relevant when estimating utilities of a

particular functional form. There is no guarantee that such utility estimates

have the correct asymptotic behavior; one can only say that the preferences

that these utilities represent do.

Our third and final results concern the identification of preferences with in-

finite but countable data. We show that, when the experimenter has access

to the preference of the subject over all alternatives of a countable set, then

it is possible to recover perfectly the subject’s preference over the entire set of

alternatives X under much weaker conditions than above. We further demon-

strate that, under such conditions, the experimenter can, in theory, obtain

the subject’s preference directly from the observation of a single choice of the

subject when the subject is asked to select an object among a large, infinite

set.

The remainder of the paper proceeds as follows. After reviewing the liter-

ature, we describe the model in Section 2. We present our main results for

important cases of collections of alternatives in Section 3 and discuss these

results in Section 4. In Section 5, we present our main results for general col-

lections of alternatives. In Section 6, we study the relation between preference

and utility, and provide conditions under which the identification of a prefer-

ence makes it possible to identify a utility, and conversely. In Section 7, we

further show that when the set of possible utilities is compact, one can obtain

a strong form of identification, which dispenses with the postulate of existence

of a data-generating preference. We discuss the question of preference iden-

tification with infinite but countable data in Section 8. Finally, in Section 9,

we offer interpretations on the meaning of a data-generating preference. We
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relegate the proofs and more technical results to the appendices (some of these

results may be of independent interest).

Literature Review. Experimentalists and decision theorists have an obvious

interest in preference estimation, but we are not aware of any study of the

behavior of preference estimates from finite experiments. The long tradition

of revealed preference theory from finite data that goes back to Afriat (1967)

is focused on testing, not estimation. The closest work to ours is Mas-Colell

(1978), who works with finitely many observations from a demand function

over a finite number of goods. Mas-Colell assumes a rational demand function

that satisfies a boundary condition and is “income Lipschitzian.” He assumes

a sufficiently rich sequence of observations, taken from an increasing sequence

of budgets. He then shows that the sequence of rationalizing preferences, each

rationalizing a finite (but increasing) set of observations, converges to the

unique preference that rationalizes the demand function.

There are many differences between Mas-Colell’s exercise and ours, even if

one restricts attention to choice over bundles of finitely-many, divisible, con-

sumption goods. In particular, the difference in model primitives—demand

instead of binary comparisons—is crucial. One cannot generally use choice

from linear budgets to recreate any given binary comparison. Moreover, there

is no property analogous to the boundary and Lipschitz continuity of demand

in our framework. Indeed, as shown in Mas-Colell (1977), by means of an

example due to Lloyd Shapley, without these properties, preferences are not

identified from demand.2 In Mas-Colell’s paper, weak and strong rationaliz-

ability coincide, as he works with demand functions. In this paper, we are

particularly interested in partial observability.

Also working with demand functions, the recent stream of literature by Reny

(2015), Kübler and Polemarchakis (2017) and Polemarchakis et al. (2017) pro-

vide results on the limiting behavior of finite-data utility rationalizations.

These papers focus on the convergence of certain utility constructions that

rationalize finite demand data. In contrast, our main results are about the

2Shapley’s example also appears in Rader (1972). The example poses no problem for identi-
fication in our framework of binary comparisons. It generates non-identification of demand
because two preferences have the same marginal rate of substitution at the sampled points.
With binary comparisons, the differences between two such preferences are detected.
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convergence of (any) rationalizing preferences. There are also important differ-

ences between the primitives assumed in our paper and the demand functions

assumed in these papers.

The recent paper by Gorno (2017) also looks at the identification of pref-

erences from abstract choice behavior. A clear difference between Gorno’s

exercise and ours is that we consider the limiting behavior of large, but fi-

nite, experiments. His paper deals with preference identification from a given

choice behavior on a fixed choice set. While the two papers are concerned

with related questions, the exercises are quite different and the results are not

related.

Finally, on the technical level, we use the topology on preferences introduced

by Hildenbrand (1970) and Kannai (1970), building on the work of Debreu

(1954). In our study of the mapping from utility to preference, we borrow ideas

from Mas-Colell (1974) and Border and Segal (1994). In particular, the proof

of the continuity of the “certainty equivalent” representation is analogous to

Mas-Colell’s, and we take the notion of local strictness from Border and Segal,

as well as their continuity result.

2. Model

In this section, we introduce the definitions and conventions used throughout

the paper, and present our main model. Our focus in this section is on two

classical environments; namely, consumption space and Anscombe-Aumann

acts.

2.1. Basic definitions and notational conventions. Let Xi be a set par-

tially ordered by ≥i, for i = 1, . . . , n.3 If x, y ∈ Πn
i=1Xi, then x ≥ y means that

xi ≥i yi for i = 1, . . . , n; and x > y that x ≥ y and x 6= y. We write x ≫ y

when xi >i yi for i = 1, . . . , n. The order ≥ on Πn
i=1Xi is called the product

order.4 The interval [a, b] in Πn
i=1Xi denotes the set {z ∈ Πn

i=1Xi : b ≥ z ≥ a}.

An open interval (a, b) denotes the set {z ∈ Πn
i=1Xi : b ≫ z ≫ a}. When

Xi = R, and ≥i is the usual order on the real numbers, the above definitions

3A partial order is reflexive, transitive, and anti-symmetric, while a strict partial order is
irreflexive, transitive, and asymmetric.
4Then ≥ is a partial order, and each of > and ≫ are strict partial orders.
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constitute the familiar ordering on Rn, as well as the usual notions of intervals

and open intervals.

If A ⊆ R is a Borel set, we write ∆(A) for the set of all Borel probability

measures on A. We endow ∆(A) with the weak* topology. For x, y ∈ ∆(A), we

write x ≥FOSD y when x is larger than on y in the sense of first order stochas-

tic dominance (meaning that
∫
A
fdx ≥

∫
A
fdy for all monotone increasing,

continuous and bounded functions f on A). When Ω is a finite set, we shall

use the above definitions to order ∆(A)Ω by the product order defined from

ordering ∆(A) by first-order stochastic dominance.

For an integer n, [n] denotes the set {1, . . . , n}. So ∆([n]) = {x ∈ Rn
+ :

∑n

i=1 xi = 1} is the simplex in Rn.

2.1.1. Preference relations. Let X be a set. Given a binary relation R ⊆

X×X , we write x R y when (x, y) ∈ R. And we say that a function u : X → R

represents R if x R y iff u(x) ≥ u(y). A preference, or preference relation, is a

weak order; i.e. a binary relation over X which is complete and transitive..

For a partial order ≥ on X , a preference � on X is weakly monotone (with

respect to ≥) if x ≥ y implies that x � y. For a strict partial order > on X ,

a preference � on X is strictly monotone (with respect to >) if x > y implies

that x ≻ y.5

A binary relation R is continuous if R ⊆ X ×X is closed (see, for example,

Bergstrom et al., 1976).

The set of continuous binary relations overX , when X is a topological space,

is endowed with the topology of closed convergence, we provide a definition in

Section 5.1. It is the natural topology for our purposes because it is the weakest

topology for which optimal behavior is continuous.

Under the assumptions of our paper, the topology of closed convergence is

the smallest topology for which the sets

{(x, y,�) : x ≻ y}

are open (see Kannai, 1970, Theorem 3.1). So it is the weakest topology with

the following property: Suppose that a subject with preferences � chooses x

5The strict part of a partial order is a strict partial order, but sometimes we are interested
in other partial orders. For example, ≫ is not the strict part of ≥, but we use it later.
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over y (x ≻ y), and that another subject with sufficiently close preferences

�′ face a choice between x′ and y′, where (x′, y′) is sufficiently close to (x, y),

then the second subject must choose x′ over y′ (x′ ≻′ y′). In other words, the

optimal behavior according to �′ approximates the optimal behavior according

to �. In this sense, the topology that we impose on preferences is natural in

any investigation of optimal choice.

2.1.2. Choice functions. A pair (Σ, c) is a choice function if Σ ⊆ 2X \ {∅} is

a collection of nonempty subsets of X , and c : Σ → 2X with ∅ 6= c(A) ⊆ A

for all A ∈ Σ. When Σ, the domain of c, is implied, we refer to c as a choice

function.

A choice function (Σ, c) is generated by a preference relation � if

c(A) = {x ∈ A : x � y for all y ∈ B},

for all A ∈ Σ.

The notation (Σ, c�) means that the choice function (Σ, c�) is generated by

the preference relation � on X .

2.2. The model. There is an experimenter (a female) and a subject (a male).

The subject chooses among alternatives in a set X of possible alternatives.

The subjects’ choices are guided by a preference �∗ over X , which we refer to

as data-generating preference. The experimenter seeks to infer �∗ from the

subject’s choices in a finite experiment.

