
1

Capacity and Expressiveness

of Genomic Tandem Duplication
Siddharth Jain

Electrical Engineering

California Institute of Technology

Pasadena, CA 91125, U.S.A.

sidjain@caltech.edu

Farzad Farnoud (Hassanzadeh)

Electrical Engineering

California Institute of Technology

Pasadena, CA 91125, U.S.A.

farnoud@caltech.edu

Jehoshua Bruck

Electrical Engineering

California Institute of Technology

Pasadena, CA 91125, U.S.A.

bruck@paradise.caltech.edu

Abstract

The majority of the human genome consists of repeated sequences. An important type of repeated sequences

common in the human genome are tandem repeats, where identical copies appear next to each other. For example, in

the sequence AGTCTGTGC, TGTG is a tandem repeat, that may be generated from AGTCTGC by a tandem

duplication of length 2. In this work, we investigate the possibility of generating a large number of sequences from

a seed, i.e. a small initial string, by tandem duplications of bounded length. We study the capacity of such a system,

a notion that quantifies the system’s generating power. Our results include exact capacity values for certain tandem

duplication string systems. In addition, motivated by the role of DNA sequences in expressing proteins via RNA

and the genetic code, we define the notion of the expressiveness of a tandem duplication system as the capability of

expressing arbitrary substrings. We then completely characterize the expressiveness of tandem duplication systems for

general alphabet sizes and duplication lengths. In particular, based on a celebrated result by Axel Thue from 1906,

presenting a construction for ternary square-free sequences, we show that for alphabets of size 4 or larger, bounded

tandem duplication systems, regardless of the seed and the bound on duplication length, are not fully expressive, i.e.

they cannot generate all strings even as substrings of other strings. Note that the alphabet of size 4 is of particular

DRAFT

ar
X

iv
:1

50
9.

06
02

9v
1

 [
cs

.I
T

]
 2

0
Se

p
20

15

2

interest as it pertains to the genomic alphabet. Building on this result, we also show that these systems do not have

full capacity. In general, our results illustrate that duplication lengths play a more significant role than the seed in

generating a large number of sequences for these systems.

Index Terms

Capacity, expressiveness, tandem repeats, tandem duplication, finite automaton, irreducible strings1.

I. INTRODUCTION

More than 50% of the human genome consists of repeated sequences [6]. Two important types of common repeats

are i) interspersed repeats and ii) tandem repeats. Interspersed repeats are caused by transposons. A transposon

(jumping gene) is a segment of DNA that can copy or cut and paste itself into new positions of the genome.

Tandem repeats are caused by slipped-strand mispairings [10]. Slipped-strand mispairings occur when one DNA

strand in the duplex becomes misaligned with the other.

Tandem Repeats are common in both prokaryote and eukaryote genomes. They are present in both coding

and non-coding regions and are believed to be the cause of several genetic disorders. The effects of tandem

repeats on several biological processes is understood by these disorders. They can result in generation of toxic or

malfunctioning proteins, chromosome fragility, expansion diseases, silencing of genes, modulation of transcription

and translation [13] and rapid morphological changes [4].

A process that leads to tandem repeats, e.g. through slipped-strand mispairing, is called tandem duplication, which

allows substrings to be duplicated next to their original position. For example, from the sequence AGTCGTCGCT ,

a tandem duplication of length 2 can give AGTCGTCGCGCT , which, if followed by a duplication of length

3 may give AGTCGTCGTCGCGCT . The prevalence of tandem repeats and the fact that much of our unique

DNA likely originated as repeated sequences [6] motivates us to study the capacity and expressiveness of string

systems with tandem duplication, as defined below.

The model of a string duplication system consists of a seed, i.e. a starting string of finite length, a set of duplication

rules that allow generating new strings from existing ones, and the set of all sequences that can be obtained by

applying the duplication rules to the seed a finite number of times. The notion of capacity, introduced in [3] and

defined more formally in the sequel, represents the average number of m-ary symbols per sequence symbol that

are asymptotically required to encode a sequence in the string system, where m is the alphabet size (for DNA

sequences the alphabet size is 4). The maximum value for capacity is 1. A duplication system is fully expressive

if all strings with the alphabet appear as a substring of some string in the system. As we will show, if a system is

not fully expressive, then its capacity is strictly less than 1.

Before presenting the notation, definitions, and the results more formally, in the rest of this section, we present

two simple examples to illustrate the notions of expressiveness and capacity for tandem duplication string systems.

Furthermore, we also outline some useful tools as well as some of the results of the paper.

1This paper was presented in part at IEEE International Syposium on Information Theory (ISIT), 2015

DRAFT

3

Fig. 1. Finite automaton for the systems S = ({0, 1}, 01, T tan
≤k), where k ≥ 2, including the system of Example 1. Notation used here is

described in detail in Section II.

Example 1. Consider a string system on the binary alphabet Σ = {0, 1} with 01 as the seed that allows tandem

duplications of length up to 2. It is easy to check that the set of strings generated by this system start with 0 and

end with 1. In fact, it can be proved that all binary strings of length n which start with 0 and end with 1 can be

generated by this system. The proof is based on the fact that every such string can be written as 0r11r2 · · · 0rv−11rv ,

where each ri ≥ 1 and v is even. A natural way to generate this string is to duplicate 01 v
2 times and then duplicate

the 0s and 1s as needed via duplications of length 1.

Expressiveness: From the preceding paragraph, every binary sequence s can be generated as a substring in this

system as 0s1. For example, although 11010 cannot be generated by this system, it can be generated as a substring

of 0110101 in the following way:

01→ 0101→ 010101→ 0110101.

Hence this system is fully expressive.

Capacity: The number of length-n strings in this system is 2n−2. Thus, encoding sequences of length n in this

system requires n−2 bits. The capacity, or equivalently the average number of bits (since the alphabet Σ is of size

2) per symbol, is thus equal to 1. This is not surprising as the system generates almost all binary sequences. �

Observing these facts for an alphabet of size 2, one can ask related questions on expressiveness and capacity for

higher alphabet sizes and duplication lengths. However, counting the number of length-n sequences for capacity

calculation and characterizing fully expressive systems for larger alphabets are often not straightforward tasks. In

this paper, we study these questions and develop methods to answer them.

