
b

tial
Physics Letters B 597 (2004) 270–274

www.elsevier.com/locate/physlet

Gradient instability forw < −1
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Abstract

We show that in single scalar field models of the dark energy with equations of state satisfyingw ≡ p/ρ < −1, the effective
Lagrangian for fluctuations about the homogeneous background has a wrong sign spatial kinetic term. In most cases, spa

gradients are ruled out by microwave background observations. The sign ofw + 1 is not connected to the sign of the time

he
y to

the

l.
-

m,
his

ign
o-
t

flat
ark
the

ent
od-

w-
to
derivative kinetic term in the effective Lagrangian.
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Matter whose equation of state satisfiesw ≡ p/ρ <

−1 violates a number of conditions, including t
weak energy condition, generally assumed to appl
any reasonable model of physics[1]. However, the ob-
servational data do not exclude the possibility that
dark energy hasw < −1 [2,3]. Current results[4] in-
dicate−1.67< w < −0.61 at 95% confidence leve
The possibility ofw < −1 has been explored by nu
merous authors (see, for instance,[5–17]). These mod-
els often contain a field with an unusual kinetic ter
which is referred to as a phantom or ghost field. In t
Letter we show that forw < −1, single scalar field
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models of the dark energy generally have a wrong s
gradient kinetic term for fluctuations about the h
mogeneous background. Thisresult is not dependen
on general relativistic effects and survives in the
spacetime limit. Spatial inhomogeneities of the d
energy are tightly constrained by observations of
cosmic microwave background.

In our analysis we will assume a time-depend
but spatially homogeneous scalar background. M
els with such backgrounds are treated in[18], whose
notation we will adopt. We will show that forw < −1
spatial instabilities inevitably arise. Consider the lo
energy effective theory of a scalar field coupled
gravity:
S =
∫

d4x
√−g

[
M2

PlR + P + UR

(1)+ V Rµν(∂µφ)(∂νφ) + · · ·],
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Fig. 1. The effective couplings of two gravitons to several quant
the scalar field. The shaded region represents interactions invo
only scalars.

whereP , U andV are functions of the scalar fieldφ
and its derivatives. (Because of the anti-symmetry
Rµνρσ in its first two and also in its last two indice
no non-vanishing invariant can be formed from it u
ing first derivatives ofφ.) Naively we might expec
that the higher-dimensional couplings ofφ to the Ricci
tensor would be suppressed by powers of the Pla
massMPl, making them irrelevant for cosmology aft
the Planck epoch. However, such terms are gener
by graphs such as that inFig. 1. Writing the metric as
gµν = ηµν + hµν/MPl, we see that scalar-graviton in
teractions in Feynman diagrams are suppressed b
Planck mass, but when these interactions are reas
bled into the Ricci tensor that suppression is abs
That is, the higher-dimensional terms in Eq.(1) will
appear suppressed only by powers of the charact
tic energy scale of the scalar field,M, which may be
much smaller thanMPl.

We neglect terms in the action(1) which involve
higher powers of the Ricci tensor. The terms we c
sider are ones that can generate contributions to
stress-energy tensorTµν which are not suppressed b
powers ofMPl. SinceTµν is obtained by varying the
action with respect to the metric, terms with mo
than one power ofRµνρσ yield contributions which are
themselves proportional to the Ricci tensor and the
fore vanish in the flat spacetime limit.

Assuming a spatially homogeneous backgrou
only the time-derivatives ofφ will be non-vanishing in
Eq. (1). It may be shown that in the limitMPl → ∞,
the termRµν(∂µφ)(∂νφ)V in the action contributes
term to the stress-energy tensor which can be re

duced by an appropriate change in the functionU .
Therefore we may restrict ourselves toV = 0 and
consider the most generalU in order to analyze the
flat-space behavior of Eq.(1).
rs B 597 (2004) 270–274 271
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It is always possible to perform a rescaling of t
metric in Eq.(1) gµν → e2wgµν , with w = log[1 +
U/M2

Pl], so that theU term in Eq.(1) disappears, be
ing absorbed into a redefinition of theP action for the
ghost scalar field. (See, for example, Chapter 3, S
tion 7 of[19].) The action resulting from this rescalin
up to terms suppressed by powers of 1/MPl, is then

(2)S =
∫

d4x
√−g

[
M2

PlR + P
]
.