In a finite experiment, the subject is presented with finitely many unordered

pairs of alternatives Bk = {xk, yk} inX . For every pair Bk, the subject is asked

to choose one of the two alternatives: xk or yk.

A sequence of experiments is a collection Σ∞ = {Bi}i∈N of pairs of possible

choices presented to the subject. Let Σk = {B1, . . . , Bk}, and let B = ∪∞k=1Bk

be the set of all alternatives that are used over all the experiments.

We make two assumptions on Σ∞. The first is that B is dense in X . The

second is that, for any x, y ∈ B there is k for which Bk = {x, y}. The first

assumption is obviously needed to obtain any general identification result (see
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Section 4.5). The second assumption means that the experimenter is able to

elicit the subject’s choices over all pairs used in her experiment.6

2.2.1. The data and its rationalizations. For each k, the subject’s preference

�∗ generates a choice function (Σk, c�∗). Thus the choice behavior observed

by the experimenter is always consistent with (Σk, c�∗). We term (Σk, c�∗) the

choice function of order k generated by �∗, and we term the choice function

(Σ∞, c�∗) the choice sequence of order k generated by �∗.

Sometimes, we may not be able to observe the subject’s entire choice func-

tion. In the spirit of Afriat (1967), we want to allow for the possibility that the

subject may in principle be willing to choose x, but does not actually choose

it. In the language of Chambers et al. (2014), we want to study the concept of

partial observability. To this end, a general choice function (Σ∞, c) is termed

a choice sequence and this induces, for every k, a choice function on Σk.

For a choice function c and a preference �∗, we use the notation c ⊑ c�∗

to mean that for each budget Bk, c(Bk) ⊆ c�∗(Bk); i.e., the observed choices

from Bk are optimal for �∗.

In the context of partial observability, the notion of rationalization needs to

accommodate the fact that some preference maximal alternatives may not have

actually been chosen. The next concept captures such an accommodation; and

is again in the spirit of Afriat (1967).

A preference �k weakly rationalizes (Σk, c) if, for all Bi ∈ Σk, c(Bi) ⊆

c�k
(Bi). A preference �k weakly rationalizes a choice sequence (Σ∞, c) if it

rationalizes the choice function of order k (Σk, c), for all k ≥ 1.

The following concept is analogous to the notion of rationalization discussed

in Richter (1966), and is the appropriate notion when it is known that all

potentially chosen alternatives are actually chosen.

A preference �k strongly rationalizes (Σk, c) if, for all Bi ∈ Σk, c(Bi) =

c�k
(Bi). A preference �k strongly rationalizes a choice sequence (Σ∞, c) if it

rationalizes the choice function of order k (Σk, c), for all k ≥ 1.

6If there is a countable dense A ⊆ X , then one can always construct such a sequence of
experiments via a standard diagonalization argument.
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3. Results

3.1. Motivation. Many results on identification in economics presume access

to rich information. In decision theory, the presumption is that one can observe

enough of the subject’s choices so as to effectively know the subject’s preference

�∗. In this section, we point to some problems with this assumption.

Let �I= X ×X denote the degenerate preference relation that regards any

two alternatives as indifferent.

Proposition 1. Let X = [a, b] ⊆ Rn, where a ≪ b. Let the subject’s prefer-

ence �∗ be continuous. There exists a continuous preference �k that strongly

rationalizes the choice function of order k generated by �∗, and such that

�k→�
I .

The proof of Proposition 1 is relegated to Appendix B.

Proposition 1 means that, absent further conditions, the sequence of ra-

tionalizations can be very different from the preference �∗ generating the

subject’s choices. It is possible to choose rationalizations that converge to

full indifference among all alternatives, regardless of which �∗ really gener-

ated the subject’s choices. The objective of our paper is to show how such

problems can be avoided.

Proposition 1 suggests another distinction. There is “infinite data” in the

form of the data-generating preference �∗, such data is commonly assumed

in decision theory; there is finite data, in the form of (Σk, c
∗
�); and, “limiting

data,” which would be �∗ |B, i.e., the preference �∗ restricted to domain

B. With limiting data one would be able to identify �∗. Indeed, we show in

Section 3.5 that if � |B =�∗ |B then �=�∗.

Therefore, Proposition 1 illustrates a sort of discontinuity. If one only had

access to limiting data, there would be no problem. However, with arbitrarily

large, but finite, data, preference rationalizations can be completely wrong.

3.2. Weak rationalizations. We now present a series of simple sufficient

conditions ensuring convergence of preference rationalizations to the subject’s

preference. The results are discussed in Section 4.
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Let X = Rn
+. Recall that the strict partial order ≫ on Rn

+ refers to the

relation x≫ y if for each i, xi > yi (i.e. the product of >); strict monotonicity

refers to this relation.

Theorem 2. Let the subject’s preference �∗ be continuous and strictly mono-

tone. Suppose that c ⊑ c�∗. For each k ∈ N, let �k be a continuous and

strictly monotone preference that weakly rationalizes (Σk, c). Then, �k→�
∗.

Theorem 2 can be generalized, as �∗ and �k do not need to be transitive.

They only need to be continuous, strictly monotone, and complete.

3.3. Strong rationalization. Suppose that X is either

(1) Rn
+,

(2) or ∆([a, b])Ω for a finite set Ω and [a, b] ⊆ R.

Recall that we topologize ∆([a, b]) with its weak* topology, and ∆([a, b])Ω

with the product topology. In the case of Rn
+, the relation ≥ refers to the

product of ≥ on each of the coordinates, and on ∆([a, b])Ω, it is the product

of ≥FOSD.

Theorem 3. Let the subject’s preference �∗ be weakly monotone. For each

k ∈ N, let �k be a continuous and weakly monotone preference that strongly

rationalizes the choice function of order k generated by �∗. Then, �k→�
∗.

3.4. Utility functions. Let X be either of the sets in Section 3.3. In the case

of ∆([a, b])Ω, > references the strict part of ≥ as defined previously.

Denote by Rmon the set of preferences that are strictly monotone and con-

tinuous, and by U the set of strictly increasing and continuous utility functions

on X . The set U is endowed with the topology of uniform convergence on com-

pacta.

Let Φ be the function that carries each utility function in U into the pref-

erence relation that it represents. So Φ : U → Rmon is such that x Φ(u) y if

and only if u(x) ≥ u(y).

We regard two utility functions as equivalent if they represent the same

preference: if they are ordinally equivalent. Define an equivalence relation ≃

on U by u ≃ v if there exists ϕ : R→ R strictly increasing for which u = ϕ◦v.

Then let U/ ≃ denote the set of equivalence classes of U under ≃ endowed with
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the quotient topology. The function Φ̂ : U/ ≃→ Rmon maps an equivalence

class into Φ(u), for any u member of the equivalence class.

Theorem 4. Φ̂ is a homeomorphism.

Theorem 4 implies that a utility representation may be chosen from a finite-

experiment rationalization so as to approximate a given utility representation

for the preference generating the choices.

The following Proposition adds some structure to Theorem 4. It claims a

lower hemicontinuity result for Φ−1, in the sense that for any utility represen-

tation of a strictly monotone preference, a convergent sequence of preferences

possesses a convergent sequence of utility representations.

Proposition 5. Let the subject’s preference �∗ be strictly monotone and con-

tinuous. Let �k be a continuous and strictly monotone preference that strongly

rationalizes the choice function of order k generated by �∗. Then, for any util-

ity representation u∗ of �∗, there exist utility representations uk of �k such

that uk → u∗.

3.5. Limiting data. Let X be as in Section 3.3, and let B be the dense set

of alternatives used over all experiments.

Theorem 6. Suppose that � and �∗ are two continuous preference relations.

If � |B×B =�∗ |B×B, then �=�
∗.

As we discussed in Section 3.1, the case of limiting data serves to illustrate

the difference between a sequence of finite experiment and the limit of a count-

ably infinite dataset. Theorem 6 means that one can obtain identification of

�∗ solely from the continuity assumption (we refer the reader to Section 8 for

more details).

4. Discussion

4.1. Positive results and assumptions on X. The previous section as-

sumes that X is either Rn
+ or ∆([a, b])Ω, for some finite set Ω. The point

of Theorems 2 and 3 is to provide a positive result in response to the con-

cerns raised in Section 3.1. The results cover some of the most widely used
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choice spaces in economics: Rn
+ is consumption space in demand theory, and

∆([a, b])Ω is a space of Anscombe-Aumann acts over monetary lotteries.