A useful tool in this study is the theory of finite automata. As a simple example note that the string system over

binary alphabet in the preceding example can be represented by the finite automaton given in Figure 1. The regular

expression for the language defined by the finite automaton is

R01 = (0+1+)
+
, (1)

which represents all binary strings that start with 0 and end with 1. Here, for a sequence s, s+ denotes one or more

concatenated copies of s.

DRAFT

4

One can use the Perron-Frobenius theory [5], [9] to count the number of sequences which can be generated by a

finite automaton. This enables us to use finite automata as a tool to calculate capacity for some string duplication

systems with tandem repeats over larger alphabet.

In our results, we find that the exact capacity of the tandem duplication string system over ternary alphabet

with seed 012 and duplication length at most 3 equals log3
3+
√

5
2 ' 0.876036. Moreover, we generalize this result

by characterizing the capacity of tandem duplication string systems over an arbitrary alphabet and a seed with

maximum duplication length of 3. Namely, we show that if the maximum duplication length is 3 and the seed

contains abc as a substring, where a, b, and c are distinct symbols, then the capacity ' 0.876036 log|Σ| 3. If such

a substring does not exist in the seed, then the capacity is given by log|Σ| 2, unless the seed is of the form am, in

which case the capacity is 0. Some of these results are highlighted in Table I.

Our next example presents a system that, unlike that of Example 1, is not fully expressive.

Example 2. Consider a tandem duplication string system over the ternary alphabet {0, 1, 2} with seed 012 and

maximum duplication length 3. This system is not fully expressive as it cannot generate 210, 102, or 021, even

as a substring. It is not difficult to see that to generate any of these strings, at least one of the other two must be

already present as a substring of the seed. Since 012 does not contain any, by induction, it follows that the system

is not fully expressive. �

Based on the previous example, one may ask what happens if we start with a seed that contains one of the strings

210, 102, or 021, e.g. if we let the seed be 01210? Does the system become fully expressive? While this system

can generate all strings of length 3 as substrings, the answer is still no as shown in Theorem 2: Regardless of the

seed, a ternary system with maximum duplication length of 3 is not fully expressive. We show in Theorem 4, that

a maximum duplication length of at least 4 is needed to arrive at a fully expressive ternary system.

While for alphabets of size 2 or 3, increasing the maximum length on duplications turns a system that is not fully

expressive to one that is, for alphabets of size 4 or more, these systems are not fully expressive regardless how large

the bound on duplication length is. The main tool in constructing quaternary strings that do not appear independently

or as substrings in these systems is Thue’s result proving the existence of ternary square-free sequences of any

length. Note that unary and binary square-free sequences of arbitrarily large length do not exist. The existence

of such sequences underlies the significant shift in the behavior of tandem duplication systems with regards to

expressiveness as a function of alphabet size. Some of our results on expressiveness are summarized in Table II.

As part of this paper, we also study regular languages for tandem duplication string systems. In [8], it was shown

that the tandem duplication string system is not regular if the maximum duplication length is 4 or more when

the seed contains 3 consecutive distinct symbols as a substring. However for maximum duplication length 3, this

question remained open. In this paper, we show in Theorem 5 that if the maximum duplication length is 3, a tandem

duplication string system is regular irrespective of the seed and the alphabet size. Moreover, we characterize the

exact capacity for all these systems.

DRAFT

5

Σ s k Capacity

{0, 1, 2} 012 3 ' 0.876036

arbitrary xabcy 3 ' 0.876036 log|Σ| 3

TABLE I

CAPACITY VALUES TANDEM DUPLICATION STRING SYSTEMS (Σ, s, T tan
≤k). HERE x, y ∈ Σ∗ , AND a, b, c ∈ Σ ARE DISTINCT.

Σ s k fully expressive

{0, 1, 2} arbitrary ≤ 3 No

{0, 1, 2} 012 ≥ 4 Yes

Size ≥ 4 arbitrary arbitrary No

TABLE II

EXPRESSIVENESS OF TANDEM DUPLICATION STRING SYSTEMS
(

Σ, s, T tan
≤k

)
.

Related Work: Tandem duplications have already been studied in [1], [2], [7]. However the main concern of

these works is to determine the place of tandem duplication rules in the Chomsky hierarchy of formal languages.

A study related to our work can be found in [3], [8]. String systems with different duplication rules namely - end

duplication, tandem duplication, reversed duplication and duplication with a gap are defined and studied in [3].

In end duplication, a substring of certain length k is appended to the end of the previous string - for example,

ACTGT → ACTGTCT . In reversed tandem duplication, the reverse of a substring is appended in tandem in the

previous string - for example, ACTGT → ACTTCGT . In duplication with a gap, a substring is inserted after a

certain gap g from its position in the previous string - for example ACTGT → ACTGCTT .

For tandem duplication string systems, the authors in [3] show that for a fixed duplication length the capacity is

0. Further, they find a lower bound on the capacity of these systems, when duplications of all lengths are allowed. In

this paper, we consider tandem duplication string systems, where we restrict the maximum size of the block being

tandemly duplicated to a certain finite length. In [8], the authors show that for these bounded tandem duplication

string systems if the maximum duplication length is 4 or more and the alphabet size is more than 2, the system

is not regular for any seed that contains 3 consecutive distinct symbols as a substring. However for maximum

duplication length 3, this question was left open. In this paper, we show in Theorem 5 that the language is regular

for maximum duplication length 3 irrespective of the seed and the alphabet size. We also characterize the exact

capacity of these systems.

In the rest of the paper, the term tandem duplication string system refers to these kind of string duplication

systems with bounded duplication length.

The rest of the paper is organized as follows. In Section II, we present the preliminary definitions and notation. In

Section III, we derive our main results on capacity and expressiveness. In Section IV, we show that if the maximum

DRAFT

6

duplication length is 3, then the tandem duplication string system is regular irrespective of the seed and alphabet

size. Further, using the regularity of the systems, we extend our capacity results. We present our concluding remarks

in Section V.

II. PRELIMINARIES

Let Σ be some finite alphabet. An n-string x = x1x2 · · ·xn ∈ Σn is a finite sequence where xi ∈ Σ and |x| = n.

The set of all finite strings over the alphabet Σ is denoted by Σ∗. For two strings x ∈ Σn and y ∈ Σm, their

concatenation is denoted by xy ∈ Σn+m. For a positive integer m and a string s, sm denotes the concatenation

of m copies of s. A string v ∈ Σ∗ is a substring of x if x = uvw, where u,w ∈ Σ∗.

