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Explaining extreme ground motion in Osaka
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Abstract Despite being 770 km away from the epicenter, observed ground motions due to the Tohoku
earthquake in the Osaka Basin were unexpectedly large, with an amplification of more than a factor of 20
compared to immediately outside the basin, and including 2.7 m peak-to-peak roof displacements at one
high-rise building. The local ground motions exceeded expectations based on standard computations of site
response by a factor of 3, predicted frequencies of peak acceleration were off by at least 50%, and such
discrepancies have not yet been explained quantitatively. Here we show that utilizing semianalytic theory for
surface-wave amplification, we are able to accurately predict both the amplitudes and frequencies of large
ground amplification in the Osaka Basin using only knowledge of the local one-dimensional structure.
Comparison between this simple prediction and observed amplification was not expected to be so favorable
and suggests that simple one-dimensional surface-wave site amplification factors can be useful in the
absence of full three-dimensional wave propagation simulations. Such surface-wave amplification factors can
be included in addition to the standard measures of site-specific site amplification and should help explain
strong ground motion variability in future large earthquakes that shake Osaka Basin and elsewhere in

the world.

Plain Language Summary Using the local structure to predict surface-wave amplification
accurately explains extreme ground motion amplification in Osaka Basin during the 2011 Tohoku
earthquake, whereas such ground motions have been unsuccessfully modeled with standard measures of
site amplification. The results demonstrate how necessary it is to include a measure of surface-wave
amplification if one is to accurately predict earthquake ground motions. The approach can potentially be
incorporated into new site-specific earthquake hazards analyses in nearly an identical way to which existing
approaches to site amplification are already being used.

1. Introduction

The 2011 M9.1 Tohoku-Oki earthquake was one of the largest earthquakes to occur this century [Simons et al.,
2011; Nettles et al,, 2011] and caused ground motions that exceeded accelerations of 2 m/s? in Tohoku
prefecture [Kurahashi and Irikura, 2011; Irikura and Kurahashi, 2012]. Surprisingly, the Tohoku earthquake also
caused strong ground motions in Osaka Basin, 770 km away from the epicenter, the most populated area in
western Japan [Sato et al., 2012; Iwata et al., 2016]. While it is well known that the Osaka Basin is a deep sedi-
mentary basin that is expected to locally amplify earthquake ground motions [e.g., Sato, 1990; Pratt et al.,
2003; Miyakoshi et al., 2013; Yoshimoto and Takemura, 2014], the estimated amplification based on standard
site-specific vertically propagating shear-wave site amplification calculations [e.g., Kanai, 1952; Satoh et al.,
1995; Thompson et al., 2012] severely underestimated the ground motions compared to what was observed.
Perhaps most importantly, long-period ground motions (3—-10 s) were amplified by a factor of more than 20
(Figures 1 and 2) and underestimated by a factor of 3 using standard predictions of site-specific site amplifi-
cation (see Figure 3, blue line), leading to significantly stronger shaking of high-rise buildings than expected.
The Sakishima building, in particular, which was instrumented from the ground to the top floor, had peak-to-
peak roof displacements of 2.7 m, due to much larger long-period (~6 s) ground motions near the resonant
frequency of the building than expected [Kashima et al., 2012; Kanamori, 2014]. With the possibility of great
earthquakes at the much closer Nankai and Tonankai subduction zones, the significant and as yet still
unexplained underestimate of ground motion in the Osaka Basin due to the Tohoku earthquake is alarming
and underscores the importance of better quantitative understanding how much ground motions are
amplified there.
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Figure 1. Seismic records from the Tohoku-Oki earthquake, filtered between 0.143 and 0.167 Hz (6-7 s, i.e., in the frequency
range of peak amplification), observed at OSKH04 (upper panels) and OSKHO02 (lower panels) for the (a) transverse,

(b) radial, and (c) vertical components of motion. Ratios refer to the observed filtered peak amplitudes at OSKHO02 divided
by those at OSKHO4. (d) Map of the Osaka Basin, showing stations OSKH02 and OSKH04.

2. Theory

Here we show that a simple semianalytical estimate of surface-wave ampilification [Bowden and Tsai, 2017]
adequately explains the amplification of ground motions in Osaka Basin. This estimate of amplification based
on the local one-dimensional (1-D) velocity and density structure at a known site relative to the ground
motion at a reference site of a different 1-D structure is similar in style to the site amplification calculations
that are done by propagating shear waves vertically through a 1-D structure but explicitly accounts for
surface-wave propagation rather than vertically incident shear-wave propagation. Such vertically propagat-
ing calculations of site amplification are currently used in some site-specific ground motion prediction
equations (GMPEs) [e.g., Cramer, 2003; McGuire and Toro, 2008; Stewart et al., 2014], but the estimate
described here is for surface waves (both Love waves and Rayleigh waves) that propagate laterally (through
a smoothly varying medium) rather than for vertically propagating shear waves. While such estimates will
never be as accurate as those produced from a full three-dimensional (3-D) wave propagation simulation
[e.g., Bard and Bouchon, 1980; Olsen, 2000; Graves et al., 2010; Iwaki and Iwata, 2011], the simplicity of the
calculation, the generality in which it can be utilized, the straightforward ability to evaluate one distinct cause
of amplification, and the physical intuition that is gained from such a description makes it useful as an
initial estimate.

