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Kinetic simulations of the interruption of large-amplitude shear-Alfvén waves in a high-3 plasma
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Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear “interruption” of standing and
traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy
removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes
0B, /By 2 B~'/? (where B is the ratio of thermal to magnetic pressure). We use highly elongated domains to
obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the ampli-
tude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly
affected by the excitation of oblique firechose modes, which transition into long-lived parallel fluctuations at
the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are
also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demon-
strate that collisionless plasmas cannot support linearly polarized Alfvén waves above 6B, /By ~ 87'/2. They
also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance
of velocity-space instabilities in regulating plasma dynamics at high 8, and (ii) how nonlinear collisionless
processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale
fluctuations, without the need for a scale-by-scale turbulent cascade.

Introduction.—Shear-Alfvén (SA) fluctuations are funda-
mental to magnetized plasma dynamics [1-3]. They are rou-
tinely observed in both laboratory and space plasmas [4, 5],
and are the basis for modern theories of magnetohydrody-
namic (MHD) turbulence [6-9]. They are also uniquely robust
among plasma waves: their large-scale linear dynamics are
nearly unmodified across both kinetic and fluid plasma mod-
els [2].

The purpose of this Letter is to explore, using hybrid-
kinetic simulations, a notable exception to this robustness. We
focus on linearly polarized large-scale SA waves above the
“interruption limit” [10, 11],

0B, _12

By B, 6]
in a collisionless plasma. Here 8 = 87py/B? is the ratio of
thermal pressure (pg) to magnetic pressure (with B the field
strength), By is a background magnetic field, and 6B, is an
Alfvénically polarized field perturbation. As explained below,
SA perturbations above the limit (1) rapidly (in less than one
Alfvén time) transfer their mechanical energy from the largest
scales to plasma microscales and thermal energy, without the
help of a turbulent cascade.

The interruption of SA perturbations occurs due to the self-
generation of pressure anisotropy, Ap = p, — p; (where p,

and p; are the thermal pressures in the directions perpen-
dicular and parallel to B). Because particles’ magnetic mo-
ments, 4 = mv2 /2B, are approximately conserved, pressure
anisotropy is created whenever B changes in a weakly colli-
sional plasma. If 8 > 1, the anisotropic momentum stress
V- (ApBB/B?) can be as important as, or even dominate over,
the magnetic tension V-(BB)/4nr. This suggests that collision-
less dynamics can differ significantly from MHD predictions,
even for large-scale perturbations satisfying A > p;, 7 > Ql.‘l
(where p; and Q; are the ion gyroradius and gyrofrequency,
respectively).

“Interruption” occurs when the changing B in a linearly po-
larized SA oscillation creates an anisotropy Ap = —B?/4n,
which exactly offsets the magnetic tension and triggers the
firehose instability on ion gyroscales [12—-15]. Even at small
wave amplitudes (if B2 < 6B, /By < 1), interruption is
a nonlinear effect. Here, we study this behavior using hy-
brid kinetics (kinetic ions, fluid electrons), in three velocity
and two spatial dimensions (the latter required to capture the
oblique firehose instability). We focus on parallel standing
or traveling SA waves in the limit of large scale separations,
Amfp > Aa > p; (where Apg, and A4 are ion mean-free path
and the SA wavelength, respectively), as relevant to the intra-
cluster medium [16, 17], hot accretion flows [18], and the in-
ertial range in the solar wind [5, 19, 20]. Although the oblique
firehose instability threshold differs slightly from the parallel
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FIG. 1. Out-of-plane magnetic perturbation, 6B,/By, in a standing shear-Alfvén perturbation at # = 0, t = 0.087,4, t = 0.374, and ¢ = 0.674

(T4 = 10* Q7! is the linear Alfvén period).

firehose threshold (Ap = —B?/4m) [15, 21], in what follows,
we organize our discussion around the latter because of its key
importance for large-scale SA waves.

