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A. Relaxation of initial product states at low

frequencies

In addition to the increase of the level statistics pa-
rameter with system size, the lack of localization at low
driving frequencies is also manifested in the relaxation
of initial product states of particle occupations. When
these states are driven at ω = 3.5J , their generalized im-
balance decays to a value which decreases with system
size (Fig. S1), as in the undriven case. Note that the
decay as a function of time is slower when compared to
the decay in the undriven case. Presumably, this is due
to the proximity to the MBL transition [1] for this value
of the driving frequency.
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Figure S1. Imbalance as a function of time for Jeff = 0
[A/ω = (A/ω)∗] at a low driving frequency ω = 3.5J . The
imbalance at long times decays with system size, indicating
that the system is in the delocalized phase as expected from
level statistics analysis. This is in contrast to the localized
case for ω = 5J (Fig. 3 in the main text), where the long-time
imbalance does not depend on system size. Inset: imbalance
at long times (averaged over 1.4× 103T < t < 1.5× 103T ) as
a function of system size for di�erent driving frequencies. Er-
ror bars indicate one standard deviation over disorder realiza-
tions. The values for the slopes are −0.91±0.04, −0.33±0.12,
−0.15 ± 0.06 for ω = 3.5J , 3.75J , 4J respectively. The di-
minishing slope as the driving frequency approaches ω = 4J
indicates slowing down of the dynamics, due to the proximity
to the transition into the MBL phase.

As the driving frequency approaches the speculated
critical frequency ωc ≈ 4J , the remaining imbalance at
long times declines much slower with system size (Fig. S1

inset). The quick �attening of the slope in the inset of
Fig S1, for a small change of driving frequency, provides
an independent corroboration for the value of the critical
frequency.

B. Phase boundaries between the ergodic and

MBL phases

The phase boundaries in Fig. 1 were obtained by �nite-
size scaling of the quasi-energy level statistics 〈r〉. Exam-
ples of such data are given in Figs. 2, 4, S2. Namely, a
consistent increase of 〈r〉 with system size is interpreted
as an indication for the ergodic phase, while a consistent
decrease of 〈r〉 with system size is interpreted as an indi-
cation for the MBL phase. Error bars indicate parameter
ranges where the trend in level statistics with increasing
system size is not statistically signi�cant (according to
the error bar for 〈r〉, as shown for example in Figs. 2, 4,
S2).
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Figure S2. Quasi-energy level statistics as a function of driv-
ing amplitude at a few driving frequencies near ωc. When the
driving frequency is lowered, the range of driving amplitudes
which induce many body localization narrows around (A/ω)∗

corresponding to the �rst root of J0, for which Jeff = 0. At
ω = 4J , the level statistics parameter at (A/ω)∗ changes very
slowly with system size, indicating proximity to the critical
frequency; at a lower frequency ω = 3.5J , the level statis-
tics parameter tends to the delocalized value at any driving
amplitude A/ω > 0 up to the �rst minimum of J0.

C. Level statistics as a function of driving

amplitude at low frequencies

At ω = 5J we found driving-induced many-body local-
ization in a range of driving amplitudes around (A/ω)

∗
,

corresponding to the �rst root of J0, and for which
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Jeff = 0 (Fig. 2 in main text). We expect this range
to narrow for lower driving frequencies, and to vanish al-
together for ω < ωc ≈ 4J ; at these frequencies, the drive
fails to induce localization even at Jeff = 0 (Fig. 4).
Indeed, when we perform �nite-size scaling of the level
statistics as a function of driving amplitude at frequen-
cies lower than 5J , we �nd that the range of localization-
inducing driving amplitudes continuously narrows, and
all but shrinks to a point Jeff = 0 at ω = 4J (Fig. S2
left, middle). Below this frequency, the level statistics
parameter increases with system size for any driving am-
plitude A/ω > 0 up to the �rst minimum of J0 (Fig. S2
right), indicating that the drive fails to induce localiza-
tion for this range of driving amplitudes.

D. Driving-induced MBL beyond the �rst

minimum of J0

So far, we have analyzed a range of driving amplitudes
0 ≤ A/ω ≤ (A/ω)min, where (A/ω)min is the �rst mini-
mum of the Bessel function (bright green in Fig. S3b).
We performed additional simulations which suggest a
qualitatively similar phase diagram at higher driving am-
plitudes.
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Figure S3. Driving-induced MBL at a driving amplitude cor-
responding to (A/ω)∗∗, the second root of J0 (A/ω). (a)
Finite-size scaling of quasi-energy level statistics as a func-
tion of driving frequency. The critical frequency at the sec-
ond root (ωc ≈ 3.25J) is smaller than the one found at the
�rst root, ωc ≈ 4J . (b) Plot of the zeroth Bessel function
J0: bright green indicates the amplitude range considered in
the main text, additional simulations performed at the dark
green amplitude range show qualitatively similar results. (c)
Values of the various Bessel functions Jn at the �rst root
(A/ω)∗ (light green) vs. second root (A/ω)∗∗ (dark green) of
J0 (A/ω), indicating the values of the non-zero Fourier modes
of the Hamiltonian when the time-averaged Hamiltonian has
no hopping term, Jeff = 0. The values of the negative orders
are related by J−n (A/ω) = (−1)nJn (A/ω).