For the Anscombe-Aumann interpretation, let Ω be a finite nonempty set

of states of the world, and interpret [a, b] as a set of monetary payoffs. The

elements of ∆([a, b]) are lotteries of monetary payoffs. An Anscombe-Aumann

act is a state-contingent monetary lottery; it maps elements from Ω to ∆([a, b]).

The set of alternatives ∆([a, b])Ω is then the set all Anscombe-Aumann acts.

The spaces Rn
+ and ∆([a, b])Ω have in common that there is an objective

notion of monotonicity that preferences can be made to conform to. Other

spaces share this property. Section 5 includes our most general results.

4.2. Identification of utility functions. Many results on identification in

decision theory can be phrased in the following terms. There are subsets

U ′ ⊆ U and R′ ⊆ Rmon, and an equivalence relation ≃′ on U ′ such that Φ is

a bijection from U ′/ ≃′ onto R′. The idea is that, with data in the form of

�∗, one can uniquely “back out” an equivalence class from U ′.

Our results suggest that this is not enough when data is finite. First, one

needs to ensure that rationalizations obtained from finite data converge to

the underlying �∗. Second, the space of preferences and utilities have to be

homeomorphic in order to be able to obtain a limiting utility function from a

large, but finite, dataset on choices.

4.3. Partial observability. The distinction between weak and strong ratio-

nalizability is important. In fact, it is rather surprising that one can obtain a

result such as Theorem 2 for weak rationalizations.

A choice sequence generated by the subject’s preference reflects both strict

comparisons as well as indifferences. In practice, however, the experimenter

may not be able to properly infer the indifference of the subject regarding

two alternatives. The difficulty arises, for example, when the experimenter

offers the subject his preferred alternative. In this case, the experimenter

would typically require that the subject selects only one of the two alternatives

presented to him. Such situations, in which the experimenter cannot commit

to being able to see all potentially chosen elements, are referred to partial
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observability (Chambers et al., 2014), in contrast to full observability in which

the experimenter is able to elicit the subject’s indifference between alternatives.

Weak rationalizability expresses the idea that the experimenter is not willing

to commit to interpreting observed choices as the only potential choices made

by the subject. For example, if the experimenter observes that the subject

chooses x when presented the pair {x, y}, she may not be willing to infer that

x ≻∗ y, as it may be that x ∼∗ y but the subject simply did not choose

y. This notion of weak rationalization is used, for example, by Afriat (1967)

in the context of consumer theory (for more details on this notion, see, for

example, Chambers and Echenique (2016)).7

Weak rationalizability is partially agnostic with respect to the status of

unchosen alternatives, so it is surprising that one can ensure convergence of

preference rationalizations to the preference that generated the choices.

4.4. Monotone Preferences. The problem exemplified by Proposition 1 is

that one cannot hope to obtain convergence to �∗ if there is no discipline

placed on the rationalizing preferences. In a sense, we need to constrain, or

structure, the theory from which rationalizations are drawn. Our results show

that a notion of objective monotonicity is enough to ensure that rationalizing

preferences in the limit approach the subject’s preferences.

As discussed in the introduction, and exemplified by Proposition 1, the

continuity assumption on the subject’s preference, and the assumption that the

alternatives offered are in the limit dense, do not generally ensure convergence

to the subject’s preference. Proposition 1 shows that the failure of convergence

can be rather dramatic. We must impose structure on the subject’s preference,

and on the finite-experiment rationalizations.

Observe that the preferences �k constructed in Proposition 1 cannot be

monotone. Suppose that �∗ is a continuous preference relation, and suppose

that x ≻∗ y. In the construction in Proposition 1 we obtain a sequence of

rationalizations �k such that in the limit y is at least as good as x. This cannot

happen if each rationalizing preference is weakly monotone: x ≻∗ y implies

7Analogously, the hypothesis of full observability, related to what we call strong rationaliza-
tion, is the notion employed by Richter (1966). A recent work showing how to obtain both
types of conditions as a special case is Nishimura et al. (2017).
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that x′ ≻∗ y′ for (x′, y′) close enough to (x, y). Thanks to the interaction of

the order and the topology on Rn we can find a k large enough such that there

are {x′′, y′′} ∈ Σk (meaning alternatives offered in the kth finite experiment)

with x′ ≥ x′′ and y′′ ≥ y′, and where (x′′, y′′) is also close to (x, y). If �k is

monotone then we have x′ �k x′′ and y′′ � y′. But if �k strongly rationalizes

the choices made at the kth experiment, then x′′ ≻k y′′. So we have to have

x′ ≻k y′ for any (x′, y′) close enough to (x, y).

4.5. On the denseness of B. We assume that B, the set of all alterna-

tives used in a sequence of experiments, is dense. Our paper deals with fully

nonparametric identification, so it seems impossible to obtain a general result

without assuming denseness of B: imagine that the experimenter leaves an

open set of alternatives outside of her experimental design. Then the subject’s

preferences over alternatives in that set would be very hard to gauge.

In practice, one can imagine restricting attention to smaller class of fami-

lies for which one does not need to elicit choices over a set that is dense in

X . For example for expected utility preferences over lotteries, or homothetic

preferences in Rn, one is only trying to infer a single indifference curve. So a

smaller set of choices is enough: but even in that case one would need the set

of alternatives in the limit to be dense in the smaller set of choices.

4.6. Preference identification and utility identification. The theorems

say, roughly speaking, that, if we assume data generated by a (well behaved)

preference �∗, then any “finite sample rationalization” �k is guaranteed to

converge to the generating preference. So estimates have the correct “large

sample” properties. In particular, one may be interested in a specific theory

of choice, such as max-min or Choquet expected utility. If the subject’s �∗

is max-min, or Choquet, one can choose rationalizing preferences to conform

to the theory, and the limit will uniquely identify the subject’s max-min, or

Choquet, preference. But if one incorrectly uses rationalizing preferences out-

side of the theory, the asymptotic behavior will still correct the problem, and

uniquely identify �∗ in the limit. The theorems also say that there are certain

utility representations uk that will be correct asymptotically.
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Note, however, what the theorems do not say. First, the estimates �k are

guaranteed to converge to the generating preferences �∗, when the generating

preference is known to exist. If one simply estimates the preferences �k, these

may fail to converge to a well-behaved preference. We present two examples to

this effect in Section 9. That said, under certain conditions (that unfortunately

are not satisfied in the Anscombe-Aumann setting), the “size” of the set of

rationalizing preferences shrinks as k growth; see Theorem 10.

Second, our results do not say that one can choose uk arbitrarily. Any

estimated rationalizing preference will converge to the preferences rationalizing

the utility, but basing the estimation on utilities is more complicated because

it is not clear that any utility representation of �∗ will have the right limit, or

even converge at all.

5. General Results

In Section 3, we have presented our main results for some important special

cases of the collection of alternatives X . In this section, we present our main

results for the general case. We now assume that X is a Polish and locally

compact space, and provide conditions under which our convergence results

continue to hold. The conditions we provide are the weakest we know. The

section concludes with applications to this general case. Note that this section

focuses on preference identification, general results for utility identification are

given in Section 6.

5.1. Convergence of Preferences. To speak about the approximation of the

subject’s preference, one must introduce a notion of convergence on the space

of preferences. We use closed convergence, and endow the space of preference

relations with the associated topology. The use of closed convergence for pref-

erence relations was initiated by the work of Kannai (1970) and Hildenbrand

(1970), and has become standard since then.

One primary reason to adopt closed convergence is to capture the property

that agents with similar preferences should have similar choice behavior—a

property that is necessary to be able to learn the preference from finite data.

Specifically, under the assumptions we use for most of our results, the topology
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of closed convergence is the smallest topology for which the sets

{(x, y,�) : x ≻ y}

are open (see Kannai (1970) Theorem 3.1). The desired continuity of choice

behavior is expressed by the fact that sets of the form {(x, y,�) : x ≻ y} are

open. The topology of closed convergence being the smallest topology with

this property is a natural reason for adopting it.

The following characterization of closed convergence for the context of pref-

erence relations will be used throughout the paper:

Lemma 7. Let �n be a sequence of preference relations, and let � be a pref-

erence relation. Then �n→� in the topology of closed convergence if and only

if, for all x, y ∈ X,

(1) x � y implies that for any neighborhood V of (x, y) in X ×X there is

N such that for all n ≥ N , �n ∩V 6= ∅;

(2) if, for any neighborhood V of (x, y) in X × X, and any N there is

n ≥ N with �n ∩V 6= ∅, then x � y.

The following lemma plays an important role in the approximation results.

Lemma 8. The set of all continuous binary relations on X, endowed with the

topology of closed convergence, is a compact metrizable space.

