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Abstract. 

The presented method incorporates a discontinuity detection 
process into a multigrid relaxation algorithm, with the goal of 
recovering “sipnificant” discontinuities a t  different scales. Line 
processes are activated in a deterministic way, depending on 
local properties of both neighboring line processes (at different 
scales) and neighboring continuous variables. Computational 
complexity is O ( n )  for an image with n pixels and convergence 
time is a small multiple of that required by one relaxation step 
a t  the finest grid. 

The suggested scheme is applied to the problem of image 
segmentation based on color differences. These dissimilarities 
are detected by considering changes in the relative intensity of 
the red, green and blue components of the pixels adjacent to  a 
given discontinuity. 

A final relaxation step restricted within the detected bound- 
aries is then suggested as a way of “coloring” the delineated 
regions in a uniform way. 

The algorithm has been imp!emented with high efficiency 
on a MIMD parallel computer with distributed memory. A 
coarse p i n  decomposition is found to  be useful for this and 
other multiscale problems. 

1 Introduction. 

If one were allowed to  use a Procrustean bed, one could sepa- 
rate two possible approaches to the image segmentation prob- 
lem. In the first approach the problem is attacked from above. 
High level concepts (relational graphs, heuristic search, inter- 
est measures, expert systems, focus of attention) are used to  
guide processing. In the second approach instead the problem 
is attacked from below using cooperative computation done by a 
usually large number of simple and densely interconnected com- 
puting elements (neural networks, regularization, relaxation, 
simulated annealing). Examples of the two approaches are in 
the cited references ([2]- [4], [6]-[7], [9]-[12], [14]- [19], [21]-[23]). 

Part of the difference is naturally related to definition of the 
segmentation problem, or to  the desired internal representation 
produced as final result of the process. If, for example, a seg- 
mentation system is designed for a dedicated job where domain 
dependent knowledge is a necessary component of segmentation 
and the desired output is a symbolic description of parts, a cer- 
tain amount of high level knowledge will be necessary to  ac- 
complish the task. Nonetheless, since the representational gap 
between raw visual data and desired internal representation is 
large, even in these cases a large fraction of the processing can 
usually be done in a pamllel and general fashion, postponing 
the high level stage until i t  is really needed. 

I t  is in fact evident from many cases in different fields ([13]) 
that “high level”, structured, low entropy results do not neces- 
sarily imply high level forces driving the evolution of the sys- 
tem 

The advantages of the second approach are its generality 
and its preattentive and bottom-up nature. Fkom a techno- 
logical point of view this allows design of digital (or analog) 
VLSI vision circuits employing a large amount of pamllelism 
with close to  real-time computational capabilities. 

2 Multigrid Algorithm with Line Pro- 
cesses. 

Multiscale algorithms have recently been proposed to speed 
up the solution of partial differential equations encountered in 
various image analysis problems ([21], [22]). 

In a previous work dedicated to the 3D surface reconstruc- 
tion problem based on the multigrid technique ([3]), it is showed 
that one can combine the smoothing and discontinuity detec- 
tion steps in time and scale. Both phases are executed concur- 
rently on grids at different scales; information flows between 
different grids and between computing elements detecting dis- 
continuities (henceforth called line processes, abbreviated as 
LP’s) or representing continuous values. 

Let’s consider first the discontinuity updating process. Ac- 
tivation of a given LP is based on the presence of other active 
LP’s a t  the same scale and at finer and coarser scales. This 
effect is embodied into a cost function, where for example the 
cost for a given LP is low if this leads to  a better local LP struc- 
ture ’. This is a function of binary variables and it is useful 
to define i t  first for a small set of typical configurations of the 
LP neighborhood and then extend it using rotational symmetry 

Furthermore activation is based on the discrepancy between 
points a t  different sides of the given LP, measured by a dissim- 
ilarity function D(P,  Q) pertinent to the segmentation. 

The activation rule is the following: a LP becomes active if 
and only if the dissimilarity of the separated points is greater 
than its cost. 

