Supplemental material for "Entanglement area laws for long-range interacting systems"

Zhe-Xuan Gong,^{1,2} Michael Foss-Feig,³ Fernando G. S. L. Brandão,⁴ and Alexey V. Gorshkov^{1,2}

¹Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA

²Joint Center for Quantum Information and Computer Science,

NIST/University of Maryland, College Park, Maryland 20742, USA

³United States Army Research Laboratory, Adelphi, MD 20783, USA

⁴IQIM, California Institute of Technology, Pasadena CA 91125, USA

In this supplemental material, we prove Lemma 2 in the main text by generalizing the following result of Ref. [1]:

For any operators A and B acting on sites i and j respectively, there exists constants v = O(1) such that for $\alpha > 2D$, $\gamma = \frac{D+1}{\alpha - 2D}$, and $0 < t < t_R \equiv (\frac{R}{6v})^{\frac{1}{1+\gamma}}$,

$$\|[A(t), B\| \le \|A\| \, \|B\| \left[\mathcal{O}(e^{vt - r_{ij}/t^{\gamma}}) + \mathcal{O}(\frac{t^{\alpha(1+\gamma)}}{r_{ij}}) \right].$$
(1)

In order to prove Lemma 2 in the main text, the above Lieb-Robinson-type bound must be extended to allow for operators A and B that are supported on an arbitrary number of sites. To proceed we will need to recall how Eq. (1) is derived. Let us first quote Eq. (11-12) in Ref. [1],

$$\|[A(t), B]\| \le \sum_{\ell} \left[\|[\mathcal{A}^{\ell}(t), B]\| + 4c \sum_{k=1}^{\infty} \frac{t^a}{a!} \mathcal{J}_a(i, j) \right],$$
(2)

$$\mathcal{J}_{a}(i,j) = 4^{n} \sum_{\ell,\xi_{1},\dots,\xi_{a}} e^{-\ell} D_{i}(\xi_{1}) \|\mathcal{W}_{\xi_{1}}\| D(\xi_{1},\xi_{2}) \|\mathcal{W}_{\xi_{2}}\| \times \dots \times \|\mathcal{W}_{\xi_{a-1}}\| D(\xi_{a-1},\xi_{a}) \|\mathcal{W}_{\xi_{a}}\| D_{f}(\xi_{a}).$$
(3)

We will not introduce all of the notation used in the above two equations, as it can be found Ref. [1], but we will explain the aspects of the notation that are relevant for our purposes. The operator $\mathcal{A}^{\ell}(t)$ is exclusively supported on the set $\mathscr{B}_{\ell}(i)$, which is the set of sites with distance $\leq (vt + \ell)\chi$ from site *i*, with $v = \mathcal{O}(1)$ the so-called Lieb-Robinson velocity. Importantly, $\|\mathcal{A}^{l}(t)\| \leq \|A\| \mathcal{O}(e^{-l})$ (see Eq. (S8) in Ref. [1]). The collective index $\xi_{k} = (x_{k}, y_{k}, m_{k}, n_{k})$ specifies the support of the operator $\mathcal{W}_{\xi_{k}}$, which is an interaction connecting sites in $\mathscr{B}_{m_{k}}(x_{k})$ to sites in $\mathscr{B}_{n_{k}}(y_{k})$ (and is supported on the unions of these two sets). The quantity $D_{i}(\xi_{1}) = 1$ when $\mathscr{B}_{\ell}(i) \cap \mathscr{B}_{m_{1}}(x_{1}) \neq \emptyset$ and vanishes otherwise, while the quantity $D_{f}(\xi_{a})$ is unity when $j \in \mathscr{B}_{n_{a}}(y_{a})$ and vanishes otherwise. Similarly, $D(\xi_{k-1}, \xi_{k}) = 1$ when $\mathscr{B}_{n_{k-1}}(y_{k-1}) \cap \mathscr{B}_{m_{k}}(x_{k}) \neq \emptyset$, and vanishes otherwise. Intuitively, these quantities ensure that $\mathcal{J}_{a}(i, j)$ connects operators A to B and contributes to the commutator [A(t), B].

Now we assume that A and B act on two arbitrary sets X and Y respectively, which results in a number of changes. First, $\mathcal{A}^{\ell}(t)$ will instead act on $\mathscr{B}_{\ell}(X)$, which is defined as the set of sites with distance $\leq (vt + \ell)\chi$ from any site in X. But $\|\mathcal{A}^{l}(t)\| \leq \|A\| \mathcal{O}(e^{-l})$ holds independent of the size of X, because it is obtained using a finite-range Lieb-Robinson bound [2]. Second, $D_{i}(\xi_{1})$ in Eq. (3) should now be replaced by $D_{X}(\xi_{1})$, which restricts the summation over ξ_{1} to the cases where $\mathscr{B}_{\ell}(X) \cap \mathscr{B}_{m_{1}}(x_{1}) \neq \emptyset$. Finally, $D_{j}(\xi_{a})$ should be replaced by $D_{Y}(\xi_{a})$ such that the summation over ξ_{a} is restricted such that $\mathscr{B}_{\ell}(Y) \cap \mathscr{B}_{n_{a}}(y_{a}) \neq \emptyset$.