A string system S ⊆ Σ∗ is represented as a tuple S = (Σ, s, T), where s ∈ Σ∗ is a finite length string called

seed, which is used to initiate the duplication process, and T is a set of rules that allow generating new strings

from existing ones [3]. In other words, the string system S = (Σ, s, T) contains all strings that can be generated

from s using rules from T a finite number of times.

A tandem duplication map Ti,k,

Ti,k(x) =

uvvw, x = uvw, |u| = i, |v| = k,

x, else,

creates and inserts a copy of the substring of length k which starts at position i+ 1. We use T tank : Σ∗ → Σ∗ and

T tan≤k to denote the set of tandem duplications of length k, and tandem duplications of length at most k, respectively,

T tank = {Ti,k : i ∈ N},

T tan≤k = {Ti,j : i, j ∈ N, j ≤ k}.

With this notation, the system of Example 1 can be written as ({0, 1}, 01, T tan≤2).

The capacity of the string system S = (Σ, s, T) is defined as

cap(S) = lim sup
n→∞

log|Σ| |S ∩ Σn|
n

. (2)

Furthermore, it is fully expressive if for each y ∈ Σ∗, there exists a z ∈ S, such that y is a substring of z.

III. CAPACITY AND EXPRESSIVENESS

In this section, we present our results on the capacity and expressiveness of tandem duplication system with

bounded duplication length. The section is divided into two parts; the first part focuses on capacity and the second

on expressiveness.

A. Capacity

Our first result is on the capacity of a tandem duplication string system over ternary alphabet.

DRAFT

7

Fig. 2. Finite automaton for S = ({0, 1, 2}, 012, T tan
≤3).

Theorem 1. For the tandem duplication string system S =
(
{0, 1, 2}, 012, T tan≤3

)
, we have

cap(S) = log3

3 +
√

5

2
' 0.876036.

Proof: We prove this theorem by showing that the finite automaton given in Figure 2 accepts precisely the

strings in S, and then finding the capacity using the Perron-Frobenius theory [5], [9].

The regular expression R for the language defined by this finite automaton is given by

R = (0+1+)
+

2+(1+2+)
∗
[0+(2+0+)

∗
1+(0+1+)

∗
2+(1+2+)

∗
]
∗
. (3)

Let LR be the language defined by the regular expression R (and by the finite automaton). We first show that

LR ⊆ S. The direct way of doing so is to start with 012 and generate all the sequences in LR via duplications. For

simplicity of presentation, however, we take the reverse route: We show that every sequence in R can be transformed

to 012 by a sequence deduplications. A deduplication of length k is an operation that replaces a substring αα by

α if |α| = k. For two regular expressions R1 and R2, we use R1
dd≤k−−−→ R2 to denote that each sequence in R1

can be transformed into some sequence in R2 via a sequence of deduplications of length at most k.

Note that R = B1B2
∗, where

B1 = (0+1+)
+

2+(1+2+)
∗
,

B2 = 0+(2+0+)
∗
1+(0+1+)

∗
2+(1+2+)

∗
.

We have B1
dd≤3−−−→ 012(12)

∗ dd≤3−−−→ 012, since a+ dd≤3−−−→ a and (ab)
+ dd≤3−−−→ ab for all a, b ∈ Σ. Furthermore,

B2
dd≤3−−−→ 0(20)

∗
1(01)

∗
2(12)

∗ dd≤3−−−→ 0(20)
∗
1(01)

∗
2
dd≤3−−−→ 0(20)

∗
12

dd≤3−−−→ {02012, 012}. (4)

Note for example that 1(01)
∗
2(12)

∗ dd≤3−−−→ 1(01)
∗
2 as the underlined 2 is always preceded by a 1.

We thus have R = B1B
∗
2

dd≤3−−−→ {01202012, 012012}
dd≤3−−−→ 012, proving that LR ⊆ S.

DRAFT

8

To complete the proof of LR = S, we now show that S ⊆ LR. In what follows, we say a finite automaton

generates a sequence s, if there is a path with label s from Start to an accepting state. If an automaton generates

uvw, with u, v, w ∈ Σ∗, we may use v to refer both to the string v itself and to the part of the path that generates

v. The meaning will be clear from the context.

We show S ⊆ LR, by proving the following for the finite automaton in Figure 2:

i) It can generate 012.

ii) If the automaton can generate pqr, with p, q, r ∈ Σ∗ and |q| ≤ 3, it can also generate pq2r.

Condition i) holds trivially (see the path Start− S1 − S2 − S3 in Figure 2). In order to prove ii), we define:

• Path Label: Given a path a in a finite automaton, the path label la ∈ Σ∗ is defined as the sequence obtained

by concatenating the labels on the edges forming the path.

• Path Length is the number of edges of the path.

• Superstate: A state D is a superstate of a state C if for each path starting in C and ending in an accepting

state, there is a path with the same label starting in D and ending in an accepting state. Note that every state

is a superstate of itself.

• Duplicable Path: A path ending in a state C is duplicable if there is a path with the same label starting in C

and ending in a superstate of C.

Suppose a finite automaton can generate pqr. If q is duplicable, then pq2r can also be generated by the finite

automaton. As a result, to prove ii), it suffices to show that for each state C in Figure 2, all paths of length 1, 2

or 3 ending in C are duplicable.

The rest of the proof is divided into two parts. In Part 1, we show that all paths ending in {S4, S5, S6, T4, T5, T6}

with length ≤ 3 are duplicable. In Part 2, we prove the same statement for the states {S1, S2, S3, T2, T3}. Note

that there are no nontrivial paths ending in the Start state.

Part 1 : Given a state u and j ∈ {1, 2, 3}, let Puj be the set of all length-j paths ending in u and let Quj be the

set of all length-j paths starting and ending in u. If⋃
a ∈ Pu

j

la =
⋃

a ∈ Qu
j

la, (5)

then all length-j paths ending in u are duplicable.