Proof. See Theorem 2 (Chapter B) of Hildenbrand (2015), or Corollary 3.95

of Aliprantis and Border (2006). �

In particular, we shall denote the metric which generates the closed conver-

gence topology by δC . Recall that X is metrizable. Let d be an associated

metric. When X is compact, one can choose δC to be the Hausdorff metric on

subsets of X ×X induced by d. On the other hand, if X is only locally com-

pact, then δC may be chosen to coincide with the Hausdorff metric on subsets

of X∞ ×X∞, where X∞ is the one-point compactification of X together with

some metric generating X∞. See Aliprantis and Border (2006) for details.

5.2. Weak rationalizations. We now present our results on the asymptotic

behavior of preference estimates based on finite data. The results generalize

those stated in Section 3.
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For our first result, we must define two notions. We say that a preference

relation � is locally strict if for every x, y ∈ X with x � y, and every neigh-

borhood V of (x, y) in X ×X there is (x′, y′) ∈ V with x′ ≻ y′.

The first main result gives conditions of convergence of preferences that

weakly rationalize the experimental observations. Note that Theorem 9 gen-

eralizes Theorem 2.

Theorem 9. Suppose that

(1) the subject’s preference �∗ is continuous and strictly monotone,

(2) the strict partial order < is an open set,

(3) every continuous and strictly monotone preference relation is locally

strict.

Let c ⊑ c�∗ be a choice sequence, and let �k be a continuous and strictly

monotone preference that weakly rationalizes ck. Then, �k→�
∗ in the closed

convergence topology.

Note that the assumption that �∗ and �k are transitive is not needed.

Instead, each of these only needs to be continuous, strictly monotone, and

complete.

Note that Theorem 9 requires the existence of the data-generating preference

�∗. However, even if existence of this object is not supposed, we can still

“bound” the set of rationalizations to an arbitrary degree of precision. This is

the point of the next result.

For a choice sequence c, let Pk(c) be the set of continuous and strictly

monotone preferences that weakly rationalize ck. For a set of binary relations

S, define diam(S) = sup(�,�′)∈S2 δC(�,�
′) to be the diameter of S according

to the metric δC which generates the topology on preferences.

Theorem 10. Suppose that < has open intervals. Let c be a choice sequence,

and suppose that each strictly monotone continuous preference is also locally

strict. Then one of the following holds:

(1) There is k such that Pk(c) = ∅.

(2) limk→∞ diam(Pk(c))→ 0.
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That is, either a choice sequence is eventually not weakly rationalizable by a

strictly monotone preference, or, the set of rationalizations becomes arbitrarily

small.

Note that, as for Theorem 9, Theorem 10 can dispense with the notion of

transitivity. In this case, we would define Pk(c) to be the set of (potentially

nontransitive) complete, continuous, and strongly monotone relations weakly

rationalizing ck.

5.3. Strong rationalizations. Say that the set X , together with the col-

lection of finite experiments Σ∞, has the countable order property if for each

x ∈ X and each neighborhood V of x in X there is x′, x′′ ∈ B ∩ V with

x′ ≤ x ≤ x′′. We say that X has the squeezing property if for any conver-

gent sequence {xn}n in X , if xn → x∗ then there is an increasing sequence

{x′
n}n, and an a decreasing sequence {x′′

n}n, such that x′
n ≤ xn ≤ x′′

n, and

limn→∞ x′
n = x∗ = limn→∞ x′′

n.

Theorem 11. Suppose that

(1) the subject’s preference �∗ is weakly monotone,

(2) (X,Σ∞) has the countable order property, and X the squeezing prop-

erty.

Let �k be a continuous and weakly monotone preference that strongly ratio-

nalizes the choice function of order k generated by �∗. Then, �k→�
∗ in the

closed convergence topology.

The countable order and squeezing properties are technical but not vacu-

ous. Importantly, as stated below in Proposition 12, they are satisfied for

two common cases of interest discussed in Section 3.3. Therefore, Theorem 11

generalizes Theorem 3.

Proposition 12. If either

(1) the set of alternatives X is Rn endowed with the order of weak vector

dominance, or

(2) the set of alternatives X is ∆([a, b]) endowed with the order of weak

first-order stochastic dominance,
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then X has the squeezing property, and there is Σ∞ such that (X,Σ∞) has the

countable order property.

One key element behind the above two results is a natural order on the sets

of possible alternatives. Via monotonicity, the order adds structure to the

families of preferences under consideration. Crucially, the order also relates to

the topology on the set X .

5.4. Applications. We have already highlighted the application of our results

to Euclidean consumption spaces and Anscombe-Aumann acts over monetary

lotteries (see Section 3). Here we discuss two other domains of application of

our results.

5.4.1. Lotteries over a finite prize space. Let Π be a finite prize space. The

objects of choice are the elements of X = ∆(Π). Fix a strict ranking of the

elements of Π, and enumerate the elements of Π so that π1 is ranked above

π2, which is ranked above π3, and so on. Then the elements of X can be

ordered with respect to first-order stochastic dominance: x is larger than y in

this order if the probability of each set {π1, . . . , πk} is at least as large under

x than under y, for all k = 1, . . . , |Π|. A preference over X is monotone if it

always prefer larger lotteries over smaller ones.8

Suppose that choices are generated by an expected utility preference �∗.

The fact that �∗ belongs to the expected utility family implies that there

are rationalizing expected utility preference �k, for each finite experiment k.

Then, the above results ensure that these converge to �∗. Of course the same

would be true of any (monotone and continuous) rationalizing preference: any

mode mis-specification would be corrected in the limit. In other words, any

arbitrary sequence of rationalization has the data-generating preference �∗ as

its limit.

5.4.2. Dated rewards. We can apply our theory to intertemporal choice. Specif-

ically to the choice of dated rewards (Fishburn and Rubinstein (1982)). The

set of elements of choice is R2
+. A point (x, t) ∈ R2

+ is interpreted as a mone-

tary payment of x delivered on date t. Endow R2
+ with the order ≤i whereby

8The objective order on Π is not really needed in this case; see Example 19. The point of
the example is to illustrate Theorem 9.
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(x, t) ≤i (x′, t′) if x ≤ x′ and t′ ≤ t. Monotonicity of preferences means that

more money earlier is preferred to less money later.

Now one can postulate a preference �∗ such that (x′, t′) �∗ (x, t) iff δtv(x) ≤

δt
′

v(x′), for some δ ∈ (0, 1) and a strictly increasing function v : R+ → R.

This means that �∗ follows the exponential discounting model. Again, any

finite experiment would be rationalizable by exponential preference, and these

would converge to the limiting �∗.

6. Identification of Utility Functions

In this section, we investigate the relation between preferences and util-

ity. Preferences remain topologized with the closed convergence topology. We

study continuous utility representations, and ask when the identification of a

preference allows the identification of a utility (or conversely). We show that if

we endow the set of continuous utility functions with the topology of uniform

convergence on compacta, then convergence in one sense is equivalent to con-

vergence in the other. Formally, we establish that there is a homeomorphism

between the two spaces (when we identify two utility functions representing

the same preference relation).

Throughout this section, the space of possible alternatives X is connected

(and remains a locally compact Polish space, as described in our model). Con-

nectedness is imposed so that every continuous preference admits a continuous

representation, as in Debreu (1954).

We denote by U the set of strictly increasing and continuous utility func-

tions on X . Similarly, Rmon denotes the set of preferences which are strictly

monotone and continuous.

Suppose the existence of a set M ⊆ X , satisfying the following conditions:

• M has at least two distinct elements; M is connected and totally or-

dered by <. In other words x, y ∈ M and x 6= y implies x < y or

y < x.

• For any m ∈M and any neighborhood U of m in X there is m,m ∈M ,

with

m ∈ [m,m] ⊆ U.
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Moreover if m is not the largest element of M we can choose m such

that m < m, and if m is not the smallest element we can choose m

such that m < m.

• Any bounded sequence in X is bounded by elements of M . That is,

for any bounded sequence {xn} there are m and m and k large so that

m ≤ xn ≤ m.

Let Φ : U → Rmon such that Φ(u) is the preference represented by u ∈ U .9

We provide two examples below that demonstrate the property just men-

tioned for the case of alternatives of the formX = ∆([a, b]) andX = ∆([a, b])n.

Example 13. Let X = ∆([a, b]) be the set of Borel probability distributions

on a real compact interval S = [a, b] ⊆ R. Endow X with the weak* topology

and let ≤ be first-order stochastic dominance. Observe that X is compact,

metrizable, and separable (Theorems 15.11 and 15.12 of Aliprantis and Border

(2006)). Observe also that X has the countable order property (see Lemma 28

in Appendix C).

Let < be the strict part of ≤. Identify S with degenerate probability distri-

butions, so that s ∈ S denotes the element of X that assigns probability 1 to

{s}, say δs. Let M = S. The relative topology on S coincides with the usual

topology, so S is connected. Note that a ≤ x ≤ b for any x ∈ X .