Our calculation of surface-wave site amplification is based on the simple theory described by Bowden and Tsai
[2017], which calculates the relative amplitudes of surface waves by imposing conservation of surface-wave
energy flux (assuming no scattering). This assumption is a clear simplification of reality and specifically
excludes the effect that lateral basin boundaries can have in reflecting waves and creating additional
resonances but accounts for resonant-type behavior inherent in a 1-D (slow velocity) basin structure. The
surface-wave site amplification term can be calculated as
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Figure 2. Observed spectral amplification ratios for OSKHO2 relative to ~ Motion hazards for the first time by
reference site OSKHO4 from the Tohoku-Oki earthquake for the Bowden and Tsai [2017].
(a) transverse, (b) radial, and (c) vertical components of motion recorded

from the Tohoku-Oki earthquake. Previous ground motion hazards work

has noted that surface waves are ampli-

fied differently than direct S waves [e.g.,
Pratt et al, 2003; Arai and Tokimatsu, 2005; Furumura and Hayakawa, 2007; Miyakoshi et al, 2013;
Yoshimoto and Takemura, 2014], but previous authors have not been able to calculate how potentially dama-
ging surface-wave amplitudes are transformed solely due to surface-wave propagation from one 1-D struc-
ture (e.g., a reference structure) to another 1-D structure (e.g., within the basin of interest) and instead
have assumed excitation and propagation of surface waves within a single 1-D structure (or have performed
full 2-D/3-D simulations). As such, previous calculations of 1-D surface-wave amplification [e.g., Miyakoshi
et al., 2013; Yoshimoto and Takemura, 2014] do not allow one to compare the surface-wave amplitudes within
a basin to amplitudes prior to entering the basin as is typically desired and which is accomplished with the
theory of Bowden and Tsai [2017]. Finally, we note that the theory relied on is more general than the elliptical
valley theory of Trifunac [1971] and accounts for both Rayleigh and Love waves rather than just incident
SH waves.
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Figure 3. (a) Predicted spectral amplification ratios for OSKHO2 relative to reference site OSKHO04 for the three fundamen-
tal-mode surface wave components (Love in purple, horizontal-component Rayleigh in yellow, and vertical-component
Rayleigh in red) as well as for the standard vertically propagating shear wave (in blue). (b) One-dimensional velocity profiles
for OSKH02 (solid black) and OSKHO04 (dashed red) used for the predictions shown in Figure 3a.

3. Results

Application of this theory to fundamental-mode Love waves (transversely polarized shear waves) and
Rayleigh waves (vertical and longitudinal polarizations) in the Osaka Basin is shown in Figure 3. We use struc-
ture at the OSKHO02 site in the middle of the Osaka Basin as the site of interest and structure at the OSKH04
site just outside the Osaka Basin as the reference site [Fujiwara et al., 2009; Japan Seismic Hazard Information
Station, 2017] to compute the three components of surface-wave site amplification. OSKH02 and OSKH04
are at azimuths of 243 and 242° relative to the Tohoku earthquake epicenter, respectively, and separated
by approximately 30 km. As shown, the peak Love-wave amplification is approximately 20 at periods of
6-8 s, with a broader range of periods (1.3-9 s) that also have significant amplification. The Rayleigh-wave
amplification is also large, with both the vertical and horizontal components reaching amplification factors
above 10in the 1-10 s period range. For comparison, the “standard” site amplification factor for the same pair
of sites due to vertically propagating shear waves is also shown in Figure 3, which has maximum amplifica-
tions of only 6. It is clear from this comparison that while the standard site amplification factor cannot explain
the large ground motions shown in Figure 2a that were amplified by a factor of 20, the Love-wave site ampli-
fication approximately explains both the amplitude and period of the observed ground motions, despite the
simplicity of the calculation. While the roughness of the observed spectra, including the sharpness of the
6-8 s spectral peak, is not reproduced by the surface-wave predictions, which display a broader and
smoother amplification spectrum, the simple predictions do a surprisingly good job at fitting a smoothed
version of the observed spectra. (The observed roughness may be due to complexities in wave propagation
that are not accounted for.) Moreover, the other components of motion (Figures 1b and 1c) are also approxi-
mately explained by the Rayleigh-wave site amplification terms, with observed spectral amplifications of
nearly 20 on the other components (Figures 2b and 2c), and a higher frequency of maximum amplification
on the vertical compared to horizontal component. It may also be noted that both the surface-wave and stan-
dard site amplification terms could be improved by using improved 1-D velocity structures. For example, it is
well known that the standard site amplification peak can be moved to a more realistic period of 6.5 s from the
peak at 8 s with slight modifications to the velocity structure [Iwaki and Iwata, 2011; Asano et al., 2016].

While not the focus of this contribution, we note that the simple analytic theory described here for estimating
surface-wave amplification also explains much of the long-period (3-15 s) amplification observed in other
sedimentary basins (see supporting information), including amplification of the 2004 Chuetsu (Niigata)
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earthquake in the Kanto Basin [Furumura and Hayakawa, 2007; Denolle et al., 2014; Kennett et al., 1995] and
amplification of the 2010 El Mayor-Cucapah earthquake in the Los Angeles Basin [Bowden and Tsai, 2017;
Lee et al., 2014]. Thus, while some of the observed amplification may be attributed to other effects, such as
lateral scattering and complex basin reflections, a considerable fraction can be attributed directly to the
1-D surface-wave effect described here. Finally, we note that higher-order mode contributions can also be
calculated (see supporting information).

4. Conclusions

We have shown that a simple semianalytical theory for surface-wave amplification adequately explains the
extreme amplifications of a factor of 20 in the Osaka Basin, while standard measures of site-specific site ampli-
fication do not. As such, these 1-D surface-wave site amplification factors are of clear use for earthquake
hazards prediction, and the simplicity with which such factors can be computed allows them to potentially
be included in site-specific GMPEs without needing to perform a full 3-D seismic wave propagation simula-
tion. Applications of such corrections to earthquake ground motion predictions in the Osaka Basin and else-
where are crucial particularly due to the possibility of future regional megathrust earthquakes that will have
strong surface waves.
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