We prove that (5) holds for all states {S4, S5, S6, T4, T5, T6} and all j ∈ {1, 2, 3}. This is done by computing A1,

A2
1 and A3

1, where A1 is the (labeled) adjacency matrix of the strongly connected component of the finite automaton

given in Figure 2, i.e. the subgraph induced by {S4, S5, S6, T4, T5, T6}. Here in computing the matrix products,

symbols do not commute, e.g. xy 6= yx. The adjacency matrix A1 and its square A2
1, where x, y and z represent

edges labeled by 0, 1, and 2, respectively, and where rows and columns correspond in order to S4, S5, S6, T4, T5, T6,

are given by

A1 =


x y 0 z 0 0
0 y z 0 x 0
x 0 z 0 0 y
x 0 0 z 0 0
0 y 0 0 x 0
0 0 z 0 0 y

,

DRAFT

9

A2
1 =


x2+zx y2+xy yz z2+xz yx 0

zx y2+xy z2+yz 0 x2+yx zy

x2+zx xy z2+yz xz 0 y2+zy

x2+zx xy 0 z2+xz 0 0

0 y2+xy yz 0 x2+yx 0

zx 0 z2+yz 0 0 y2+zy

.

Each entry in these matrices lists the paths of specific length from the state identified by its row to the state identified

by its column. For example, the entry (6, 3) of A2
1, which equals z2 + yz, indicates that there are two paths of

length 2 from T6 to S6 with labels z2 = 22 and yz = 12.

For a state u ∈ {S4, S5, S6, T4, T5, T6}, the terms in the column that corresponds to u in these matrices represent

the labels of the paths of the appropriate length that start in S4, S5, S6, T4, T5, or T6 and end in u. Furthermore, for

every path that starts in {S1, S2, S3, T2, T3} and ends in u, there is a corresponding path with the same label that

starts in {S4, S5, S6, T4, T5, T6} and ends in u–this path can be obtained by replacing S1 with S4, S2 with S5, S3

with S6, T2 with T5 and T3 with T6. Finally, there are no paths of length at most 3 from Start to u. Hence, the

terms in the column corresponding to u in the matrix Ai1, i ∈ {1, 2, 3}, contain the labels for all paths of length

i that end in u. On the other hand, the terms in the diagonal element in this column correspond to labels of the

paths that start and end in u.

It thus follows that to check (5), we need to verify that the nonzero terms in the non-diagonal elements of each

column also appear in its diagonal element. For A1 and A2
1, this can be easily done by observing the matrices. For

example, the entry (3, 3) of A2
1 equals z2 + yz and contains all terms appearing in column 3 of A2

1, which are yz

and z2 + yz. We verified using a computer that A3
1 also satisfies the same condition. Hence, we have shown that

all paths of length at most 3 ending in {S4, S5, S6, T4, T5, T6} are duplicable.

Part 2 : Now, we prove that all paths of length at most 3 ending in {S1, S2, S3, T2, T3} are duplicable. We first

show that (5) holds for all states ∈ {S1, S2, T2, T3} for paths of length ≤ 3, and also holds for S3 for paths of

length 1 and 2. Next, we show that while (5) does not hold for paths of length 3 for S3, all length-3 paths ending

in S3 are still duplicable.

Observe that there is no path of any length from any state ∈ {S4, S5, S6, T4, T5, T6} to any state ∈ {Start, S1, S2, S3, T2, T3},

hence we only need the (labeled) adjacency matrix A2 of the subgraph induced by {Start, S1, S2, S3, T2, T3}. We

have

A2 =


0 x 0 0 0 0
0 x y 0 0 0
0 0 y z x 0
0 0 0 z 0 y
0 0 y 0 x 0
0 0 0 z 0 y

,

A2
2 =


0 x2 xy 0 0 0

0 x2 xy yz yx 0

0 0 y2+xy z2+yz x2+yx zy

0 0 0 z2+yz 0 y2+zy

0 0 y2+xy yz x2+yx 0

0 0 0 z2+yz 0 y2+zy

,
where rows and columns correspond to Start, S1, S2, S3, T2, T3, in that order. We observe that in A2 and

A2
2, in each of the columns corresponding to S1, S2, S3, T2, and T3, the terms in the diagonal entry contain

the terms appearing in that column, implying that (5) holds for all u ∈ {S1, S2, S3, T2, T3} and j ∈ {1, 2}, i.e.

DRAFT

10

for paths of length 1 and 2. By computing A3
2 using a computer, it can be checked that (5) holds for all states

u ∈ {S1, S2, T2, T3} for paths of length 3 as well.

For S3, there is a length-3 path S1−S1−S2−S3 with label 012, for which there does not exist a corresponding

path with the same label which starts and ends in S3. Due to this fact (5) does not hold for S3 for paths of length

3. But for this length-3 path, we can traverse S3 − S4 − S5 − S6 which also has label 012. Now, since S6 is a

superstate of S3, the path 012 starting in S1 and ending in S3 is duplicable. The other length-3 paths ending in S3

are 112, 122, 222 and 212. For each of these 4 paths, there exists a corresponding path with the same label that

starts and ends in S3 (see Figure 2). Hence, all length-3 path ending in S3 are duplicable. This completes the proof

of S ⊆ LR.

Now that we have shown S = LR, we use the Perron-Frobenius Theory [5], [9] to count the number of sequences

which can be generated via this deterministic finite automaton. We calculate the maximum absolute eigenvalue e∗

of the (unlabeled) adjacency matrix B of the strongly connected component of the finite automaton in Figure 2

(i.e. the subgraph induced by S4, S5, S6, T4, T5, T6). The matrix B can be obtained by replacing x, y, and z in A1

by 1,

B =

 1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

.
The maximum absolute eigenvalue of B is e∗ = 3+

√
5

2 ' 2.618034. By the Perron-Frobenius Theory, cap(S) =

log3 e
∗ ' 0.876036.

While the proof of the preceding theorem providing the exact capacity of the system under study is somewhat

involved, it is easy to see why the capacity is strictly less than 1. One can observe from the regular expression for

the finite automaton that it cannot generate a string which has 210, 021 or 102 as a substring, implying that the

system is not fully expressive. As we will see in Lemma 4, such systems cannot have capacity 1. It is worth noting

that the set of strings that avoid 210, 021, and 102 can be shown to have capacity ' 0.914838, which is slightly

larger than the capacity of the system of the theorem.

B. Expressiveness

We now turn to study the expressiveness of tandem duplication systems with bounded duplication length. For

completeness we start with binary systems, which is indeed the simplest case.

Lemma 3. The system S =
(
{0, 1}, s, T tan≤1

)
, for any s is not fully expressive.

Proof: The system cannot generate (01)
m as a substring of any string in S for 2m > |s|.

As shown in Example 1, to obtain fully expressive binary systems, it suffices to increase the maximum duplication

length to 2.

