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Abstract

We show that in single scalar field models of the dark energy with equations of state satistgipg p < —1, the effective
Lagrangian for fluctuations about the homogeneous background haong sign spatial kinetic term. In most cases, spatial
gradients are ruled out by microwave background observations. The signtof is not connected to the sign of the time
derivative kinetic term in the effective Lagrangian.

0 2004 Elsevier B.VOpen access under CC BY license.

Matter whose equation of state satisfies= p/p < models of the dark energy generally have a wrong sign
—1 violates a number of conditions, including the gradient kinetic term for fluctuations about the ho-
weak energy condition, generally assumed to apply to mogeneous background. Thissult is not dependent
any reasonable model of phys[d§. However, the ob-  on general relativistic effects and survives in the flat
servational data do not exclude the possibility that the spacetime limit. Spatial inhomogeneities of the dark

dark energy hasy < —1 [2,3]. Current result$4] in- energy are tightly constrained by observations of the
dicate—1.67 < w < —0.61 at 95% confidence level. cosmic microwave background.
The possibility ofw < —1 has been explored by nu- In our analysis we will assume a time-dependent

merous authors (see, for instanf&e;17]). These mod- but spatially homogeneous scalar background. Mod-

els often contain a field with an unusual kinetic term, els with such backgrounds are treatedi8], whose

which is referred to as a phantom or ghost field. In this notation we will adopt. We will show that fap < —1

Letter we show that fow < —1, single scalar field  spatial instabilities inevitably arise. Consider the low-
energy effective theory of a scalar field coupled to
gravity:
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It is always possible to perform a rescaling of the
metric in Eq.(1) guv — ¢2”guv, With w = log[1 +
U/Mél], so that the term in Eq.(1) disappears, be-
ing absorbed into a redefinition of threaction for the
ghost scalar field. (See, for example, Chapter 3, Sec-
tion 7 0f[19].) The action resulting from this rescaling,
up to terms suppressed by powers of M6 then

Fig. 1. The effective couplings of two gravitons to several quanta of § — / d*x /—g[M§|R + p]. 2
the scalar field. The shaded region represents interactions involving

ly scalars. o
only scaiars The most general Lorentz invariant scalar La-

grangian without higher derivative terms (which we

where P, U andV are functions of the scalar fietgl will consider later) is
and its derivatives. (Because of the anti-symmetry of
RMP9 in its first two and also in its last two indices, £ = P(X,¢), 3

no non-vanishing invariant can be formed from it us-
ing first derivatives of¢.) Naively we might expect
that the higher-dimensional couplingsgfo the Ricci
tensor would be suppressed by powers of the Planck
massMpj, making them irrelevant for cosmology after
the Planck epoch. However, such terms are generate
by graphs such as that Fig. 1 Writing the metric as Tyv = —Lguw + 2P (X, $)0,00,9, (4)
gty =nH*V + h*¥ / Mp, we see that scalar-graviton in-

teractions in Feynman diagrams are suppressed by theand

whereX = g"V9,,¢0,¢. (A potential termV would be
the component o (X, ¢) that is independent of.)

Henceforth,P’ (X, ¢) will denote differentiation with
respect taX. Since the scalar fielg is minimally cou-
C]_oled to gravity in Eq(2), the stress-energy tensor is

Planck mass, but when these interactions are reassem-  P(X, ¢) P(X,¢)

bled into the Ricci tensor that suppression is absent. W = Too = —P(X,$) + 2¢2P' (X, §)

That is, the higher-dimensional terms in Edq) will o ' '

appear suppressed only by powers of the characteris- _— _1 M_ (5)

tic energy scale of the scalar fielt/, which may be Too

much smaller thai/py. For ¢ to account for the dark energy, we must have

We neglect terms in the actigil) which involve Too > 0. Then,w < —1 requires thatP’(X, ¢) < O.
higher powers of the Ricci tensor. The terms we con- et ¢y = ¢o(¢) be a solution to the equations of mo-
sider are ones that can generate contributions to thetion, and definexg = q;g_ Then consider the fluctu-
stress-energy tensdj,, which are not suppressed by  ations about this solutionp = ¢g + 7(x, t). When

powers of Mpy. SinceTy, is obtained by varying the  expanded inr, the effective Lagrangian will have the
action with respect to the metric, terms with more form

than one power oR*"7? yield contributions which are

themselves proportional to the Ricci tensor and there- £ = [ P'(Xo, ¢o) + 2¢2P" (Xo, ¢>o)]7'12

fore vams_h in the flat_spacet|me limit. — P'(Xo, o) V7|2 + - (6)
Assuming a spatially homogeneous background,

only the time-derivatives ap will be non-vanishingin which implies that forP’(Xo, ¢o) < 0 there will ex-

Eq. (). It may be shown that in the limit/p; — oo, ist field configurations with non-zero spatial gradients

the termR"*¥ (9,¢)(d,¢)V in the action contributes a  that have lower energy than the homogeneous config-

term to the stress-energy tensor which can be repro- uration?

duced by an appropriate change in the functidn

Therefore we may restrict ourselves 1= 0 and 2 Here we mean energy associated with the Hamiltonian con-

consider the mO.St generdl in order to analyze the  structed from the Lagrangiantf@iuctuations about the background
flat-space behavior of EL). field configuration.
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Itis clear from Eq(6) that there is no direct connec-
tion between the sign ab + 1 and that of ther? term
in the effective Lagrangian, as long @§P" (Xo, ¢o)
is not negligible with respect t&’ (X0, ¢0). However,
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less than—1, this also requireg? to be at least of or-
der M242, unlessS(X, ¢) is made unnaturally large.
It is not clear how to treat these higher derivative
terms self-consistently beyond perturbation theory, so

in the usual quintessence models of the dark energythe dynamics of such models cannot be analyzed in a

(see[20] and references therein), it is generally the
case that the terms iR which are higher order itX

can be neglected with respect to the leading term (i.e.,

X/M* <« 1). Inthat case thé? and—(Vr)2 terms in

straightforward manner. The models we consider be-
low have higher powers of first derivatives, but they
satisfy the condition that? < (¢ M)2.