Let m ∈ M and U be a neighborhood of m in X . For each x ∈ X , let F x

be the cdf associated to x. Choose ε such that the ball Bε(m) (in the Levy

metric) with center m and radius ε is contained in U . Let ε′ < ε. Then if

y ∈ [m− ε′, m+ ε′] we have that

F y(s− ε)− ε ≤ Fm−ε′(s− ε)− ε < 1 = Fm(s) if s− ε ≥ m− ε′

F y(s− ε)− ε ≤ Fm−ε′(s− ε)− ε = −ε < Fm(s) if s− ε < m− ε′

Similarly,

Fm(s) = 0 < Fm+ε(s+ ε) + ε ≤ F y(s+ ε) + ε if s+ ε ≤ m+ ε′

Fm(s) < 1 + ε = Fm+ε′(s+ ε) + ε ≤ F y(s+ ε) + ε if s+ ε > m+ ε′.

9That is, x Φ(u) y if and only if u(x) ≥ u(y).
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These inequalities mean that y ∈ Bε(m). Thus [m− ε′, m+ ε′] ⊆ U , as y was

arbitrary.

Example 14. Let Ω be a nonempty set such that |Ω| < +∞. Suppose Ω

represents a set of states of the world. Then ∆([a, b])Ω, endowed with the

product weak* topology, and ordered by the product order, of Ω copies of first

order stochastic dominance, represents the set of Anscombe-Aumann acts,

Anscombe and Aumann (1963). Let S = {(δs, . . . , δs) : s ∈ [a, b]}; the con-

stant acts whose outcomes are degenerate lotteries. Let M = S, as in the

previous example; and all topological properties satisfied there are also satis-

fied here.

The following results generalize those derived originally by Mas-Colell (1974),

who worked with Rn
+.

Theorem 15. Φ is an open map.

Theorem 16. (Border and Segal (1994) Thm 8) Let (X, d) be a locally com-

pact and separable metric space and R be the space of continuous preference

relations on X, endowed with the topology of closed convergence. If �u= Φ(u)

is locally strict, then Φ is continuous at u. If M has no isolated points, and Φ

is continuous at u, then �u is locally strict.

Define an equivalence relation ≃ on U by u ≃ v if there exists ϕ : R → R

strictly increasing for which u = ϕ ◦ v. Then let U/ ≃ denote the set of

equivalence classes of U under ≃ endowed with the quotient topology; the

equivalence class of u ∈ U is written [u]. The map Φ̂ : U/ ≃→ Rmon is

defined in the natural way, via Φ̂([u]) = Φ(u).10

Theorem 17. Φ̂ is a homeomorphism.

Given the discussion of Example 13, Theorem 17 generalizes Theorem 4.

The role of M in the case of Rn
+ is played by the equal-coordinates ray. It

is also straightforward to apply Theorem 17 to intertemporal choice by way

of the model of dated rewards (see Section 5.4.2, by letting M be the line

{(x, 0) : x ≥ 0}.

10Observe that this function is well-defined. If v ∈ [u], then there is strictly increasing ϕ for
which v = ϕ ◦ u, hence v and u represent the same preference.
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7. Non-monotone preferences and local strictness

When the set of utility functions is compact, we can obtain a particularly

strong result that does not rely on monotonicity, or the existence of a preference

relation generating the choices. Instead, the generating preference is obtained

endogenously as the limit of rationalizing preferences.11

Let V be a compact set of continuous functions in the topology of compact

convergence, and let Φ(V) denote the image of V under Φ, so that Φ(u) is the

preference represented by u.

Theorem 18. Suppose V is compact, and that all �∈ Φ(V) are locally strict.

Let c be a choice sequence, and let �k∈ V weakly rationalize ck. Then, there

exists �∗∈ Φ(V) such that �k→�
∗ in the closed convergence topology. Fur-

thermore, if �′
k also weakly rationalizes ck, then �′

k→�
∗.

Observe that knowledge of a generating preference �∗ is not required; but

the hypothesis that there is a weak rationalization �k for every ck suggests

the possibility.

Theorem 18 implies that one can sometimes obtain asymptotically utility

rationalizations drawn from V. In particular, when V is compact, Φ(V) consists

of locally strict preferences, and Φ is a homeomorphism then Φ−1(�k) ∈ V

converges to a utility for�∗ in V. One application of this kind is in Example 19.

Example 19. Let X be a finite set, and let ∆(X) be the lotteries on X

(topologized as elements of Euclidean space). Consider the set of nonconstant

expected utility preferences. Then the hypotheses of Theorem 18 hold here.

To see this, observe that the set of nonconstant von Neumann-Morgenstern

utility indices is homeomorphic to the set

S = {u ∈ RX :
∑

x

ux = 0, ‖u‖ = 1}.

It is straightforward to see that the map φ : S → C(∆(X)) given by φ(u)(p) =
∑

x uxp(x) is continuous. So, let V = φ(S) which is compact; then the set

Φ(V) is the set of nontrivial expected utility preferences. Finally, observe

that each nonconstant expected utility preference is locally strict. For, if � is

11In particular, these results should be contrasted with the example in Section 9.1.
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nonconstant, then there are p, q ∈ ∆(X) for which p ≻ q. Then for any r � s,

for any α > 0, αp + (1 − α)r ≻ αq + (1 − α)s. Choose α small to be within

any neighborhood of (r, s).

Next, Example 20 allows for an infinite set of prices, but restricts von

Neumann-Morgenstern utilities to have lower and upper Lipschitz bounds.

Example 20. We can consider Rn
+, and a class of utility functions U b

a, where

a, b ∈ R with 0 < a < b.

U b
a = {u ∈ C(Rn

+) : ∀i∧∀(xi < yi), a(yi−xi) ≤ u(yi, x−i)−u(xi, x−i) ≤ b(yi−xi)}.

Observe that U b
a ⊆ U , and consists of those members satisfying a certain

Lipschitz property (namely, Lipschitz boundedness above and below). By the

Arzela-Ascoli Theorem (see Dugundji (1966), Theorem 6.4), U b
a is compact.

Furthermore, each �∈ Φ(U b
a) is locally strict, as it is strictly monotonic.

8. Infinite and Countable Data

In this section, we propose two sufficient conditions that enable the recovery

of the subject’s preference from its restriction to a countable set of data points.

We first show below that if we can observe a subrelation of a locally strict

and continuous binary relation on a dense set, then we can infer the entire

binary relation.

Theorem 21. Suppose that � and �′ are two complete, continuous, and lo-

cally strict binary relations. Let B ⊆ X be dense. If � |B×B ⊆�
′ |B×B, then

�=�′.

We then make no restriction on the preferences other than continuity, but

requires the underlying space of alternatives to be connected.

Theorem 22. Suppose that � and �′ are two continuous preference relations.

Suppose X is connected, and let B ⊆ X be dense. If � |B×B =�′ |B×B, then

�=�′.

Note that Theorem 22 generalizes Theorem 6. Without connectedness, this

result can fail. A preference � can be increasing on (0, 1) ∪ (2, 3), but there
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are two possible ways to extend it to [0, 1] ∪ [2, 3]; either by setting 1 ∼ 2, or

2 ≻ 1.

A classical procedure, attributed to Allais (see Allais, 1953) allows one to

elicit multiple choices with one suitably randomized choice. Roughly, one uses

a randomization device whose outcome is a choice set, and asks a subject to

announce what she would choose ex-ante from each of the sets in the support in

the distribution. A decision maker who respects basic monotonicity postulates

(see Azrieli et al., 2014) correctly announces each of their choices.

If we can uncover an entire preference from each of these choices, then

we are able to elicit an entire preference using one suitably chosen random

device. Here, we do not investigate this theory in its full generality. But if

there is a countable dense subset of alternatives, and a continuous preference

can be inferred from its behavior on a countable dense subset, then we can

utilize the Allais mechanism to uncover an entire preference with a single

randomized choice. For example, we would enumerate the pairs of elements

from the countable dense subset, say B1, B2, . . ., and randomize so that each

one realizes with probability 2−k.

9. On the meaning of �∗

Some economists are comfortable with the idea that an agent “has” a data-

generating preference �∗, and some are not. The former assume that the

preference is something intrinsic to the agent, and that when presented with

a choice situation the agent can access his preference and choose accordingly.

Under this interpretation, our paper gives conditions under which a finite ex-

periment can approximate, to an arbitrary degree of precision, the underlying

preference that the agent uses to make choices.