The next theorem is concerned with the expressiveness of S = ({0, 1, 2}, s, T tan≤3). Larger alphabets and larger

duplication lengths are considered in Theorems 3 and 4.

DRAFT

11

Theorem 2. Consider S = ({0, 1, 2}, s, T tan≤3), where s is any arbitrary starting string s ∈ {0, 1, 2}∗. Then, S is

not fully expressive.

Proof: A k-irreducible string is a string that does not have a tandem repeat αα, such that |α| ≤ k. For example,

01201, 01210, 02101, and 01210121 are 3-irreducible strings, while 01212, 021021 and 01112 are not 3-irreducible.

To prove the theorem, we identify certain properties in new 3-irreducible strings that may appear after a duplication

and then construct a 3-irreducible string that is neither a substring of s, nor it satisfies the properties that every

new 3-irreducible substring must satisfy.

Consider a duplication event that transforms a sequence z = uvw to z∗ = uvvw, where |v| ≤ 3. Let x be a

3-irreducible string of length at least 4 that is present in z∗ but not in z. The string x must intersect with both

copies of v in z∗ or else it is also present in z. Furthermore, it cannot contains vv, since otherwise it would not

be 3-irreducible. To determine the properties of x, we consider three case: |v| = 1, 2, 3. In what follows assume

a1, a2, a3 ∈ Σ.

First, suppose |v| = 1, say v = a1. In this case, a string x with the aforementioned properties does not exist as

all new substrings contain the square a1a1.

Second, assume |v| = 2, say v = a1a2. Then z∗ = ua1a2a1a2w and x either ends with a1a2a1 or starts with

a2a1a2.

Third, suppose |v| = 3, say v = a1a2a3. So z∗ = ua1a2a3a1a2a3w. Recall that |x| ≥ 4. The string x either

ends with a1a2a3a1 or a2a3a1a2, or starts with a2a3a1a2 or a3a1a2a3.

So for any new 3-irreducible substring x = x1 · · ·xj , xi ∈ Σ, j ≥ 4, we have x1 = x3, x1 = x4, xj = xj−2, or

xj = xj−3. Now consider the string (0121)`0, where ` > |s|. This sequences is 3-irreducible but does not satisfy

any of the 4 properties stated for x. Since it is not a substring of s and it cannot be generated as a new substring,

it is not a substring of any y ∈ S.

Next we consider the system
(
Σ, s, T tan≤k

)
, |Σ| ≥ 4 in Theorem 3. The proof of the theorem, uses the following

lemma, which states that the expressiveness of a system also has a bearing on its capacity.

Lemma 4. If a string system S with alphabet Σ is not fully expressive, then cap(S) < 1.

Proof: Since S is not fully expressive, there exists a z ∈ Σ∗ that does not appear as a substring of any y ∈ S.

Let |z| = m and µ = n−mb nmc. We have

|S ∩ Σn| ≤ (|Σ|m − 1)b
n
mc|Σ|µ.

Since m is finite, cap(S) < 1.

Theorem 3. Consider S =
(
Σ, s, T tan≤k

)
, where |Σ| ≥ 4, s is any arbitrary seed ∈ Σ∗ and k is some finite natural

number, then S is not fully expressive, which also implies cap(S) < 1.

Proof: Suppose z = uvw ∈ S, where |v| ≤ k, and let z∗ = uvvw be the result of a duplication applied to

z. Furthermore, suppose that x = x1 · · ·xj , where xi ∈ Σ and j > k, is a square-free substring of z∗ but not

DRAFT

12

z. Similar to the proof of Theorem 2, x intersects both copies of v but does not contain both. As a result, either

x1 = x1+i or xj = xj−i, for some 2 ≤ i ≤ k.

For definiteness assume Σ contains the symbols {0, 1, 2, 3}. The sequence 0t0, where t is a square-free sequence

over the alphabet {1, 2, 3} and |t| > max{|s|, k}, is not a substring of s and cannot be generated as a substring

since it does not satisfy the conditions stated for x above. Note that such a t exists since as shown by Thue [12],

for an alphabet size ≥ 3, there exists a square-free string of any length. Hence S is not fully expressive. The second

part of the theorem follows from Lemma 4.

Theorem 4. Consider S = ({0, 1, 2}, 012, T tan≤4), then S is a fully expressive string system.

Proof: Let S′ =
(
{0, 1, 2}, 012, T tan≤3

)
. Clearly, S′ ⊆ S. From the proof of Theorem 1, we know that the

automaton of Figure 2 gives the same language as S′. By checking this automaton, we find that all strings of

lengths 1, 2, and 3, except 021, 210, and 102, appear as a substring of some string in S′ and, as a result, some

string in S. To generate 021, 210, and 102 as substrings of some string in S, we proceed as follows:

012→ 01212→ 012101212

012→ 012012→ 01202012→ 012021202012

012→ 012012→ 01202012→ 012020102012

where the repeats are underlined.

We have shown that all strings of length 3 appear in S as substrings. Now we show the same for every string

w = w1w2w3w4 of length 4. To do so, we study 3 cases based on the structure of w:

I) First, suppose that w4 is the same as w1, w2, or w3. For generating such w as a substring, we first generate

w′ = w1w2w3 as a substring of some string and then do a tandem duplication of w3 if w4 = w3, of w2w3 if

w4 = w2 and of w1w2w3 if w4 = w1.

II) Suppose I) does not hold but w1 = w2 or w2 = w3. If the former holds, first generate w1w3w4 and then

duplicate w1, and if the latter hold, generate w1w2w4 and duplicate w2.

III) If neither I) nor II) holds, then w = 1210, up to a relabling of the symbols. In this case, we first generate

w′ = 0121 and then do a tandem duplication of w′ to get w. Note that w′ is of type considered in I).

Until now, we have shown that all strings w of length at most 4 appear as a substring of some string in S. We

use induction to complete the proof. Suppose all strings of length at most m appear as a substring of some string

in S, where m ≥ 4. We show that the same holds for strings of length m+ 1.

Consider an arbitrary w = a1a2 · · · amam+1. We now consider two cases:

i) If all three letters in the alphabet occur at least once in am−3am−2am−1am, then am+1 equals am−3, am−2,

am−1, or am, and w can be generated as a substring by a tandem duplication of some suffix of size ≤ 4 of

w′ = a1a2 · · · am. Note that by the induction hypothesis w′ can be generated as a substring of some string.