Speci�cally, we obtained the �nite-size scaling of the
quasi-energy level statistics for driving amplitudes cor-
responding to the interval between the �rst minimum of
J0 to its next maximum (dark green in Fig. S3b). The
result of this analysis also shows localization in a range
of driving amplitudes above a critical driving frequency.
To determine the critical driving frequency for values of
A/ω corresponding to (A/ω)

∗∗
, the second root of J0, we

varied the driving frequency while tuning the driving am-
plitude such that A/ω remains �xed. The results, shown
in Fig S3a, indicate that the critical driving frequency for
inducing MBL at (A/ω)

∗∗
is ωc ≈ 3.25J , which is lower

compared the one found at the �rst root (ωc ≈ 4J).
This decrease in the critical driving frequency can be

understood by comparing the Fourier spectrum of the
Hamiltonian at the �rst two roots of the zeroth Bessel
function (Fig. S3c). While the �rst Fourier mode of the
Hamiltonian is the most dominant when A/ω is tuned to
the �rst root of J0, at the second root of J0 the bulk
of its Fourier spectrum shifts to the higher harmonics.
Intuitively, driving at a larger amplitude therefore has a
similar e�ect to increasing the driving frequency.

E. Inducing MBL with a square-wave electric �eld

Our analysis so far focused on an AC electric �eld oscil-
lating in time as E(t) = A cos(ωt). However, the e�ective
hopping in Heff is suppressed also for other functional
forms for periodic time dependence of the AC electric
�eld. We tested the possibility to induce an MBL phase
with a square-wave AC electric �eld:

E (t) =

{
A 0 ≤ t < T/2

−A T/2 ≤ t < T
(S1)

Figure S4. Finite-size scaling of quasi-energy level statistics
〈r〉 for the square-wave electric �eld (S1). Left: as a function
of rescaled driving amplitude A/ω at a �xed driving frequency
ω = 5J . Right: as a function of driving frequency for A = 2ω,
corresponding to Jeff = 0 for the square-wave drive [see Eq.
(S2)] .
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Such a �eld can be used for exact dynamical local-
ization in models with hopping beyond nearest-neighbor
[2, 3]. In our model, performing the Peierls substitution
and time-averaging the acquired phase leads to the e�ec-
tive hopping amplitude:

Jeff/J = e−iπ2
A
ω · sinc

(
πA

2ω

)
(S2)

Again, �nite-size scaling of quasi-energy level statis-
tics shows localization in a range of driving amplitudes
around Jeff = 0 (here obtained at A/ω = 2) below a
critical driving frequency ω ≈ 3.5J (Fig. S4).

F. Driving-induced MBL at a lower �lling fraction

Our numerical simulations so far focused on the case of
half �lling. This �lling fraction was chosen to maximize
the width of the many-body spectrum for a given number
of sites, thus minimizing �nite-size e�ects.

We expect qualitatively similar results at di�erent par-
ticle �llings. The critical frequency might slightly de-
crease though, since the interactions become e�ectively
weaker away from half �lling (this is apparent when the
�lling is decreased below 1/2, but is also true when it
is increased due to particle-hole symmetry). In the pa-
rameter range we use for our simulations, weaker interac-
tions imply stronger localization with a shorter localiza-
tion length; therefore, the local spectrum becomes nar-
rower and the critical frequency should correspondingly
decrease.
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Figure S5. Finite-size scaling of quasi-energy level statistics
〈r〉 at �lling fraction 1/3. We tune the driving frequency ω
while �xing the rescaled driving amplitude A/ω at the �rst
root of the zeroth Bessel function (Jeff = 0). We �nd a
critical frequency ω ≈ 3.75 for inducing the MBL phase, which
is slightly lower than the critical frequency found at half �lling
(ω ≈ 4).

To test this, we repeat the procedure of �gure 4 at
a di�erent �lling fraction 1/3 (Fig. S5). Namely, we �x
the rescaled driving amplitude A/ω at the �rst root of the
zeroth Bessel function (Jeff = 0) and perform �nite-size
scaling of the quasi-energy level statistics as a function of
the driving frequency ω. Indeed, we �nd that the MBL
phase is induced above a critical frequency ω ≈ 3.75,
which is slightly smaller than the critical frequency ω ≈ 4
found at half �lling.
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