DISCOVERY OF RUBINITE, Ca$_3$Ti$^{3+}_2$Si$_3$O$_{12}$, A NEW GARNET MINERAL IN REFRACTORY INCLUSIONS FROM CARBONACEOUS CHONDRITES.

Chi Ma$^{1, *}$, Takashi Yoshizaki2, Alexander N. Krot3, John R. Beckett1, Tomoki Nakamura2, Kazuhide Nagashima4, Jun Muto4, Marina A. Ivanova5. 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; 2Division of Earth and Planetary Materials Science, Graduate School of Science, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan; 3Hawaii Institute of Geophysics and Planetology, University of Hawaii at Mānoa, Honolulu, HI 96822, USA; 4Division of Geoenvironmental Science, Graduate School of Science, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan; 5Vernadsky Institute, Kosygin St. 19, Moscow 119991, Russia; *Email: chi@gps.caltech.edu.

Introduction: During a nanomineralogy investigation of carbonaceous chondrites, a new Ti$^{3+}$-dominant garnet, named “rubinite,” Ca$_3$Ti$^{3+}_2$Si$_3$O$_{12}$ with the $Ia\bar{3}d$ garnet structure, was identified in five Ca-Al-rich inclusions (CAIs) from the CV3 chondrites Vigaranò, Allende, and Efremovka. Field-emission scanning electron microscope, electron back-scatter diffraction, electron microprobe and ion microprobe techniques were used to characterize the chemistry, oxygen-isotope compositions, and structure of rubinite and associated phases. Synthetic Ca$_3$Ti$^{3+}_2$Si$_3$O$_{12}$ garnet was reported by [1]. Here, we describe the first natural occurrences of rubinite as a refractory mineral in primitive meteorites. The mineral has been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2016-110) [2]. The name honors Alan E. Rubin, a cosmochemist at University of California, Los Angeles (UCLA), USA, for his many contributions to cosmochemistry and meteorite research.

Occurrence, Chemistry, Oxygen Isotopes, and Crystallography: Rubinite appears as irregular to subhedral crystals, ~0.5–1 μm in Vigaranò, 1–8 μm in Allende, and 1–20 μm in Efremovka. In Vigaranò, it occurs in the central portion of an ultra-refractory fragment with Zr-panguite, spinel and davisite-diopside, all enclosed within an amoeboid olivine aggregate. In the Allende compound fluffy type A (FTA) CAI AE01-01, it occurs with primary gehlenitic melilité, perovskite, spinel, hibonite, corundum, davisite, grossmanite, diopside, and eringaité, plus secondary anorthite, grossular, and Na-melilité. Rubinite occurs within gehlenitic melilité with perovskite, spinel, and grossmanite in three Compact Type A (CTA) CAIs from Efremovka: E101, E105, and 40E-I (in a compound CAI [3]). It occurs in spinel-poor regions in all four of the Efremovka and Allende CAIs but is in contact with spinel in the Vigaranò inclusion.

In the Efremovka CTAs, spinel is 16O-rich (Δ^{17}O ~ 24‰); rubinite and perovskite show limited ranges of Δ^{17}O (from ~24 to ~16‰; most analyses range from ~24 to ~20‰); melilité and grossmanite are the most 18O-depleted minerals (Δ^{17}O range from ~10 to ~4‰ and from ~8 to ~5‰, respectively). In the Allende FTA AE01-01, spinel is 16O-rich (Δ^{17}O ~ 24‰); rubinite and perovskite show large ranges of Δ^{17}O (from ~21 to ~6‰ and from ~14 to ~2‰, respectively); melilité has yet to be measured.

The mean chemical composition of type rubinite in Allende is (wt%) CaO 32.68, Ti$_2$O$_3$ 14.79, TiO$_2$ 13.06, SiO$_2$ 28.37 Al$_2$O$_3$ 3.82, Sc$_2$O$_3$ 1.80, Na$_2$O 1.01, ZrO$_2$, 0.80, MgO 0.79, V$_2$O$_3$ 0.61, FeO 0.53 Y$_2$O$_3$ 0.07, Cr$_2$O$_3$ 0.05, total 98.38, giving rise to an empirical formula of (Ca$_{2.97}$Na$_{0.06}$)(Ti$_{3.04}$Ti$^{3+}_{0.59}$Sc$_{0.13}$Mg$_{0.10}$V$_{0.04}$Fe$_{0.04}$Zr$_{0.03}$)(Si$_{2.36}$Al$_{0.48}$Ti$^{4+}_{0.16}$)O$_{12}$, where Ti$^{3+}$ and Ti$^{4+}$ are partitioned based on stoichiometry. Efremovka rubinite has a similar composition with a mean empirical formula of (Ca$_{2.97}$Na$_{0.06}$)(Ti$_{3.05}$Ti$^{3+}_{0.59}$Sc$_{0.13}$Mg$_{0.12}$Zr$_{0.03}$Fe$_{0.03}$)(Si$_{2.36}$Al$_{0.48}$Ti$^{4+}_{0.06}$)O$_{12}$. Vigaranò rubinite is much more Y-, Sc-, and Zr-rich, showing an empirical formula of (Ca$_{1.98}$Y$_{0.83}$Mg$_{0.28}$)(Ti$^{3+}_{0.59}$Sc$_{0.05}$Zr$_{0.72}$Mg$_{0.2}$V$_{0.02}$Cr$_{0.00}$)(Si$_{1.64}$Al$_{1.18}$Ti$^{4+}_{0.07}$Fe$_{0.00}$)O$_{12}$. All rubinites are Ti$^{3+}$-rich but a significant amount (11–46%) of the Ti is 4+. The end-member formula of rubinite is Ca$_3$Ti$^{3+}_2$Si$_3$O$_{12}$.

Electron back-scatter diffraction patterns of rubinite can only be indexed using the $Ia\bar{3}d$ garnet structure with a best fit for unit cell dimensions $a = 12.1875$ Å, $V = 1810.27$ Å3, and $Z = 8$ from [1]. The calculated density for this phase is 3.63 g cm$^{-3}$ using the formula for the Allende rubinite given above.

Origin and Significance: Rubinite, Ca$_3$Ti$^{3+}_2$Si$_3$O$_{12}$, is a new member of the garnet group and the Ti$^{3+}$-analog of eringaité Ca$_{2.97}$Sc$_{0.06}$Si$_3$O$_{12}$, goldmanite Ca$_3$V$_2$Si$_3$O$_{12}$, uvarovite Ca$_3$Cr$_2$Si$_3$O$_{12}$, or andradite Ca$_3$Fe$_2$Si$_3$O$_{12}$. Like eringaité [4], rubinite is among the first solid materials in the solar nebula; it formed either as a condensate or through crystallization from an 16O-rich Ca, Al, and Ti-rich melt under highly-reduced conditions. Subsequently, most rubinite grains in the Allende CAI and some in the Efremovka CAIs experienced O-isotope exchange with an 16O-depleted external reservoir in the solar nebula [5] and/or during fluid-rock interactions on the CV parent body [6].