The most general Lorentz invariant scalar L
grangian without higher derivative terms (which w
will consider later) is

(3)L= P(X,φ),

whereX = gµν∂µφ∂νφ. (A potential termV would be
the component ofP(X,φ) that is independent ofX.)
Henceforth,P ′(X,φ) will denote differentiation with
respect toX. Since the scalar fieldφ is minimally cou-
pled to gravity in Eq.(2), the stress-energy tensor is

(4)Tµν = −Lgµν + 2P ′(X,φ)∂µφ∂νφ,

and

w = P(X,φ)

T00
= P(X,φ)

−P(X,φ) + 2φ̇2P ′(X,φ)

(5)= −1+ 2φ̇2P ′(X,φ)

T00
.

For φ to account for the dark energy, we must ha
T00 > 0. Then,w < −1 requires thatP ′(X,φ) < 0.
Let φ0 = φ0(t) be a solution to the equations of m
tion, and defineX0 ≡ φ̇2

0. Then consider the fluctu
ations about this solution:φ = φ0 + π(x, t). When
expanded inπ , the effective Lagrangian will have th
form

L= [
P ′(X0, φ0) + 2φ̇2

0P ′′(X0, φ0)
]
π̇2

(6)− P ′(X0, φ0)|∇π |2 + · · · ,
which implies that forP ′(X0, φ0) < 0 there will ex-
ist field configurations with non-zero spatial gradie
that have lower energy than the homogeneous con
uration.2
2 Here we mean energy associated with the Hamiltonian con-
structed from the Lagrangian for fluctuations about the background
field configuration.
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It is clear from Eq.(6) that there is no direct conne
tion between the sign ofw + 1 and that of thėπ2 term
in the effective Lagrangian, as long asφ̇2

0P ′′(X0, φ0)

is not negligible with respect toP ′(X0, φ0). However,
in the usual quintessence models of the dark ene
(see[20] and references therein), it is generally t
case that the terms inP which are higher order inX
can be neglected with respect to the leading term (
X/M4 � 1). In that case thėπ2 and−(∇π)2 terms in
the effective Lagrangian would both have a nega
coefficient forw < −1.

If P ′(X0, φ0) is negative, a finite expectation valu
for the gradients may be obtained if there are app
priate higher powers of(∇π)2 in the effective La-
grangian, but this is problematic because it gives
to a spatially inhomogeneous ground state for the d
energy and would lead to inhomogeneities far lar
than the limit of 10−5 imposed by observations o
the cosmic microwave background.3 While a poten-
tial term such asm2φ2 tends to confine the gradien
to regions of size 1/m, in most models of the dark en
ergy V ′′(φ) must be small enough that these regio
are of cosmological size.

In thew < −1 case, it is possible, by adding high
derivative terms to the Lagrangian, to avoid hav
finite spatial gradients lower the energy of the fie
Consider, for example,

(7)L = P(X,φ) + S(X,φ)(�φ)2

in which case

T00 = −L+ 2
[
P ′(X,φ)φ̇2 + S′(X,φ)φ̇2(∂2φ

)2

(8)

+ 2S(X,φ)φ̈
(
∂2φ

) − ∂0
(
φ̇S∂2φ

)]
.

Setting the spatial gradients ofφ to zero, we have tha

(9)φ̇2Cgrad− 2∂0(Sφ̈)φ̇ = (w + 1)

2
T00,

where Cgrad is the coefficient of−(∇π)2 in the π

Lagrangian. If∂0(Sφ̈)φ̇ > 0, then a model may hav
both Cgrad > 0 andw < −1. But for w significantly
3 A condensate of gradients with a preferred magnitude, deter-
mined by the higher order terms that stabilize Eq. (6), will spon-
taneously break theO(3) rotational symmetry down toO(2). The
homotopy groupπ2[O(3)/O(2)] is non-trivial, which leads to the
formation of global monopole (hedgehog) configurations.
rs B 597 (2004) 270–274

less than−1, this also requires̈φ2 to be at least of or
derM2φ̇2, unlessS(X,φ) is made unnaturally large
It is not clear how to treat these higher derivat
terms self-consistently beyond perturbation theory
the dynamics of such models cannot be analyzed
straightforward manner. The models we consider
low have higher powers of first derivatives, but th
satisfy the condition thaẗφ2 � (φ̇M)2.