DRAFT

13

Σ s k fully expressive Reason

{0} 0 ≥ 1 Yes Trivial

{0, 1} arbitrary 1 No Lemma 3

{0, 1} 01 ≥ 2 Yes Example 1

{0, 1, 2} arbitrary ≤ 3 No Theorem 2

{0, 1, 2} 012 ≥ 4 Yes Theorem 4

|Σ| ≥ 4 arbitrary arbitrary No Theorem 3

TABLE III

EXPRESSIVENESS OF TANDEM DUPLICATION STRING SYSTEMS (Σ, s, T tan
≤k).

ii) If at least one letter in the alphabet does not occur in am−3am−2am−1am, then am−3am−2am−1am is a

sequence over binary alphabet and so it has a tandem repeat. Therefore w can be generated as a substring by

tandem duplication. Hence, we have proved the Theorem.

Table III summarizes the result of this subsection. It can be observed from the table that a change of behavior

in expressiveness occurs when the size of the alphabet increases to 4. If the size of the alphabet is 1, 2, or 3, for

sufficiently large maximum duplication length, the systems are fully expressive. However, if the size of the alphabet

is at least 4, then regardless of the maximum duplication length, the system is not fully expressive. This change is

related to the fact that for alphabets of size 1 and 2, all square-free strings are of finite length, but for alphabets

of size 3 and larger, there are square-free strings of any length. Specifically, in case ii) in the proof of Theorem 4,

we used the fact that the binary string am−3am−2am−1am has a tandem repeat. To adapt this proof for |Σ| ≥ 4,

we would need to show that the |Σ| − 1-ary string am−3am−2am−1am has a tandem repeat. But this is not in

general true, since there are square-free strings over alphabets of size at least 3 per Thue’s result [12] and indeed

we showed in Theorem 3, again using Thue’s result, that the system
(
Σ, s, T tan≤k

)
is not fully expressive for |Σ| ≥ 4

and any k.

IV. REGULAR LANGUAGES FOR TANDEM DUPLICATION STRING SYSTEMS

Regular languages for tandem duplication string systems are easier to study due to the fact that one can use tools

from Perron-Frobenius theory [5], [9] to calculate capacity. It was proved in [8] that for |Σ| ≥ 3 and maximum

duplication length ≥ 4, the language defined by tandem duplication string systems is not regular, if the seed contains

abc as a substring such that a, b and c are distinct. However, if the maximum duplication length is 3, this question

was left unanswered. In Theorem 5, we show that the language resulting from a tandem duplication system with

the maximum duplication length of 3 is regular regardless of the alphabet size and seed. Further, in Corollary 5 we

characterize the exact capacity of such tandem duplication string systems.

Theorem 5. Let S = (Σ, s, T tan≤3), where Σ and s are arbitrary. The language defined by S is regular.

Proof: We first assume that s = a1 · · · am, where ai are distinct. The case in which ai are not distinct is

DRAFT

14

Σ s k Capacity

{0, 1} 01 1 0

{0, 1} 01 ≥ 2 1

arbitrary arbitrary but not am for some a ∈ Σ 2 log|Σ| 2

{0, 1, 2} 012 3 log3
3+
√

5
2

arbitrary xabcy (x and y ∈ Σ∗, a, b and c ∈ Σ and a 6= b 6= c 6= a) 3 log|Σ|
3+
√

5
2

arbitrary No 3 consecutive symbols in the seed are all distinct and s 6= am for a ∈ Σ 3 log|Σ| 2

TABLE IV

CAPACITY VALUES FOR DIFFERENT TANDEM DUPLICATION STRING SYSTEMS (Σ, s, T tan
≤k).

handled later.

For 3 ≤ j ≤ m, let

Ra1···aj = a+
1 a

+
2

(
a+

1 a
+
2

)∗
a+

3

(
a+

2 a
+
3

)∗
Ba1a2a3

∗

a+
4

(
a+

3 a
+
4

)∗
Ba2a3a4

∗

· · ·

a+
i

(
a+
i−1a

+
i

)∗
Bai−2ai−1ai

∗

· · ·

a+
j

(
a+
j−1a

+
j

)∗
Baj−2aj−1aj

∗,

where, for a, b, c ∈ Σ,

Babc = a+(c+a+)
∗
b+(a+b+)

∗
c+(b+c+)

∗
.

We already know from Theorem 1 that S = (Σ, s, T tan≤3) with s = a1 · · · am is a regular language if m = 3. We

show that for m ≥ 4, S represents a regular language whose regular expression is given by Ra1a2···am . Let LR be

the language defined by Ra1a2···am . It suffices to show LR = S.

We first show that LR ⊆ S by proving Ra1a2···am
dd≤3−−−→ s. To do so, we show by induction that Ra1a2···ai

dd≤3−−−→

a1a2 · · · ai. First note that this holds for i = 3, from the proof of Theorem 1. Assuming that it holds for i, to show

that this also holds for i+ 1, where i ≥ 3. We write

Ra1a2···ai+1

dd≤3−−−→ Ra1a2···aia
+
i+1

(
a+
i a

+
i+1

)∗
Bai−1aiai+1

∗

dd≤3−−−→ a1a2 · · · aiai+1(aiai+1)
∗
Bai−1aiai+1

∗

dd≤3−−−→ a1a2 · · · aiai+1(ai−1aiai+1)
∗
or

a1a2 · · · aiai+1(ai−1ai+1ai−1aiai+1)
∗

dd≤3−−−→ a1a2 · · · aiai+1.

Here we have used the fact that cBabc
dd≤3−−−→ cabc which follows from (4). Hence, LR ⊆ S.

DRAFT

15

We now show that S ⊆ LR. Note that the seed s is in LR. It thus suffices to show that if x = pqr ∈ LR, then

y = pq2r ∈ LR, where p, q, r ∈ Σ∗ and |q| ≤ 3. We have the following five cases:

1) q = b, q = bb or q = bbb, for some b ∈ Σ: Since each symbol in the regular expression Ra1···am is followed

by a + or ∗ as a superscript, if q represents a run and pqr ∈ LR, then so is pq2r.

