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ANALYSIS DETAILS

Gravitational Wave Mismatch Calculation. The
mismatch between two observed waveforms h1(t) and
h2(t) is defined as one minus the maximum overlap
O(h1, h2),

M(h1, h2) = 1−max
{χi}
O(h1, h2) , (1)

where the overlap is given by

O(h1, h2) =
〈h1|h2〉√

〈h1|h1〉〈h2|h2〉
. (2)

Here, 〈·|·〉 is a detector-noise weighted inner product and
optimization is carried out over a set {χi} of parameters
impacting the overlap (e.g., shifts in waveform phases,
polarization angles, arrival times) [1].

In the simplest case, we can choose 〈·|·〉 as the
frequency-domain noise weighted inner product [2],

〈a|b〉f = 4Re

∫ ∞
0

ã(f)b̃∗(f)

Sn(f)
df . (3)

Here, Sn(f) is the detector noise power spectral density
and ã(f) is the Fourier transform of a(t).

The real gravitational wave signal h(t) observed by a
single detector is given by

h(t) = F+h+ + F×h× , (4)

where F+ and F× are the detector antenna pattern func-
tions that depend on the sky location of the source and
polarization basis (see, e.g., [3]).

We now consider two scenarios: (1) A best case in
which both h+ and h× are measured by two optimally
oriented GW detectors at Advanced LIGO design sensi-
tivity (“ZDHP” for zero-detuning, high-power [4]). (2)
The realistic scenario of the two Advanced LIGO inter-
ferometers with the sensitivity at the time of GW150914.

For both cases, we need the two-detector inner product
for two detectors α and β, which is defined [3] as the sum
of the single-detector contributions,

〈h1|h2〉2det = 〈h1,α|h2,α〉s + 〈h1,β |h2,β〉s . (5)

Here, h1,α is waveform 1 as seen by detector α through
Eq. 4 and so forth. The single-detector inner product
〈·, ·〉s used is that given by Eq. 3 with the exception
that we integrate over some frequency interval defined
by [fmin, fmax]. In practice, we obtain the necessary
Fourier transforms by using the Fast Fourier Transform
algorithm after tapering the ends of the time domain sig-
nal and padding with zeros for all waveforms to have the
same length in the time domain.

For scenario (1), we follow [5] and define an optimal
two-detector Oopt overlap by choosing detectors oriented
so that one detector is maximally sensitive to h+ (and
insensitive to h×) while the opposite is true for the other
detector. We then have

〈h1|h2〉opt = 〈h1+|h2+〉s + 〈h1×|h2×〉s , (6)

with Sn(|f |) in Eq. 3 chosen as the Advanced LIGO
ZDHP noise power spectral density. Oopt is then given
by Eq. 2 with 〈·|·〉opt and the mismatch is obtained as
MZDHP = 1 − maxOopt. We optimize over time shifts
and polarization angle shifts of the waveforms. Since we
consider only the (2, 2) GW mode, we simply assume a
face-on direction of GW propagation, and orbital phase
shifts are identical to polarization phase shifts. See [5]
for further details.

For scenario (2), we use the inner product of Eq. 5 with
the Advanced LIGO Hanford and Livingston antenna
patterns [6] for GW150914 and the parameters given in
[7]. We employ the actual Hanford and Livingston noise
power spectral densities at the time of GW150914 pro-
vided at https://losc.ligo.org/events/GW150914/.
We obtain MGW150914 = 1 − maxOGW150914 for the
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(2, 2) GW mode by optimizing over time shifts, polar-
ization angle shifts, and orbital phase shifts. We neglect
contributions from other GW modes.

Reduction in Log-Likelihood due to Mismatch.
In GW parameter estimation, the posterior probability of
a BBH parameter vector ~ϑ is determined from the prior
and likelihood. The GW likelihood function (e.g., [8]) is
given by

L(d|~ϑ) ∝ exp

[
−1

2

〈
hM(~ϑ)− d|hM(~ϑ)− d

〉]
. (7)

Here, d = hGR + n is the data observed in the detectors
consisting of the GR signal (we use “GR” as a synonym
for “true”) and detector noise n. hM is the template
waveform generated by some waveform model.

The log-likelihood is then

logL = C−
[

1

2

〈
hM|hM

〉
+

1

2
〈hGR|hGR〉

+
1

2
〈n|n〉 − 〈n|hM − hGR〉 − 〈hM|hGR〉

]
,

(8)

where C is a constant of proportionality.
Suppose that hM is different from the true signal,

hM = (1 + ε1)hGR + ε2h
⊥ , (9)

where 〈h⊥|hGR〉 = 0. Here ε1 and ε2 are numbers and we
consider the limit ε1,2 � 1. Any hM can be decomposed
in this way. The log-likelihood becomes

logL = logL0 −
1

2
ε21〈hGR|hGR〉 − 1

2
ε22〈h⊥|h⊥〉

+ε1〈n|hGR〉+ ε2〈n|h⊥〉 ,
(10)

where logL0 is the log-likelihood when hM = hGR. The
expected reduction in the log-likelihood is then

E[δ logL] =
1

2
ε21〈hGR|hGR〉+

1

2
ε22〈h⊥|h⊥〉 . (11)

We now allow a small bias in the distance to the source
by rescaling hM by (1 + ε1)−1 with which we obtain the
convenient expression

E[δ logL] =
1

2
ε22〈h⊥|h⊥〉+O(ε3) . (12)

The mismatch between hGR and hM is

M(hGR, hM) = 1− 〈hGR|hM〉√
〈hGR|hGR〉〈hM|hM〉

(13)

=
1

2
ε2
〈h⊥|h⊥〉
〈hGR|hGR〉 +O(ε3) , (14)

where optimization over phase shifts, time shifts, etc. is
implicit.