Hybrid-kinetic method.—By treating the electrons as an
isothermal massless neutralizing fluid, the hybrid method re-
moves electron kinetic scales, plasma oscillations, and light
waves from the Vlasov-Maxwell equations, reducing simula-
tion cost while retaining kinetic ion dynamics [22, 23]. The
equations consist of (i) the collisionless Vlasov equation for
the ion distribution function f;(x, v, ),

of; ofi 4 1 ofi _ .
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(i1) Faraday’s law for the magnetic field,
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and (iii), a generalized Ohm’s law for the electric field,
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Here, ¢; and m; are the ion’s charge and mass, E is the elec-
tric field, c is the speed of light, and T, is the electron tem-
perature. The ion density n;(x) = [ dv f; and bulk velocity
u;(x) = [dvvf; are calculated from f;, thus closing the sys-
tem.

We use the second-order-accurate particle-in-cell (PIC)
code, Pegasus [24], to solve Egs. (2)-(4). We employ the df
method [25], which evolves 6 f = f — fy rather than f itself,
and take f; to be an isotropic Maxwellian. This reduces par-
ticle noise by ~ (6f/f), making it optimal for simulation of
high-S plasmas, where very small (< 1/8) deviations from a
Maxwellian distribution must be accurately resolved.

Simulation set up.—We consider two specific initial con-
ditions, which initially have variation only on large scales.
These are (i) a parallel standing SA wave initiated by a mag-
netic perturbation, and (ii) a parallel traveling SA wave. We
focus on the standing wave because of its relevance to situa-
tions where (dB/dt) # 0, as would occur in Alfvénic turbu-
lence (here (-) represents a spatial average). Although also

important, we leave study of initial Alfvénic velocity per-
turbations to future work, due to the larger simulation do-
mains required to capture the dynamics of the mirror instabil-
ity [26, 27]. The initial ion distribution function is an isotropic
Maxwellian with T, = T; and we impose a background mag-
netic field B = Byx, with 8; = 8an;T; /Bg = 100. Each do-
main is of width 50p; in the y direction and much longer (up
to L, = 1000p;) in the x direction, to maximize scale separa-
tion between the SA wave and microscale dynamics. We use
a spatial resolution of Ax = 0.3125p; and Ny, = 4096 par-
ticles per cell (ppc) for the two main simulations in this Let-
ter. We initialize with a sinusoidal perturbation of wavelength
As = L, in the out-of-plane field, 6B, = —6b By cos(2nx/1,),
and, for the traveling wave, a corresponding velocity perturba-
tion, du, = 6bv4 cos(2mx/A4). In both cases, we take the wave
amplitude 6b = 0.5, which is well above the interruption limit
Obmax = 2872 [10]. Within the MHD model, these initial
conditions would create continuing sinusoidal SA oscillations
of period 74 = 21/ws = VBida /,oiQi‘1 (modified slightly by
compressibility [11]).

Due to the wide range of time and space scales involved
in this problem, careful numerical tests are crucial. In ad-
dition to previous Pegasus tests [24], we performed tests of
the numerical parameters required to accurately propagate
long-wavelength linear SA waves (with A4 /p; = 50 to 1000,
0b = 0.05). These tests demonstrated that high ppc (Nppe «
Aa/pi) is required for large wavelengths, due to the build up
of PIC noise over long simulation times. For production runs,
Nppe = 4096 was chosen based on these requirements. We
also tested the convergence (with Npp.) of nonlinear standing
waves at A4/p; = 250, and their dependence on A4/p; over
the range A4/p; = 125 to 1000. We observed broadly similar
dynamics over this range.

Shear-Alfvén standing wave.—Figure 1 shows the spa-
tiotemporal evolution of 6B, for a standing SA wave with
Aa/pi = 1000, wy/Q; = 27 x 107, The pictured snapshots
are chosen to illustrate four distinct phases of nonlinear wave
evolution. These are: (i) initial field decrease, which creates a
negative anisotropy Ap < —B?/4n, nullifying magnetic ten-
sion and triggering the firehose instability; (ii) eruption of
oblique firehose modes [14, 15, 28] which push the wave back
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FIG. 2. Evolution of the standing wave from Fig. 1: we show the y-
averaged 0B, /By (black line, left axis), du,/v4 (blue dot-dashed line,
left axis), and firehose parameter 47rAp/B? (red, right axis; the dotted
red line shows Ap = —B?/4r), at the times illustrated in Figs. 1(b)-
(d). The background color shows the effective collisionality v./wx
caused by particle scattering from microscale fluctuations, measured
over the time intervals ¢/7, € [0.07,0.15] (a), t/T4 € [0.2,0.4] (b),
and t/t4 € [0.55,0.65] (c). In (b), we also show (dashed lines)
0B./By and 4wAp/B? for a decaying SA standing wave in a Bra-
ginskii model at 8 = 100, v./w4 = 10 (du,/v4 is omitted for clarity).