2) q = bc for distinct b, c ∈ Σ : Here q represents a length-2 path in the finite automaton for a regular expression

of the form (b+c+)
∗, b+(c+b+)

∗, b+Bcab, Babc, Bbca, Bbac, Bcab, Bacb or b+c+. We know from the proof of

Theorem 1 that bc is duplicable in (b+c+)
∗, Babc, Bbca, Bbac, Bcab and Bacb. For b+(c+b+)

∗ and b+Bcab,

we enter a state in the finite automaton for (c+b+)
∗ and Bcab respectively with incoming edge labeled by c.

In this state, we can again duplicate path bc and return back to the same state.

The finite automaton for b+c+ is followed by the finite automaton for (b+c+)
∗, so bc can be duplicated in

the automaton for (b+c+)
∗. The duplicate q = bc generated here in (b+c+)

∗ ends in some state C which is a

superstate of the state D in which the original q in pqr ended. Since C is a superstate of D, r can also be

generated from C. Hence pq2r ∈ LR.

3) q = bbc or bcc for distinct b, c ∈ Σ : Here q represents a length-3 path. We only consider q = bbc; the other

case is similar. If pbbcr ∈ LR, then pbcr ∈ LR as well, since every symbol in Ra1...am is followed by a + or

∗ as a superscript. Now we already know from case 2 above if pbcr can be generated then pbcbcr can also

be generated. Now from case 1 above, we also know if pbcbcr can be generated then pbbcbcr can also be

generated. Further using case 1 again, we can generate pbbcbbcr from pbbcbcr. Hence pq2r ∈ LR.

4) q = abc for distinct a, b, c ∈ Σ : Here q represents a length-3 path in the finite automaton for Bσ(abc) (σ(abc)

represents any permutation of a, b, c), a+(b+c+)
∗, a+Bbca, (a+b+)

∗
c+, Bdabc+, (a+b+)

∗
Bcab or a+b+c+.

We know from the proof of Theorem 1 that abc is duplicable in Bσ(abc). The same reasoning holds for a+Bbca

and (a+b+)
∗
Bcab.

The finite automaton for a+(b+c+)
∗, (a+b+)

∗
c+, Bdabc+ and a+b+c+ is followed by a finite automaton for

Babc, so q can be duplicated in the finite automaton for Babc. The duplicate q ends in some state E which is

the superstate of the state F in which the original q in pqr ended. Since, E is a superstate of F , therefore r

can also be generated from E. Hence pq2r ∈ LR.

5) q = cbc for distinct b, c ∈ Σ : Here q represents a length-3 path that can be generated by the finite automaton

for (c+b+)
∗, (b+c+)

∗, Bσ(cba), c+(c+b+)
∗ or c+b+(c+b+)

∗. We know from the proof of Theorem 1 that cbc

is duplicable in (c+b+)
∗
, (b+c+)

∗ and Bσ(cba). As the state where q in pqr ends lies in the finite automata

for either (c+b+)
∗
, (b+c+)

∗
orBσ(cba), it can be duplicated again the same finite automaton. The duplicate q

ends in the superstate of the state in which the original q in pqr ended. Hence pq2r ∈ LR.

This completes the proof of S ⊆ LR.

We have proved the statement of Theorem 5 assuming all ai’s in the seed s to be distinct. Now assume the symbols

of s are not distinct. We color the symbols of s so that they become distinct and obtain the system S̃ =
(

Σ̃, s̃, T tan≤3

)
.

Applying the preceding proof for distinct symbols to S̃, we find that S̃ is regular. Let h : Σ̃ → Σ be a mapping

DRAFT

16

that removes the colors. By [11], we have that S = h(S̃) is also regular.

An immediate corollary on the capacity of tandem duplication string system considered in Theorem 5 is

Corollary 5. If for S in Theorem 5, s contains abc as a substring such that a, b, and c ∈ Σ are distinct, then

cap(S) = log|Σ|
3+
√

5
2 ' 0.876036 log|Σ| 3. Otherwise, except for the seed of the form am, cap(S) = log|Σ| 2. If

s = am, cap(S) = 0.

Proof: By the Perron-Frobenius Theory [5], [9], for a regular language LR, the capacity is given by the log

of the maximum eigenvalue of the adjacency matrix of the strongly connected components. In the case when

abc occurs as a substring of the seed s such that a, b and c ∈ Σ are distinct, then the adjacency matrix of the

finite automaton for Babc (strongly connected component of the finite automaton for Ra1a2···am) has the maximum

eigenvalue. Therefore, the cap(S) = log|Σ|
3+
√

5
2 ' 0.876036 log|Σ| 3 (see proof of Theorem 1 for the adjacency

matrix).

For the case when no 3 consecutive symbols in the seed s are all distinct and s 6= am, the maximum capacity

component is a finite automaton only over 2 distinct symbols as in Figure 1. Hence the capacity is log|Σ| 2.

When seed s = am, there is at most one sequence of any given length in the system. Hence cap(S) = 0.

The following examples illustrate the statement of Theorem 5 and an application of its proof method.

Example 6. The string system S = ({0, 1, 2, 3}, 0123, T tan≤3) is regular by Theorem 5 and the regular expression

is given by

R0123 = 0+1+(0+1+)
∗
2+(1+2+)

∗
B012

∗3+(2+3+)
∗
B123

∗.

By Corollary 5, the capacity of this system ' 0.876036 log4 3 ' 0.694242. �

Example 7. The string system S = ({0, 1, 2}, 0112, T tan≤3) is regular by Theorem 5, and the regular expression is

given by

R0112 = 0+1+(0+1+)
∗
1+(1+1+)

∗
B011

∗2+(1+2+)
∗
B112

∗.

By Corollary 5, the capacity of this system is given by log3 2 ' 0.63093. �

When ai’s are assumed to be distinct it can be verified from the regular expression Ra1···aj in the proof of

Thereom 5 that the last occurence of ai is before the first occurence of ai+3 for any i = 1, 2, · · · , j − 3 for all

z ∈ S. Motivated by this, we state the following lemma regarding the structure of words in tandem duplication

systems with bounded duplication lengths

Lemma 8. Let s = a1 · · · am, where ai ∈ Σ are distinct. Then for any z ∈ S =
(
Σ, s, T tan≤k

)
and any i =

1, . . . ,m− k, the last occurrence of ai is before the first occurrence of ai+k and the gap between them is at least

k-1 (not counting ai and ai+k).

Proof: Fix the value of i. We prove the lemma by induction. Clearly, the lemma holds for z = s. Assuming

that it holds for x ∈ S, we show that it also holds for y = T (x) for any T ∈ T tan≤k .