~ 3 1 ) .  

L P  + 1 iff D ( P , Q )  > cost (1) 

A table look-up approach is used to  find the influence of 
the neighborhood a t  the same scale on the cost, as shown in 
Figure 1. 

‘Taking an example from Physics: the low level interaction between 
atoms in the active material and electromagnetic field, combined with an 
appropriate geometry, is responsible for the laser effect. The ultimate 
example is naturally the collective result of putting together a large amount 
of neurone, i.e. our mind. 

’For example one may favor continuous, non intersecting lines. 
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Figure 1: Table look-up for discontinuity updating (influence 
a t  the same scale). 

Activation values (0 or 1) of LP’s in a neighborhood of the 
undecided LP are used as bits to form an index into a table 
of costs. This provides maximum flexibility in the definition of 
the cost function and speed during the computation. 

The influence of LP’s a t  different scales is illustrated in Fig- 
ure 2. 
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Figure 2: “Spreading of activation” between discontinuities in 
different scales. 

The effect is excitatory (existence of an active LP hints a t  
the presence of similar LP’s in contiguous scales) and it is taken 
into account by “discounting” the cost by a selected factor for 
each active connected LP. Given the rectangular tesselation of 
the image plane and the doubling of the grid step going to  
coarser grids, the number of connected LP’s varies depending 
on the precise location on the grid. This effect is corrected by 

scaling the discount factors 60 that  the global effect does not 
depend on the precise number of connected LP’s but only on 
their average activation. 

Considering now the cooperative smoothing process, the up- 
dating rule for the continuous field 4 ( z , y )  is derived applying 
variational calculus to the following functional: 

E(4(z, Y)) = J P ( d ( Z , Y )  - 4 2 ,  Y)I2 + (4: + 4 W d y  (2) 
Image 

A physical analogy is that  of fitting the data (2, y )  with a mem- 
branous sheet pulled by strings connected to’the data. A @veri 
4 value is updated as follows: 

(3) 

where h = grid step. 

@,,, = sum of neighboring 4’s not separated by active LP’s; 

n,,, number of terms in this sum; 

d,u* = LP(2 + dz,  Y + dy) x 4(z + dz,y + dy); 

LP(Z + d ~ ,  Y + dy);  

d z = f h ; d y = f h  

nmm = 
d z = f h ; d y = f h  

The two phases are interlaced and computation evolves on 
the different levels of the pyramid as illustrated in Figure 3. 

- Time 

Figure 3: Evolution of multigrid computation on the different 
levels. Each blob corresponds to  a relaxation and discontinuity 
detection step. 

3 Color Based Segmentation. 

In the present work the dissimilarity function previously intro- 
duced is defined in order to apply the algorithm to the problem 
of segmenting an image with borders suggested by color differ- 
ences. Color information is only one of the clues provided by a 
complex visual system and limiting consideration to it is done 
only to study this effect in isolation. 

Dissimilarity in color between points P and Q is defined as 
the square of the difference in the orientation of the vectors 
and ‘D containing the red, green and blue components of the 
two pixels. 

(4) 

The motivation for this definition is that the light intensity a t  
a point in the image is the product of the reflectance and the 
illumination ([14]), therefore a uniform change in illumination 
that multiplies the rgb components by the same factor will not 
be detected as color dissimilarity by the algorithm. 
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Now, from a computational point of view, one would like to 
avoid the floating point computation and calculation of square 
roots implied by eqn. 4. With this goal in mind the following 
expression is easier to deal with: 

If B is the angle between the two color vectors ( 0 = arccos (*) 
), one can show that: 

(7) 

Since the qualitative behavior of the functions in eqn. 6 and 
eqn. 7 is the same, one can obtain the same segmentation in 
both cases by appropriately scaling the cost values. 

