A Caltech Library Service

Capturing Plasmon-Molecule Dynamics in Dye Monolayers on Metal Nanoparticles Using Classical Electrodynamics with Quantum Embedding

Smith, Holden T. and Karam, Tony E. and Haber, Louis H. and Lopata, Kenneth (2017) Capturing Plasmon-Molecule Dynamics in Dye Monolayers on Metal Nanoparticles Using Classical Electrodynamics with Quantum Embedding. Journal of Physical Chemistry C, 121 (31). pp. 16932-16942. ISSN 1932-7447. doi:10.1021/acs.jpcc.7b03440.

[img] PDF - Accepted Version
See Usage Policy.

[img] PDF (Detailed procedures on setting up flux monitors to calculate absorption and scattering cross sections from FDTD) - Supplemental Material
See Usage Policy.


Use this Persistent URL to link to this item:


A multiscale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete three-level quantum systems is used to simulate the coupled dynamics and spectra of a malachite green monolayer adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP within the main FDTD framework and a three-level quantum description for the molecule via a Maxwell/Liouville framework. To avoid spurious self-excitation, each quantum molecule has its own auxiliary FDTD subregion embedded within the main FDTD grid. The molecular parameters are determined by fitting the experimental extinction spectrum to Lorentzians, yielding the energies, transition dipole moments, and the dephasing lifetimes. This approach can be potentially applied to modeling thousands of molecules on the surface of a plasmonic NP. In this paper, however, we first present results for two molecules with scaled oscillator strengths to reflect the optical response of a full monolayer. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique can be generalized to any nanostructure/multichromophore system, where the molecules can be treated with essentially any quantum method.

Item Type:Article
Related URLs:
URLURL TypeDescription Information
Smith, Holden T.0000-0001-5487-8431
Karam, Tony E.0000-0002-1244-5141
Haber, Louis H.0000-0001-7706-7789
Lopata, Kenneth0000-0002-9141-684X
Additional Information:© 2017 American Chemical Society. Received: April 11, 2017; Revised: July 19, 2017; Published: July 19, 2017. This research was supported by the Louisiana Board of Regents Research Competitiveness Subprogram under contract number LEQSF(2014-17)-RD-A-03. H.T.S. was supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897. K. L. acknowledges support from the 2015 Ralph E. Powe Junior Faculty Enhancement Award from Oak Ridge Associated Universities. We would like to thank Rami Khoury for valuable discussions. Contributions by Jelaine Cunanan are also acknowledged, who was supported by National Science Foundation REU award #ACI-1560410. The authors declare no competing financial interest.
Funding AgencyGrant Number
Louisiana Board of RegentsLEQSF(2014-17)-RD-A-03
Oak Ridge Associated UniversitiesUNSPECIFIED
Issue or Number:31
Record Number:CaltechAUTHORS:20170720-093226043
Persistent URL:
Official Citation:Capturing Plasmon–Molecule Dynamics in Dye Monolayers on Metal Nanoparticles Using Classical Electrodynamics with Quantum Embedding Holden T. Smith, Tony E. Karam, Louis H. Haber, and Kenneth Lopata The Journal of Physical Chemistry C 2017 121 (31), 16932-16942 DOI: 10.1021/acs.jpcc.7b03440
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:79246
Deposited By: Tony Diaz
Deposited On:20 Jul 2017 18:17
Last Modified:15 Nov 2021 17:46

Repository Staff Only: item control page