Other economists argue that preferences are just choices. For those in this

position, it is meaningless to speak of a preference over pairs of alternatives

from which the agent never chooses. We are sympathetic to this view, and

our paper also contributes to this interpretation. Under proper conditions—

conditions that we provide in our paper—continuity “defines” preferences over

X given choices over a countable subset. This is important because estimated

preferences provide a guide for making normative recommendations and out
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of sample predictions. An economist may want to estimate �∗ so as to make

policy recommendations that are in the agent’s interest; in fact, this is a

common use of estimated preferences in applied work. Similarly, the economist

may want to use �∗ as an input in a structural economic model, and thereby

make predictions for different configurations of the model. The existence and

meaning of �∗ is then provided for by the continuity assumption.

Moreover, viewed from this angle, Theorem 10 allows us to say that the set

of rationalizations can be made arbitrarily small as more and more data are

observed.12 In this manner, one can bound errors in welfare statements or out

of sample predictions to an arbitrary degree of precision.

We conclude this section with two examples that illustrate the importance

of postulating existence of an agent’s preference: without the postulate, the

inferred preference may otherwise fail to converge.

9.1. The set of weakly monotone preference relations is not closed.

Suppose we are interested in rationality in the form of a strictly monotonic

continuous preference relation. Observe that Theorems 9 and 11 hypothesize

the existence of �∗. If �∗∈ Rmon, for example, then we know that, in the

limit, rationalizing relations will be transitive if every �k is. Unfortunately, we

show in this section, if we do not know that �∗ is transitive, we cannot ensure

that it is, even if each �k is. That is, we demonstrate a sequence �k of strictly

monotone preferences, where �k→�
∗ in the closed convergence topology, but

�∗ is not transitive.

The data are rationalizable, but the rationalization requires intransitive in-

difference. So the properties of the rationalizations of order k cannot be pre-

served.

Figure 1 exhibits a non-transitive relation. The example is taken from

Grodal (1974). The lines depict indifference curves, but all the green indif-

ference curves intersect at one point: (1/2, 1/2). This makes the preference

non-transitive; specifically the indifference part of the preference would be

intransitive here.

12This is true in spite of the claim we make in Section 9.1. It is true that the set of
rationalizations may “shrink” to something which is not transitive, but this set is shrinking
nonetheless and always contains preference relations (except in the limit).
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1/2

1/2

1/2

1/2
Figure 1. A non-transitive preference

Now imagine a collection of binary comparisons that do not include (1/2, 1/2).

Suppose that this collection is the limit of a finite number of binary compar-

isons, making it at most countable. There must exist a ball around (1/2, 1/2)

that does not include any of the comparisons. Consider the diagram in Fig-

ure 2. The preferences have been modified close to (1/2, 1/2) so that transi-

tivity holds.

This example is not particularly troubling, however. First, with finite exper-

imentation, the violation of transitivity will never be “reached.” Second, the

violation here is not particularly egregious. Only transitivity of indifference is

violated. This holds quite generally. It can be shown that any limit point of

a sequence of preference relations must be quasitransitive, so that whenever

x ≻ y and y ≻ z, it follows that x ≻ z.13 Quasitransitive relations enjoy many

of the useful properties of preferences. For example, continuous quasitransitive

relations possess maxima on compact sets, see e.g. Bergstrom (1975).

13The argument is in Grodal (1974), but to see this suppose that �n→�, where each �n

is a preference relation. It can be shown that � is complete, so suppose by means of
contradiction that there are x, y, z ∈ X for which x ≻ y, y ≻ z, and z � x. So, there are
xn, zn for which zn �n xn, xn → x, and zn → z. For each n, either zn �n y or y �n x, so
that without loss, there is a sequence for which zn �n y, i.e. z � y, a contradiction.
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Figure 2. A transitive preference

9.2. The set of locally strict relations is not closed. Finally we present

an example to show that the set of locally strict preference relations is not

closed. Let X = [−3,−1] ∪ [1, 3]. For each n, let un(x) = −(x + 2)2 + 1
n
on

[−3,−1] and un(x) = (x − 2)2 − 1
n
on [1, 3]. See Figure 3. The function un

represents a locally strict relation �n.

Let u∗(x) be the pointwise limit of un; i.e. u∗(x) = −(x + 2)2 on [−3,−1]

and u∗(x) = (x − 2)2 on [1, 3]. The function u∗ represents �∗ which is not

locally strict. Observe that −2 �∗ 2, but for small neighborhoods there is no

strict preference.

However, it is also straightforward by checking cases to show that �n→�
∗.
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Figure 3. The set of locally strict preferences is not closed.
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Appendix A. About Closed Convergence

We recall below the formal definition of closed convergence, used throughout

the results of this paper. Let F = {F n}n be a sequence of closed sets in X×X .

We define Li(F) and Ls(F) to be closed subsets of X ×X as follows:

• (x, y) ∈ Li(F) if and only if, for all neighborhood V of (x, y), there

exists N ∈ N such that F n ∩ V 6= ∅ for all n ≥ N .

• (x, y) ∈ Ls(F) if and only if, for all neighborhood V of (x, y), and all

N ∈ N, there is n ≥ N such that F n ∩ V 6= ∅.

Observe that Li(F) ⊆ Ls(F). The definition of closed convergence is as follows.

Definition 23. F n converges to F in the topology of closed convergence if

Li(F) = F = Ls(F).

Appendix B. Proof of Proposition 1

Denote by (a′, b′) the open interval {z ∈ Rn : a′ ≪ z ≪ b′}. For each k, let

uk : ∪
k
l=1Bl → [0, 1] be a utility representation of �∗ on ∪kl=1Bl.

For each k, let {[ai, bi]}
nk

i=1 be a sequence of intervals in Rn with the prop-

erties that a) [a, b] ⊆ ∪nk

i=1[ai, bi], b) (ai, bi) ∩ (aj , bj) = ∅ for i 6= j, c) each

element of ∪kl=1Bl is contained in a set (ai, bi), and no two elements of ∪kl=1Bl

are contained in the same, and d) [ai, bi] is contained in some ball of radius

(2k)−1.14

For each interval [ai, bi] there is a continuous function fi such that f(x) = 0

for all x ∈ [ai, bi] \ (ai, bi), f(x) = uk(x) if x ∈ (ai, bi) ∩ ∪
k
l=1Bl, sup{f(x) :

x ∈ [ai, bi]} = 2 and inf{f(x) : x ∈ [ai, bi]} = −2. Let u∗
k : [a, b] → R be

the function that coincides with fi on each [ai, bi]. Let �k be the preference

relation represented by u∗
k, and note that �k strongly rationalizes the choice

function of order k generated by �∗, and is continuous.

Let x, y ∈ X . For each k, suppose that x ∈ [ai, bi] for the kth sequence of

subintervals. Let xk ∈ [ai, bi] be such that u∗
k(xk) = 2. Note that ‖x − xk‖ <

1/k. Similarly, suppose that y ∈ [aj, bj ] for the kth sequence of subintervals

14It is obvious that such a sequence exists. First, it is immediate that it exists for n = 1.
For n > 1 project each Bk onto each of its coordinate and carry out the one-dimensional
construction (choosing a sufficiently small radius for the balls covering each interval). Then
take the cartesian product of each one-dimensional interval.
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and let yk ∈ [aj, bj ] be such that u∗
k(yk) = −2. Then xk ≻k yk. Since (xk, yk)→

(x, y) and x, y ∈ X were arbitrary this means that �k→ X ×X .

Appendix C. Proof of Proposition 12

The proof is implied by the following lemmas.

Lemma 24. Let X ⊆ Rn. If {x′
n} is an increasing sequence in X, and {x′′

n}

is a decreasing sequence, such that sup{x′
n : n ≥ 1} = x∗ = inf{x′′

n : n ≥ 1}.

Then

lim
n→∞

x′
n = x∗ = lim

n→∞
x′′
n.

Proof. This is obvously true for n = 1. For n > 1, convergence and sups and

infs are obtained component-by-component, so the result follows. �

Lemma 25. Let X ⊆ Rn. Let {xn} be a convergent sequence in X, with

xn → x∗. Then there is an increasing sequence {x′
n} and an a decreasing

sequence {x′′
n} such that x′

n ≤ xn ≤ x′′
n, and limn→∞ x′

n = x∗ = limn→∞ x′′
n.

Proof. Suppose that xn → x∗. Define x′
n and x′′

n by

x′
n = inf{xm : n ≤ m} and x′′

n = sup{xm : n ≤ m}

Then it is clear that x′
n ≤ xn ≤ x′′

n, that x′
n is increasing, and that x′′

n is

decreasing. Moreover,

lim
n→∞

x′
n = sup{inf{xm : n ≤ m} : n ≥ 1}

= x∗

= inf{sup{xm : n ≤ m} : n ≥ 1} = lim
n→∞

x′′
n

by Lemma 24. �

Lemma 26. Let X = ∆([a, b]). Let {xn} be a convergent sequence in X,

with xn → x∗. Then there is an increasing sequence {x′
n} and an a decreasing

sequence {x′′
n} such that x′

n ≤ xn ≤ x′′
n, and limn→∞ x′

n = x∗ = limn→∞ x′′
n.