The expression of eqn. 5 in terms of the rgb components is: 

For the more general case of two “fibers” of intensity values in 
N spectral bands, eqn. 8 is generalized as follows: 

4 Tests. 

Some tests of the presented method have been made using im- 
ages taken from television, converted t o  rgb format and loaded 
into the finest grid of the pyramid. This consists of four grids, 
with 129x129 pixels in the finest one. Data for coarser grids 
are obtained by averaging those in the finer grid using a 3 x 3  
window, parameters defining the cost function ([3]) have been 
tuned to the chosen images. 

Tests on different images show an acceptable detection of 
the relevant color discontinuities after the simple multigrid al- 
gorithm with “V cycles’’ described in section 2 (see Figure 3). 

For some tests, after the initial LP detection and relaxation 
cycle, a final relaxation cycle has been executed. In this the 
parameter ,f3 defined in eqn. 3 is set equal to zero and LP’s 
maintain their activation values and serve as delimiters for the 
smoothing action. 

During this final step, coloring in the delineated regions 
tends to converge t o  the local average color, as shown by the 
“thinning” of the histogram peaks in Figure 4. This would for 
example facilitate extraction of domains (not necessarily con- 
nected) based on color similarity. Currently we are studying 
the quantitative details of this effect. 

Figure 5 shows the obtained segmentation on the three 
coarsest scales (intensity is proportional to the red component, 
LP’s are white). To the left is the result after the relaxation 
and discontinuity detection cycle, while to the right is the re- 
sult after applying a final relaxation cycle. 

Figure 4: Histogram thinning due to relaxation confined within 
the delineated regions: red, green and blue components. 

5 Parallel Processor Implementation. 
If one defines as one work unit the amount of computation 
required by a complete relaxation and discontinuity detection 
on the finest grid, execution of the algorithm (V cycles, 4 grids) 
requires 3.43 work units ’. 

Given the regularity of the algorithm and the locality of 
communication between different computational elements, it 
can be pardelized in a straightforward manner. Assuming 
that a two-dimensional grid can be enbedded in the parallel 
architecture and that the processors are capable of containing 
enough data, a two-dimensional domain decomposition assigns 
to every processor a rectangular patch of the image with its 
“slice” of pyramidal structure (containing elements a t  all scales 
corresponding to the assigned patch). 

Every processor operates at all levels of the pyramid, alter- 
nating computation and communication steps to exchange the 
data on the borders of the assigned domain, as illustrated in 
Figure 6. 

exchange 0 - 
PROC 0 a I exchange 1 I 

PROC 2 a 
Figure 6: Communication strategy for two-dimensional domain 
decomposition. Data of the assigned domain are bordered by 
data received from nearby processors. Two exchanges are suf- 
ficient. 

3Using a SUN 3861 workstation and C language, this corresponds t o  
approximately one minute, if memory is large enough to contain the entire 
pyramidal structure. 
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Since all  processors are active most of the time and since 
the communication overhead is a “surface effect” proportional 
to  l/fi, where n is the number of pixels assigned to  a given 
processors, the parallel implementation brings a speed-up that 
is approximately linear in the number of available processors. 

Preliminary tests have been done with up to 16 processors 
and confirm the theoretical predictions. 

6 Conclusion. 

A method has been presented that provides a uniform frame- 
work for different types of segmentation and relaxation, where 
the problem dependent information comes in the form of a 
choice for the dissimilarity and cost functions. The last one 
is implemented with a look-up table. The suggested multiscale 
computation not only speeds up convergence but also provides 
segmentation with varying details on the different scales, to  be 
used in subsequent processing. 

In particular the method has been applied to color based 
segmentation of rgb images after defining a dissimilarity func- 
tion based on differences between the relative amount of red, 
green and blue of the points to  be separated. For each scale 
one layer of line processors is coupled with the three rgb layers 
and defines the limits of the interlaced smoothing procedure, 
that  operates on the three layers separately. 

Although preliminary tests have been done only for stan- 
dard rgb images, we believe that the presented approach can 
be useful for general applications using multispectral images, 
like for example satellite imagery or for artificial environments 
where color information can be appropriately defined and con- 
trolled. 
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