Our analysis shows thatw < −1 scalar models typ
ically require a wrong sign(∇π)2 term in the effective
Lagrangian. Previous analyses of ghost models[1,21]
have focused on the problems associated with neg
energy, particularly with a kinetic termL = −(∂µφ)2

that has the wrong sign forboth the time- and space
derivatives. The classical equations of motion for su
models do not exhibit growing modes of non-zero s
tial gradients, although the energy of the field is u
bounded from below. Models withw < −1 that do not
have a wrong sign time-derivative kinetic term in t
effective Lagrangian can result from a Lorentz inva
ant action, as we demonstrate below. However, b
Lorentz invariance and time translation invariance
spontaneously broken by a time-dependent cond
sate.

In [18] a model withL = P(X) was proposed in
which a ghost field has a time-dependent conden
(from now on we take the Lagrangian to be a fun
tion of X only, and therefore invariant under the sh
φ → φ + c). We use units in which the dimension
scaleM of the model is unity (M ∼ 10−3 eV if the
ghost comprises the dark energy). The flat space
equation of motion is

(10)∂µ

[
P ′(X)∂µφ

] = 0.

Homogeneous solutions of the equations of mot
with φ̇2 = c2 were considered in[18]. In general, the
existence of aφ̇ condensate allows for exotic equ
tions of state, includingw < −1. In what follows we
let

(11)P(X) = −1+ 4(X − 1)2 + 3(X − 1)3,

which leads tow < −1 with T00 > 0, for X in a left
neighborhood of 1.4
4 Notice that the model in Eq.(11) has a positive leading-order
kinetic term (i.e., the term linear inX). It is possible to construct
models with the desired properties in which this sign is either posi-
tive or negative.
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The energy density is given by

(12)T00 =H = ∂L
∂φ̇

φ̇ −L = 2φ̇2P ′(X) −L,

which is not necessarily minimized by a particu
ghost condensateφ = ct , although it is a solution to
the flat spacetime equations of motion for any va
of c. This is possible because there is a conser
charge associated with the shift symmetry,

(13)Q =
∫

d3x P ′(X)φ̇,

so configurations which do not extremizeT00 can still
be stable. In fact, the Lagrangian describing sm
fluctuations has the correct sign ofπ̇2 if P ′(X) +
2XP ′′(X) > 0. This condition is satisfied in a neigh
borhood ofX = 1 by (11) given above. Forc2 < 1
there is then a local instability to the formation of gr
dients, as required by our earlier results.

Ghost models of the dark energy which approa
w = −1 asymptotically make potentially interestin
predictions for the evolution of the equation of sta
for the dark energy. In a FRW universe, the equat
of motion for the ghost field is

(14)∂µ

[
a3(t)P ′(X)∂µφ

] = 0,

wherea(t) is the FRW scale factor. If there is a valu
c2∗ = φ̇2 = X such thatP ′(c2∗) = 0, then Eq.(5) im-
plies thatw = −1 whenX = c2∗. The model describe
by Eq.(11) hasc2∗ = 1, and if we apply Eq.(14) to it,
we see that if we start fromX = c2

i with ci close toc∗,
then we are driven asymptotically towardsX = c2∗ and
w = −1.

In the model described by Eq.(11), we may be
driven towardsw = −1 either from above or from
below, depending on whether we chose to start fr
c2
i > 1 or fromc2

i < 1. We have argued thatw < −1 is
problematic because of spatial gradient instabilities
that the case in which we are driven tow = −1 from
above is more interesting.

Near the asymptotic valuec∗ = 1 we have

′ 2 ( )3
(15)π̇ = P (ci )ci

2P ′′(c2∗)c2∗
ai

a
,

where higher order terms inai/a have been neglected.
Thus, in this regime,
rs B 597 (2004) 270–274 273

w = −1− 4P ′′(c2∗)c3∗π̇
P (c2∗)

(16)= −1− 2P ′(c2
i )c∗ci

P (c2∗)

(
1+ z

1+ zi

)3

.

Eq.(16)offers a prediction for thew parameter of the
dark energy as a function of the redshiftz, which could
be tested by cosmological observation[22].

In summary, from Eqs.(5) and (6)we find that
in single scalar field models of the dark energy w
w < −1, the kinetic term for fluctuations about th
homogeneous background has a wrong sign grad
term. On the other hand, there is no direct connec
between the sign of thėπ2 kinetic term in the effective
Hamiltonian and the sign ofw + 1.
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