Proof. The set X ordered by first order stochastic dominance is a complete

lattice (see, for example, Lemma 3.1 in Kertz and Rösler (2000)). Suppose

that xn → x∗. Define x′
n and x′′

n by x′
n = inf{xm : n ≤ m} and x′′

n = sup{xm :
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n ≤ m}. Clearly, {x′
n} is an increasing sequence, {x′′

n} is decreasing, and

x′
n ≤ xn ≤ x′′

n.

Let Fx denote the cdf associated with x. Note that Fx′′

n
(r) = inf{Fxm

(r) :

n ≤ m} while Fx′

n
(r) is the right-continuous modification of sup{Fxm

(r) : n ≤

m}. For any point of continuity r of F , Fxm
(r)→ Fx∗(r), so

Fx(r) = sup{inf{Fxm
(r) : n ≤ m} : n ≥ 1}

by Lemma 24.

Moreover, Fx∗(r) = inf{sup{Fxm
(r) : n ≤ m} : n ≥ 1}. Let ε > 0. Then

Fx∗(r−ε)← sup{Fxm
(r−ε) : n ≤ m} ≤ Fx′

n
(r) ≤ sup{Fxm

(r+ε) : n ≤ m} → Fx∗(r+ε)

Then Fx′

n
(r)→ Fx∗(r), as r is a point of continuity of Fx∗ . �

The following lemma is immediate.

Lemma 27. Let X = Rn
+ with the standard vector order ≤, and let B = Qn

+.

Then the countable order property is satisfied.

Our last lemma is a direct implication of Theorem 15.11 of Aliprantis and Border

(2006).

Lemma 28. Let a, b ∈ R, where a < b. Let X = ∆([a, b]), the set of Borel

probability distributions on [a, b] endowed with the weak* topology. Let B be

the set of probability distributions p with finite support on Q∩ [a, b], where for

all q ∈ Q ∩ [a, b], p(q) ∈ Q. Then the countable order property is satisfied.

Appendix D. Proof of Theorems 9, 21, 22 and 10

In this section, we let R
mon

denote the set of complete, continuous, and

strictly monotonic binary relations. Members of R
mon

need not be transitive.

Likewise, R
ls

is the set of complete, continuous, and locally strict binary

relations.

We record the following fact:

Lemma 29. Let � be a continuous binary relation. If x ≻ y then there are

neighborhoods Vx of x and Vy of y such that x′ ≻ y′ for all x′ ∈ Vx and y′ ∈ Vy.

We now prove Theorems 21 and 22.
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Proof of Theorem 21. Follows directly from Lemma 32, below. �

Proof of Theorem 22. First, it is straightforward to show that x ≻ y implies

x �′ y. Because otherwise there are x, y for which x ≻ y and y ≻′ x. Take an

open neighborhood U about (x, y) and a pair (z, w) ∈ U ∩ (B × B) for which

z ≻ w and w ≻′ z, a contradiction. Symmetrically, we also have x ≻′ y implies

x � y.

Now, without loss, suppose that there is a pair x, y for which x ≻ y and x ∼′

y. By connectedness and continuity, V = {z : x ≻ z ≻ y} is nonempty and by

continuity it is open.15 We claim that there is a pair (w, z) ∈ (V ×V )∩(B×B)

for which w ≻ z. By denseness of B, there is w ∈ V ∩B for which x ≻ w ≻ y.

Similarly, {z : w ≻ z ≻ y} is nonempty and open; so there is z ∈ B for which

x ≻ w ≻ z ≻ y.

We have shown that there is (w, z) ∈ (V × V ) ∩ (B × B) for which w ≻ z,

so that x ≻ w ≻ z ≻ y. Further, we have hypothesized that x ∼′ y. By the

first paragraph, we know that x �′ w �′ z �′ y. If, by means of contradiction,

we have w ≻′ z, then x ≻′ y, a contradiction. So w ∼′ z and w ≻ z, a

contradiction to �B×B=�
′
B×B . �

Lemma 30. Let A ⊆ X × X. Then {�: A ⊆�} is closed in the closed

convergence topology.

Proof. Let �n be a convergent sequence in the set in question, where �n→�.

Then for all (x, y) ∈ A, we have x �n y, hence x � y. So (x, y) ∈�. �

Lemma 31. Suppose X is locally compact Polish, and that < has open inter-

vals. Then R
mon

is closed in the topology of closed convergence.

Proof. By Lemma 8, since X is locally compact Polish, the topology of closed

convergence is compact metrizable.

Suppose �n→� where each �n is continuous, strictly monotonic, and com-

plete. We know that � is continuous by compactness. Suppose by means of

15The argument for nonemptiness is as follows. If, by means of contradiction, V = ∅, then
{z : x ≻ z} and {z : z ≻ y} are nonempty open sets. Further, for any z ∈ X , either x ≻ z
or z ≻ y (because if ¬(x ≻ z) then by completeness z � x, which implies that z ≻ y).
Conclude that {z : x ≻ z} ∪ {z : z ≻ y} = X and each of the sets are nonempty and open
(by continuity); these sets are disjoint, violating connectedness of X .
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contradiction that � is not strictly monotonic, so that there are x, y ∈ X for

which x > y and y � x. Then there are (xn, yn)→ (x, y) for which yn �n xn.

For n large, xn > yn, a contradiction to the fact that �n is strictly monotonic.

Finally, completeness follows as for each x, y, either x �n y or y �n x, so there

is a subsequence nk for which either x �nk
y or for which y �nk

x. �

Lemma 32. Suppose that B is dense, �′ is complete, and each of � and �∗

are continuous and locally strict complete relations. Then if

�′ |B×B ⊆�
∗ |B×B∩ � |B×B,

it follows that �∗=�.

Proof. Suppose, by means of contradiction and without loss of generality, that

there are x, y ∈ X for which x �∗ y and y ≻ x. By continuity of � and local

strictness of �∗, we can without loss of generality assume that x ≻∗ y and

y ≻ x. By continuity of each of � and �∗, there exists a, b ∈ B such that

a ≻∗ b and b ≻ a. But by completeness of �′, either a �′ b, contradicting

�′ |B×B ⊆� |B×B, or b �
′ a, contradicting �′ |B×B ⊆�

∗ |B×B. �

We now turn to the main proof of the theorem.

Proof of Theorem 9. By Lemma 31, R
mon

is compact. Let �′ be any strictly

monotonic and complete binary relation such that for all k and all {x, y} ∈ Σk,

x ∈ ck({x, y}) if and only if x �′ y (�′ exists by the projection requirement

on choice sequences, and by the fact that c ⊑ c�∗).

For each k, let �′
k= {(x, y) : {x, y} ∈ {B1, . . . , Bk} and x �′ y}.

For each k, let

Pk = {�∈ R
mon

:�′
k⊆�},

the set of relations which weakly rationalize c. Observe by definition that by

Lemma 30, Pk is closed, and hence compact. By assumption, each �∈ Pk

satisfies �∈ R
ls
, and obviously, for all k, �∗∈ Pk. Further, observe that

⋂
k Pk = {�∗}, since if �∈

⋂
k Pk, by definition �′

B×B⊆�
∗ |B×B∩ � |B×B and

Lemma 32.

The result now follows as each Pi is compact and
⋂

k Pk = {�
∗}. That is, let

�k∈ Pk, which is a decreasing, nested collection of compact sets. Suppose by



PREFERENCE IDENTIFICATION 39

means of contradiction and without loss that �k→�
′ 6=�∗, and observe then

that it follows that �′∈ Pk for all k, contradicting
⋂

i Pi = {�
∗}. �

Proof of Theorem 10. Observe that for any k, the set

Pk = {�∈ R
mon

:� weakly rationalizes ck}

is closed, and hence compact by Lemma 30. Observe that Pk(c) ⊆ Pk. More-

over, it is obvious that Pk+1 ⊆ Pk. Suppose that there is no k for which

Pk(c) = ∅. Then, since each Pk 6= ∅ and each Pk is compact,
⋂

k Pk 6= ∅. Let

�∗∈
⋂

k Pk.

We claim that
⋂

k Pk = {�
∗}. Suppose by means of contradiction that there

is �6=�∗ where �∈
⋂

k Pk. Let �′ be any complete relation such that for all

(a, b) ∈ B×B, a �′ b if and only if a ∈ ck({a, b}), for k such that {a, b} ∈ Σk.