above 4nAp/B?> = —1; (iii) decay of oblique firehose modes
into k; = 0, kyp; ~ 1 Alfvénic fluctuations that strongly scat-
ter particles and cause the large-scale 0B, to decay; and (iv),
dissolution of the wave into SA waves below the limit (1),
which oscillate freely without causing the plasma to reach the
firehose limit. Of these stages, (iii) is notably different from
the predictions of 1-D Landau-fluid (LF) models [10, 11].
Figure 2 shows 1-D (y-averaged) wave profiles. As mag-
netic tension causes 6B, (and thus B) to decrease, Ap de-
creases also, reaching Ap = —B?%/4x at t = 0.0714. Due to
heat fluxes smearing Ap along B [11], Ap/B? is nearly homo-
geneous in space [Fig. 2(a)], and oblique firehose modes erupt
suddenly across the entire wave at once [Fig. 1(b)]. At this
point the large-scale wave has no restoring force because mag-
netic tension is nullified by the anisotropic-pressure stress.
However, with B now increasing due to the fast-growing fire-
hose modes, Ap increases quickly above Ap > —B?/4x (by
t = 0.0857,4), where it stays until the SA wave has decayed.
The subsequent evolution of the oblique firehose modes
controls the large-scale SA wave dynamics. If these resid-
ual modes (now in the stable regime) scatter particles suffi-
ciently fast, over sufficiently long times, 6B, can decay with
Ap =~ —B?/4n; if they do not (e.g., if they are resonantly
damped [18, 26, 30]), 6B, cannot decrease further, as sug-
gested by LF calculations [10]. The anisotropy dynamics,
which controls the firehose modes’ evolution, varies in space.
Near the wave nodes, where S = |Vu| ~ 0 and 6B, ~ 0,

FIG. 3. Plasma heating due to the standing wave in Fig. 1.
We compare the rate of change of thermal energy o0,Ey =
f dxn; Y, 0,(I1,./n;)/2 (black line; I, is the pressure tensor), with
mechanical heating - f dx Y, I1,,V,u, (green dashed line), heating
from the large-scale SA wave [dx Ap b,b,8,i, (blue dot-dashed line;
here ~ denotes a filter that smooths fluctuations with kp; > 0.25), and
the approximate viscous heating [29] from the SA wave after inter-
ruption v;! [dx py(hb.0,@1.)? (red dotted line; we use v./ws ~ 10
as in Fig. 2).We normalize by Ey, and use units of 74 (note the small
rates, due to the high 8). The initial d,Ey, < 0 is due to the creation
of E fluctuations (because of particle noise).

the anisotropy is not driven by a large-scale dB/dt and can
freely decay [26, 31-33]. Near the wave antinodes, where
S ~B 2wy ~ 6x1075Q; [11] and 6B, # 0, the anisotropy is
continuously driven by the decreasing field [26, 28, 34-36].

Surprisingly, it is the small-scale modes at the SA wave
nodes—the least firehose-unstable regions (with 47Ap/B* ~
—0.7)—that cause the strongest particle scattering. This is
illustrated by the background color in Fig. 2, which shows
the effective ion collisionality v./w,4 as a function of space,
measured by calculating the time it takes for ¢ to change by
a factor of 1.2 for 2048 sample ions [37]. There is a clear
change from weak homogenous scattering during the initial
excitation of oblique firehose modes, to stronger scattering,
localized around the SA wave nodes, at later times. The cause
for this behavior is the decay of oblique firehose modes into
kyoi ~ 1, k. ~ 0 Alfvénic modes, which can be seen clearly in
Fig. 1(c). These parallel modes decay slowly (they are nonlin-
early stabilized against cyclotron damping [38, 39]), as indi-
cated by their presence after the large-scale SA wave has de-
cayed and Ap ~ O [Fig. 1(d)]. Surprisingly, oblique firechose
fluctuations at the wave antinodes contribute less to the scat-
tering, even though they are continuously driven by a decreas-
ing field. Scalings in [26] suggest that growing firehose modes
in this shear flow would cause strong particle scattering after a
secular growth phase of length # ~ (Q,-ﬁ/S)”ZQi‘1 ~ 0.12574;
however, this does not occur here because the anisotropy driv-
ing, dAp/dt ~ —|S|po, is balanced by scattering from the SA
wave nodes.