The signal-to-noise ratio % is given by %2 = 〈hGR|hGR〉.
With this, we find

E[δ logL] ≈ %2M . (15)

The posterior probability will be affected by a factor
of Euler’s number e when δ logL = 1, which can be con-
sidered a mild observational inconsistency. Hence, the
mismatch M will begin to have an effect on GW data
analysis when

M &
1

%2
. (16)

NUMERICAL CONVERGENCE

We carry out additional simulations at coarse-grid res-
olutions ∆x1 = 1.00M and ∆x3 = 1.60M , in addition
to our standard-resolution simulations of ∆x2 = 1.25M .
For our convergence analysis, we choose the vacuum (G0)
and the highest density (G4) as two extremes of the sim-
ulations we carry out. We focus our analysis on the grav-
itational waveforms since these are the most important
output of our simulations.

In Fig. 1, we show numerical convergence in the
Newman-Penrose scalar ψ4 between the different resolu-
tions for the G0 vacuum simulation. We consider phase
and amplitude differences separately. The amplitude is
defined as

A(t) =
√

Re[ψ4(t)]2 + Im[ψ4(t)]2 , (17)

while the phase is defined as

φ(t) = tan−1
(

Im[ψ4(t)]

Re[ψ4(t)]

)
, (18)

where Re[ψ4] and Im[ψ4] are the real and imaginary parts
of ψ4, respectively. Our numerical scheme is fourth-order,
hence, we expect fourth-order convergence and a self-
convergence factor of

Qs =
∆xn3 −∆xn2
∆xn2 −∆xn1

= 0.3505 , (19)

where n is the order of convergence. In Fig. 1, we
rescale the differences between highest resolution and
second-highest (i.e. standard) resolution by 1/Qs. These
rescaled curves lie essentially on top of the curves for the
differences between second-highest and lowest resolution,
demonstrating approximate fourth-order convergence.

In Fig. 2 we perform the same analysis for the highest-
density simulation G4. In this case, the hydrodynamics
plays an important role in driving the coalescence. If our
finite-volume implementation dominates the numerical
error, we expect second-order convergence when the flow
is smooth. However, soon after the start of the simula-
tion, steep density gradients and shocks develop for which
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FIG. 1: Fourth-order convergence for the G0 vacuum simula-
tion. The dashed line at 0M corresponds to merger, which we
define as the maximum of the h22 amplitude, and the time is
given relative to merger. Top: Amplitude differences between
our lowest (∆x3), standard (∆x2), and highest-resolution
(∆x1) simulations. We scale the differences using the self-
convergence factor 1/Qs = 2.85 corresponding to fourth-order
convergence for this choice of resolutions. Bottom: Phase an-
gle differences also exhibiting fourth-order convergence.

our numerical scheme (as any high-resolution shock cap-
turing scheme) is only first-order convergent. Hence, we
can only expect first-order convergence. We compute
a first-order self-convergence factor Qs = 0.7143, with
1/Qs = 2.85. Figure 2 shows that we obtain roughly
first-order convergence in GW amplitude and phase.

In order to clarify how numerical resolution effects the
main results of our paper, we have calculate mismatches
between various resolutions for the G0 and G4 cases. For
the G0 case we find the mismatches to be 1.6 × 10−3

between high and medium resolution, 2.9 × 10−3 be-
tween medium and low resolution, and 3.5 × 10−3 be-
tween high and low resolution. For the G4 case the mis-
matches are 3.5×10−5 between high and medium resolu-
tion, 1.0×10−4 between medium and low resolution, and
2.3× 10−4 between high and low resolution. Comparing
these results with the mismatches listed in Table 1 (in
the main paper), we conclude that our main conclusions
are independent of numerical resolution.
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FIG. 2: Convergence of the G4 simulation. The waveforms
are aligned at merger, as defined in Figure 1, and all times
are given relative to merger. The merger time is 0M , marked
with a dashed vertical line. Top: Difference in waveform am-
plitude. We scale the difference between ∆x2 and ∆x1 by a
self-convergence factor of 1/Qs = 1.4, corresponding to first-
order convergence. These are the simulations with the highest
gas density and the evolution shows steep density gradients
and shocks. Hence, we expect first-order convergence. Bot-
tom: Phase angle differences between the different resolution
pairs, also exhibiting approximate first-order convergence.
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