Our analysis shows that < —1 scalar models typ-

the effective Lagrangian would both have a negative ically require a wrong sigiVzr)? term in the effective

coefficient forw < —1.
If P'(Xo, ¢0) is negative, a finite expectation value

for the gradients may be obtained if there are appro-

priate higher powers ofVr)?2 in the effective La-

Lagrangian. Previous analyses of ghost mofi[21]
have focused on the problems associated with negative
energy, particularly with a kinetic termi = —(8H¢)2

that has the wrong sign fdioth the time- and space-

grangian, but this is problematic because it gives rise derivatives. The classical equations of motion for such
to a spatially inhomogeneous ground state for the dark models do not exhibit growing modes of non-zero spa-
energy and would lead to inhomogeneities far larger tial gradients, although the energy of the field is un-

than the limit of 10° imposed by observations of
the cosmic microwave backgrouAdihile a poten-
tial term such as2¢? tends to confine the gradients
to regions of size Am, in most models of the dark en-
ergy V”(¢) must be small enough that these regions
are of cosmological size.

Inthew < —1 case, itis possible, by adding higher
derivative terms to the Lagrangian, to avoid having
finite spatial gradients lower the energy of the field.
Consider, for example,

L=P(X,$)+SX, $)(Op)?

in which case

(M

Too=—L + 2[P'(X, $)¢%+ 5 (X, $)$?(9%¢)°
+25(X, $)p(9%p) — do($S3%9)].

(€)
Setting the spatial gradients ¢fto zero, we have that
. . w41
$*Caraa— 200056 = L D 7eg, (©)

where Cgrad is the coefficient of—(Vx)? in the =
Lagrangian. Ifdg(S¢)¢ > 0, then a model may have
both Cyraqg > 0 andw < —1. But for w significantly

3 A condensate of gradients with agferred magnitude, deter-
mined by the higher order terms that stabilize Eq, (ill spon-
taneously break th@ (3) rotational symmetry down t@(2). The
homotopy groupr2[0O(3)/0(2)] is non-trivial, which leads to the
formation of global monopolengdgehog) configurations.

bounded from below. Models witlh < —1 that do not
have a wrong sign time-derivative kinetic term in the
effective Lagrangian can result from a Lorentz invari-
ant action, as we demonstrate below. However, both
Lorentz invariance and time translation invariance are
spontaneously broken by a time-dependent conden-
sate.

In [18] a model withL = P(X) was proposed in
which a ghost field has a time-dependent condensate
(from now on we take the Lagrangian to be a func-
tion of X only, and therefore invariant under the shift
¢ — ¢ + ¢). We use units in which the dimensional
scaleM of the model is unity # ~ 103 eV if the
ghost comprises the dark energy). The flat spacetime
equation of motion is

du[P'(X)d"¢]=0. (10)

Homogeneous solutions of the equations of motion
with ¢2 = ¢2 were considered if18]. In general, the
existence of ap condensate allows for exotic equa-
tions of state, includingy < —1. In what follows we

let

P(X)=—-1+4X—1)2%+3(X —1)3, (11)

which leads tow < —1 with Tpg > 0, for X in a left
neighborhood of £.

4 Notice that the model in Eq11) has a positive leading-order
kinetic term (i.e., the term linear iX). It is possible to construct
models with the desired properties in which this sign is either posi-
tive or negative.
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The energy density is given by

oL . .
Too="H = 8—¢¢—£=2¢2P’(X> ~ L, (12)
which is not necessarily minimized by a particular
ghost condensaig = ct, although it is a solution to

charge associated with the shift symmetry,

0= / x P (). (13)

so configurations which do not extremizgy can still

be stable. In fact, the Lagrangian describing small
fluctuations has the correct sign af if P/(X) +

2X P”(X) > 0. This condition is satisfied in a neigh-
borhood of X = 1 by (11) given above. For? < 1
there is then a local instability to the formation of gra-
dients, as required by our earlier results.
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e 1 4P" ()3
P(c?)
2y o 3
. ZP’(cl. ;c*c, < 1+z) . (16)
P(c%) 1+z

Eq. (16) offers a prediction for the parameter of the

> g ; dark energy as a function of the redshiftvhich could
the flat spacetime equations of motion for any value 4 tested by cosmological observat[ag]
of ¢. This is possible because there is a conserved

In summary, from Eqs(5) and (6)we find that
in single scalar field models of the dark energy with
w < —1, the kinetic term for fluctuations about the
homogeneous background has a wrong sign gradient

term. On the other hand, there is no direct connection

between the sign of th&2 kinetic term in the effective
Hamiltonian and the sign ab + 1.
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