The particle scattering governs the subsequent evolution
of the large-scale SA wave. Because wy < v, < Q,
the wave dynamics are no longer collisionless; they are in-
stead in a regime that resembles the Braginskii collisional
limit [40] and the SA wave behaves as discussed in [11],
Sec. 4.1. We illustrate the qualitative similarity in Fig. 2(b),
which also shows 6B. and 47Ap/B? for a wave governed



FIG. 4. Out-of-plane magnetic perturbation 6B,/B, for a SA travel-
ing wave with 1, = 250p; at a succession of times in its evolution.
Note the significant decay of the wave by 7 = 374.

by the Braginskii model (including heat fluxes; see App. B
of [11]). The “humped” shape of the SA wave occurs be-
cause the perturbation splits into regions where 47Ap ~ —B?
and doB,/dt < 0 (around the antinodes), and regions where
4nAp > —B? and 6B, = 0 (these spread from the nodes). The
wave decay rate is determined by v, [11], which is sufficiently
large [v./ws ~ B(OB, /Bp)?] that the wave decays within one
Alfvén time. Note, however, that the dynamics are not identi-
cal to the Braginskii model: v, # 0 only after the excitation of
firchose modes. We note parenthetically that the wave decay
generates a 0B, perturbation (see Fig. 1). Unfortunately, at
this scale separation, it is unclear whether this effect is appre-
ciably stronger than the 6B, generation that occurs in a linear
SA wave due to gyroviscosity.

As the large-scale SA wave decays, it heats the plasma.
This process does not involve a turbulent cascade, but rather
a direct transfer of large-scale mechanical energy into ther-
mal energy. This heating is essentially viscous dissipation of
the wave, with particle scattering from microscale fluctuations
controlling the effective viscosity and making the process irre-
versible. In Fig. 3, we compare the measured 0, Ey, with heat-
ing due to the SA wave decay. Although the agreement is not
perfect, due to spurious grid heating [41] (tests at A4 /p; = 250
show that this improves with ppc or reduced A4 /p;), the vari-
ous stages of wave decay are evident; e.g., the sudden drop in
0,Ey, as firehose fluctuations grow at /74 ~ 0.08, followed by
heating as the large-scale 0B, decays. Fig. 3 also shows that
the overall energetics are well captured by considering only
the large-scale dynamics, or by using the same effective col-
lisionality as in Fig. 2(b). This supports closure models that
approximate the effects of microinstabilities on large-scale dy-
namics without having to resolve the microscales.

Shear-Alfvén traveling wave.—Figures 4 and 5 illustrate the
spatiotemporal evolution of the nonlinear SA traveling wave
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FIG. 5. (a) Scattering rate v./w, of the traveling wave in Fig. 4 as a
function of x and 7. The grey lines follow the wave fronts (this is close
to where Ap is most negative). (b) Time evolution of (47rAp/B?).
The shaded region indicates the range of 4mAp/B? seen across the
wave profile, to illustrate when the wave can excite firchose modes.
(c) Energy of the magnetic perturbation Esz = [ dx §B2/8x (blue)
and kinetic energy Ej;, = f dx péug /2 (red), normalized by E; =
f dx Bg /8n. In panels (b) and (c), we also plot the results from an
equivalent Landau-fluid simulation [11] (dashed lines), for compari-
son.

with 44 = 250p;. The initial dynamics differ from SA stand-
ing waves because (dB/dt) = 0 for an unperturbed travel-
ing wave, implying that global (spatially constant) pressure
anisotropy is created only as the wave decays [10]. The evo-
lution broadly follows the expectations of [10, 11], proceed-
ing in 4 stages: (i) the spatially dependent dB/dt creates an
anisotropy Ap(x) ~ B'/26B2 sin(2kx); (ii) this Ap damps the
wave at a rate ~ f dx ApdInB/dt [11, 42, 43] causing (B) to
decrease and creating a global anisotropy (Ap) < 0; (iii) the
wave consequently slows down, with ou, decaying faster than
0B, ; and (iv) the wave excites oblique firehose modes, which
evolve and scatter particles in a similar manner to the standing
wave, causing the large-scale SA wave to decay.