DRAFT

17

Fig. 3. Finite automaton for S = ({0, 1, 2}, 012, T tan
≤2). The regular expression R = 0+1+(0+1+)

∗
2+(1+2+)

∗
.

Assume x = αaiβai+kγ, where α, β, γ ∈ Σ∗ and where ai and ai+k in this expression refer to the last occurrence

of ai and the first occurrence of ai+k in x, respectively. Since, by assumption |β| ≥ k− 1, the tandem duplication

T cannot contain a substring that contains both the last occurrence of ai and the first occurrence of ai+k. If the

tandem duplication T duplicates a substring of β, then the gap between the last ai and the first ai+k in y is larger

than that of x. In every other case, the gap stays the same. So the gap in y is at least as large as the gap in x,

which is |β| ≥ k − 1.

The following example follows for maximum duplication length 2 using the same idea as in Theorem 5

Example 9. The string system S = (Σ, a1a2 · · · am, T tan≤2) is regular. This can be proved using the same method

as used in the proof of Theorem 5. The regular expression Qa1a2···am for m ≥ 2 is given by

Qa1a2···am = a+
1 a

+
2 (a+

1 a
+
2)
∗
a+

3 (a+
2 a

+
3)
∗ · · · a+

m(a+
m−1a

+
m)
∗
.

�

The finite automaton for a special case of Example 9 with |Σ| = 3 is given in Figure 3.

Corollary 10. The capacity for S = (Σ, a1a2 · · · am, T tan≤2) is given by log|Σ| 2, except for the case in which seed

s = am for a ∈ Σ. In that case, the capacity is 0.

Proof: As in Proof of Corollary 5, By the Perron-Frobenius Theory, for a regular language, the capacity is

given by the log of the maximum eigenvalue of the adjacency matrix of the strongly connected components. Except

for the case when seed s = am, for all other cases ab (a, b ∈ Σ) occurs as a substring of the seed s such that

a 6= b. Hence, the maximum capacity component in the finite automaton for Qa1a2···am is (a+b+)
+ for which the

capacity is log|Σ| 2.

Our capacity results are listed in Table IV.

DRAFT

18

V. CONCLUSION

In this paper, we showed that for tandem duplication string systems with bounded duplication length if the

maximum duplication length is 3 or less, the language described by the string system is regular. Further, we

computed exact capacities for these systems. As a future work, we would like to calculate capacities for bounded

tandem duplication string systems with maximum duplication length greater than 3.

Using Thue’s result [12], we showed that a tandem duplication string system cannot be fully expressive if the

alphabet size is ≥ 4. However, for an alphabet of size 3 or less such systems can be fully expressive. This way, we

completely characterized fully expressive and non-fully expressive tandem duplication string systems with bounded

duplication length. As a future work, we would like to generalize the notion of expressiveness by counting the

asymptotic number of substrings of length n that a string system can generate. Mathematically, we define the

expressiveness Exp(S) of a string system S as

Exp(S) = lim sup
n→∞

log|Σ|En(S)

n
.

Here En(S) represents the number of substrings of length n that can be generated by S. It is notable here that

with this definition of expressiveness, a fully expressive string system S has Exp(S) = 1.

In this paper, we looked at questions related to the generation of a diversity of sequences from a seed given a

tandem duplication rule. One can also study the minimum number of steps required to deduplicate a given sequence

of length n to a squarefree seed and therefore define the notion of distance between a sequence and its seed given a

tandem duplication rule. It is notable here that the same sequence can be deduplicated to more than one squarefree

seed given a tandem duplication rule. For example: the sequence 012101212 can be deduplicated to 012 as well as

0121012 under bounded tandem duplication with maximum duplication length 4 in the following way

012101212
dd≤4−−−→ 01212

dd≤4−−−→ 012.

012101212
dd≤4−−−→ 0121012.

Here the underlined portion represents the repeat that is being deduplicated in a given step.

REFERENCES

[1] J. Dassow, V. Mitrana, and G. Paun, “On the regularity of duplication closure,” Bulletin of the EATCS, vol. 69, pp. 133-136, 1999.

[2] J. Dassow, V. Mitrana, and A. Salomaa, “Operations and language generating devices suggested by the genome evolution,” Theoretical

Computer Science, vol. 270, no.1 , pp. 701-738, 2002.

[3] F. Farnoud, M. Schwartz, and J. Bruck, “The Capacity of String Duplication Systems, ” in Proceedings of IEEE International Symposium

on Information Theory, pp. 1301-1305, 2014.

[4] J. W. Fondon and H. R. Garner,“Molecular origins of rapid and continuous morphological evolution,” Proceedings of the National Academy

of Sciences, vol. 101, no. 52, pp. 18 058 – 18 063, 2004.

[5] K. A. S. Immink, Codes for Mass Data Storage Systems. Shannon Foundation Publishers, 2004.

[6] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh et al., “Initial

sequencing and analysis of the human genome,” Nature, vol. 409, no. 6822, pp. 860-921, 2001.

[7] P. Leupold, C. Martin-Vide, and V. Mitrana, “Uniformly bounded duplication languages,” Discrete Applied Mathematics, vol. 146, no. 3,

pp. 301-310, 2005.

DRAFT

19

[8] P. Leupold, V. Mitrana, and J. M. Sempere, “Formal languages arising from gene repeated duplication,” in Aspects of Molecular Computing,

Springer, 2004, pp. 297-308.

[9] D. Lind and B. H. Marcus, An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, 1985.

[10] N. Mundy and A. J. Helbig, “Origin and evolution of tandem repeats in the mitochondrial DNA control region of shrikes (lanius spp.),”

Journal of Molecular Evolution, vol. 59, no. 2, pp. 250-257, 2004.

[11] J. Shallit, A Second Course in Formal Languages and Automata Theory. Cambridge University Press, 2008.

[12] A. Thue, “ über unendliche Zeichenreihen,” Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Cristiana 7, 1906.

[13] K. Usdin, “The biological effects of simple tandem repeats: lessons from the repeat expansion diseases,” Genome research, vol. 18, no. 7,

pp. 1011-1019, 2008.

DRAFT

	I Introduction
	II Preliminaries
	III Capacity and Expressiveness
	III-A Capacity
	III-B Expressiveness

	IV Regular Languages for Tandem Duplication String Systems
	V Conclusion
	References