Then, by definition of weak rationalization, we have �′
B×B⊆�B×B ∩ �

∗
B×B .

Appeal to Lemma 32 to conclude that �=�∗, a contradiction.

Finally, since
⋂

k Pk = {�∗}, and each Pk is compact, it follows that limk→∞ diam(Pk)→

0.16 Hence, since 0 ≤ diam(Pk(c)) ≤ diam(Pk), the result follows.

�

Appendix E. Proof of Theorem 11

The set of weakly monotone and continuous binary relations is compact in

the topology of closed convergence. Suppose wlog that �k→�. Then � is a

continuous binary relation. We shall prove that �=�∗.

First we show that x ≻∗ y implies that x ≻ y. So let x ≻∗ y. Let U and

V be neighborhoods of x and y, respectively, such that x′ ≻∗ y′ for all x′ ∈ U

and y′ ∈ V . Such neighborhoods exist by the continuity of �∗. We prove first

that if (x′, y′) ∈ U × V , then there exists N such that x′ ≻n y′ for all n ≥ N .

By hypothesis, there exist x′′ ∈ U ∩ B and y′′ ∈ V ∩ B such that x′′ ≤ x′ and

y′ ≤ y′′. Each �n is a strong rationalization of the finite experiment of order

n, so if {x̃, ỹ} ∈ Σn then x̃ ≻n ỹ implies that x̃ ≻m ỹ for all m ≥ n. Since

x′′, y′′ ∈ B, there is N is such that {x′′, y′′} ∈ ΣN . Thus x
′′ ≻∗ y′′ implies that

x′′ ≻n y′′ for all n ≥ N . So, for n ≥ N , x′ ≻n y′, as �n is weakly monotone.

16Otherwise, we could choose ǫ > 0 and two subsequences �kl
,�′

kl
such that δC(�kl

,�′

kl

) ≥ ǫ and �kl
→�∈

⋂
k
Pk and �′

kl
→�′∈

⋂
k
Pk where δC(�,�

′) ≥ ǫ, a contradiction.
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Now we establish that x ≻ y. Let {(xn, yn)} be an arbitrary sequence with

(xn, yn) → (x, y). By hypothesis, there is an increasing sequence {x′
n}, and

a decreasing sequence {y′n}, such that x′
n ≤ xn and yn ≤ y′n while (x, y) =

limn→∞(x′
n, y

′
n).

Let N be large enough that x′
N ∈ U and y′N ∈ V . Let N ′ ≥ N be such

that x′
N ≻n y′N for all n ≥ N ′ (we established the existence of such N ′ above).

Then, for any n ≥ N ′ we have that

xn ≥ x′
n ≥ x′

N ≻n y′N ≥ y′n ≥ yn.

By the weak monotonicity of �n, then, xn ≻n yn. The sequence {(xn, yn)}

was arbitrary, so (y, x) /∈�= limn→∞ �n. Thus ¬(y � x). Completeness of �

implies that x ≻ y.

In second place we show that if x �∗ y then x � y, thus completing the

proof. So let x �∗ y. We recursively construct sequences xnk , ynk such that

xnk �nk ynk and xnk → x, ynk → y.

So, for any k ≥ 1, choose x′ ∈ Nx(1/k)∩B with x′ ≥ x, and y′ ∈ Ny(1/k)∩B

with y′ ≤ y; so that x′ �∗ x �∗ y �∗ y′, as �∗ is weakly monotone. Recall

that �n strongly rationalizes c�∗ for Σn. So x′ �∗ y′ and x′, y′ ∈ B imply that

x′ �n y′ for all n large enough. Let nk > nk−1 (where we can take n0 = 0)

such that x′ �nk
y′; and let xnk = x′ and ynk = y′.

Then we have (xnk , ynk)→ (x, y) and xnk
�nk

ynk
. Thus x � y.

Appendix F. Proof of Theorem 15 and Proposition 5

We begin with two useful lemmas.

Lemma 33. Φ is an open map if for any u∗ ∈ U and any sequence �n in R

with �n→ Φ(u∗), there is a sequence {un} in U such that un ∈ Φ−1(�n) and

un → u∗ in the topology of compact convergence.

Proof. Suppose that there is V ⊆ U open, but Φ(V ) is not open. Then there

is u∗ ∈ V and �n /∈ Φ(V ) such that �n→ Φ(u∗) (since closed convergence

topology is metrizable). Since u∗ ∈ V , any sequence un ∈ Φ−1(�n) for which

un → u∗ eventually has un ∈ V . But if un is chosen to represent �n, this

implies that Φ(un) ∈ Φ(V ) for n large, a contradiction. �
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Lemma 34. For any � and x ∈ X, there is a unique m∗(x) ∈ M with

x ∼ m∗(x). Moreover, if we fix u ∈ U then the function u� : X → R defined

by u�(x) = u(m∗(x)) is a continuous utility representation of �.

Proof. Consider the sets A = {m ∈ M : m � x} and B = {m ∈ M : x �

m}. These sets are closed because � is continuous, their union is M as � is

complete, and they are nonempty as � is monotone and there exist m,m ∈M

with m ≤ x ≤ m by our hypothesis on M . M is connected, so A and B

cannot be disjoint; hence there is m ∈M with x ∼ m. This m must be unique

because M is totally ordered, and � is strictly monotone.

We now show that u� is a continuous utility representation of �. Let x � y.

Then transitivity and monotonicity of � imply that m∗(x) ≥ m∗(y). Thus

u�(x) = u∗(m∗(x)) ≥ u∗(m∗(y)) = u�(y). The converse implications hold as

well; thus u� represents �.

To prove continuity, let xn → x∗. We shall prove that mn = m∗(xn) →

m∗(x∗) = m̂. Suppose first that m̂ is not the largest or the least element of

M . For each neighborhood U of m̂ there exists, by our hypothesis on M ,

m,m ∈M with m < m̂ < m and [m,m] ⊆ U . Then

V = {z ∈ X : m ≻ z} ∩ {z ∈ X : z ≻ m}

is a neighborhood of x∗, as x∗ ∼ m̂ and � is continuous and monotone. For

large enough n then xn ∈ V , so mn ∈ [m,m] ⊆ U . Suppose now that m̂ is

the largest element of M . Then, reasoning as above, xn ∈ {z ∈ X : z ≻ m}

for all large enough n, so that m ≤ mn. We have mn ≤ m as m is the largest

element of M . Thus mn ∈ [m,m] ⊆ U . The argument when m is the least

element of M is analogous. �

We now turn to the main proof of the theorem, which proves Proposition 5.

Proof of Theorem 15. Let u∗ ∈ U and {�n} be a sequence in R with �n→

Φ(u∗). By Lemma 33 it is enough to exhibit a sequence un ∈ Φ−1(�n) and

un → u∗ in the topology of compact convergence.

Let un = u�n
as defined in Lemma 34 from u∗. Lemma 34 implies that

un ∈ Φ−1(�n). By XII Theorem 7.5 p. 268 of Dugundji (1966), to establish
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compact convergence it is enough to show that for any convergent sequence

{xn}, with xn → x∗, un(xn)→ u∗(x∗).

To this end, let xn → x∗. Let m̂ = m∗(x∗) andmn ∼n xn, using the notation

in Lemma 34, and U be a neighborhood of m̂. Let m,m ∈ M be such that

m < m̂ < m and [m,m] ⊆ U . Then it must be true that mn ∈ [m,m] for

all n large enough. To see this, note that if, for example, mn ≥ m infinitely

often then there would exist a subsequence for which xn �n mn � m (by

monotonicity of �), which would imply that x∗ � m > m̂, as �n→�. But

m̂ ∼ x∗ � m is a violation of monotonicity.

Now mn ∈ [m,m] ⊆ U for all n large enough means that mn → m̂. Thus

u�n
(xn) = u∗(xn)→ u∗(x∗) = u�(x

∗),

as u∗ is continuous. �

Appendix G. Proof of Theorem 18

By Theorem 8 of Border and Segal (1994), Φ(V) is compact, and therefore

�k possesses a limit point �∗∈ Φ(V). By Lemma 30, the set of �k weakly

rationalizing ck is closed, and hence compact. Suppose by means of contra-

diction that there is some �′
k also weakly rationalizing ck which converges to

�6=�∗. Observe that each of �∗ and � weakly rationalize each ck.

Finally, let �′ be any complete relation such that for all (a, b) ∈ B × B,

a �′ b if and only if a ∈ ck({a, b}), for k such that {a, b} ∈ Σk. Then, by

definition of weak rationalization, we have �′
B×B⊆�B×B ∩ �

∗
B×B . Appeal

then to Lemma 32 to conclude that �=�∗, a contradiction.
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