These stages can be seen clearly in Figs. 4 and 5. In particu-
lar, note the global (Ap) < 0 that quickly develops [Fig. 5(b)]
and the faster decay of kinetic compared to magnetic energy
at early times [Fig. 5(c)]. After the initial drop in Ap, by
t/T4 = 0.3, the wave starts exciting oblique firehose modes.
In contrast to the standing wave, this occurs only in localized
regions around the wavefronts (i.e., near where 6B, = 0), be-
cause |dB/dt| (and thus |Ap|) is largest in these regions [see,
e.g., Fig. 4(c) at x/p; = 110 and the shading in Fig. 5(b)]. Fol-
lowing this excitation of firehose modes, Fig. 5(a) shows that
the particle scattering is strongest behind the wavefronts. We
interpret this as being due to the transition of oblique firechose
modes into long-lived kyp; ~ 1 Alfvénic modes, as occurred
for the standing wave [these are clearly visible in Fig. 4(d)].



The scattering rate v./wy, is significantly lower than for the
standing wave, which is likely because the firehose modes are
excited only briefly in isolated regions of space, and the trav-
eling wave’s 0B, decays correspondingly more slowly. At ear-
lier times, the large-scale SA wave evolution matches well the
predictions from a 1-D LF model at 8; = 100 [11] (dashed
lines in Fig. 5). At later times, particle scattering allows
the large-scale 0B, to decay (maintaining (Ap) < 0 requires
(dB/dty < 0if v, # 0), and the wave’s final stages are similar
to the standing wave.

Discussion.—We have presented hybrid-kinetic simulations
of large-amplitude SA waves in a collisionless plasma. These
simulations verify, using a realistic model with kinetic ion dy-
namics, the result of [10]: linearly polarized shear-Alfvénic
perturbations do not exist in their linear wave form above the
amplitude limit 6B, /By ~ B~'/2. Our results also demon-
strate the exceptional influence of microinstabilities on the
dynamics of high-g collisionless plasmas even on large scales
Ay > p;, viz., the SA wave dynamics depend strongly on
how oblique firehose modes evolve as the plasma becomes
stable (Ap > —B?/4m). In particular, we find that firehose
fluctuations become parallel (k; = 0) and move to smaller
scales (kyo; ~ 1), surviving throughout the large-scale 6B
decay and scattering particles at a high rate. This causes SA
standing-wave dynamics in a collisionless plasma to resem-
ble those in a collisional (Braginskii) one [11]. For traveling
waves, the initial evolution of the wave is effectively colli-
sionless and matches analytic predictions [11]; however, once
the wave builds up a global negative anisotropy, it also excites
oblique firehose modes and the final stages of wave decay re-
semble the standing wave. For both standing and traveling
waves, the simulations provide an interesting example of di-
rect transfer of energy from the largest scales to thermal en-
ergy and microscale fluctuations, without a turbulent cascade.

Our simulations cannot fully address what occurs at yet
higher A4/p;. This will depend on how oblique firchose
modes decay into parallel Alfvénic modes and scatter parti-
cles, physics that is currently poorly understood. That said,
it is clear that SA wave interruption provides a robust mech-
anism for dissipating energy directly from large-scale pertur-
bations into heat and microinstabilities. This strong deviation
from the predictions of MHD models could significantly im-
pact the turbulent dynamics of high-8 weakly collisional plas-
mas [29]—a physical regime that is expected to be prevalent
across a wide variety of astrophysical environments [5, 16—
18]. Our results suggest that numerical modeling of these
weakly collisional environments would be better off strongly
damping large-amplitude SA waves, rather than letting them
freely propagate. One concrete way to achieve this aim might
be a LF model with pressure-anisotropy limiters [44] that en-
hance the collisionality to a rate that is determined by the
large-scale Alfvén frequency. More work on developing and
validating subgrid models of this kind is underway.
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