Next, we observe that the summation over ξ_1 with the constraint $\mathscr{B}_{\ell}(X) \cap \mathscr{B}_{m_1}(x_1) \neq \emptyset$ is upper bounded by the summation over ξ_1 with the constraint $\mathscr{B}_{\ell}(i) \cap \mathscr{B}_{m_1}(x_1) \neq \emptyset$ plus an extra summation over all $i \in X$. This is true because for $\mathscr{B}_{m_1}(x_1)$ to overlap with $\mathscr{B}_{\ell}(X)$, it has to overlap with $\mathscr{B}_{\ell}(i)$ for some $i \in X$. In summing over all $i \in X$, we may count the same $\mathscr{B}_{m_1}(x_1)$ that overlaps multiple times, but since the summand in Eq. (3) is always non-negative we nevertheless obtain an upper bound. A similar treatment will be applied to the summation over ξ_a as well.

As a result, we will replace $\mathcal{J}_a(i,j)$ in Eq. (2) by $\sum_{i \in X, j \in Y} \mathcal{J}_a(i,j)$. The summation $\sum_{\ell} \|[\mathcal{A}^{\ell}(t), B]\|$ in Eq. (2) is now restricted only to ℓ s satisfying $(vt + \ell)\chi \ge r_{XY}$, These two changes together lead to a modified version of Eq. (1), which reads

$$\|[A(t), B]\| \le \|A\| \, \|B\| \left[\mathcal{O}(e^{vt - r_{XY}/t^{\gamma}}) + \sum_{i \in X, j \in Y} \mathcal{O}(\frac{t^{\alpha(1+\gamma)}}{r_{ij}^{\alpha}}) \right].$$
(4)

Finally, we set $B = U_R$, which is an arbitrary unitary acting only on sites with distance larger than or equal to R from all sites in X, and obtain (whenever $\alpha > D$)

$$\|[A(t), U_R]\| \le \|A\| \, |X| [\mathcal{O}(e^{vt - R/t^{\gamma}}) + \mathcal{O}(\frac{t^{\alpha(1+\gamma)}}{R^{\alpha - D}})].$$
(5)

Using $||A(t) - A(t, R)|| \le \int d\mu(U_R) ||[A(t), U_R]||$, we have proven Lemma 2 in the main text.

As mentioned towards the end of the main text, it can be shown that Eq. (4) is the optimal generalization of Eq. (1). To see this, consider a long-range Ising model $H = \sum_{ij} J_{ij} \sigma_i^z \sigma_j^z$ with $J_{ij} = r_{ij}^{-\alpha}$ if $i \in X$ and $j \in Y$, and $J_{ij} = 0$ otherwise. We define

$$|\psi_0\rangle = \left[\frac{1}{\sqrt{2}} \left(\bigotimes_{i \in X \cup Y} |\sigma_i^z = 1\rangle + \bigotimes_{i \in X \cup Y} |\sigma_i^z = -1\rangle\right)\right] \bigotimes_{i \notin X \cup Y} |\sigma_i^z = 1\rangle,\tag{6}$$

which is a GHZ state for all sites in X and Y. Now let us choose $A = \prod_{i \in X} \sigma_i^+$ and $B = \sum_{j \in Y} \sigma_j^+$. It is not hard to find that

$$\langle \psi_0 | \prod_{i \in X} \sigma_i^+(t) \prod_{j \in Y} \sigma_j^+ | \psi_0 \rangle = \frac{1}{2} e^{2i \sum_{i \in X, j \in Y} J_{ij} t},\tag{7}$$

$$\langle \psi_0 | \prod_{j \in Y} \sigma_j^+ \prod_{i \in X} \sigma_i^+(t) | \psi_0 \rangle = \frac{1}{2} e^{-2i \sum_{i \in X, j \in Y} J_{ij} t}.$$
(8)

As a result, for $t < \pi/(4 \sum_{i \in X, j \in Y} J_{ij})$, we have

$$\|[A(t), B]\| \ge |\langle \psi_0|[A, B]|\psi_0\rangle| = \sin(2t \sum_{i \in X, j \in Y} J_{ij}) > \frac{4}{\pi}t \sum_{i \in X, j \in Y} r_{ij}^{-\alpha}.$$
(9)

Although the time dependence is different from Eq. (4), the distance dependence (for large r_{ij}) and the summations over $i \in X$ and $j \in Y$ match those in Eq. (4). Thus we claim that Eq. (4) is the optimal generalization of Eq. (1).

^[1] M. Foss-Feig, Z.-X. Gong, C. W. Clark, and A. V. Gorshkov, Phys. Rev. Lett. 114, 157201 (2015).

^[2] Z.-X. Gong, M. Foss-Feig, Spyridon Michalakis, and A. V. Gorshkov, Phys. Rev. Lett. 113, 030602 (2014).