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In this supplemental material, we prove Lemma 2 in the main text by generalizing the following result of Ref. [1]:

For any operators A and B acting on sites i and j respectively, there exists constants v = O(1) such that for
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In order to prove Lemma 2 in the main text, the above Lieb-Robinson-type bound must be extended to allow for operators A and
B that are supported on an arbitrary number of sites. To proceed we will need to recall how Eq. (1) is derived. Let us first quote
Eq.(11-12) in Ref. [1],
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We will not introduce all of the notation used in the above two equations, as it can be found Ref. [1], but we will explain the
aspects of the notation that are relevant for our purposes. The operator A*(t) is exclusively supported on the set %, (i), which
is the set of sites with distance < (vt + £)x from site ¢, with v = (O(1) the so-called Lieb-Robinson velocity. Importantly,
H.Al (t)H < ||A]| O(e7!) (see Eq.(S8) in Ref.[1]). The collective index &, = (x, yr, Mk, ny) specifies the support of the
operator Wk, , which is an interaction connecting sites in %,,, (zx) to sites in %, (yx) (and is supported on the unions of
these two sets). The quantity D;(&1) = 1 when %, (i) N B, (r1) # & and vanishes otherwise, while the quantity Ds(&,)
is unity when j € %, (y,) and vanishes otherwise. Similarly, D(§x_1,&;) = 1 when %, _, (Yr—1) N B, (xx) # <, and
vanishes otherwise. Intuitively, these quantities ensure that 7, (7, j) connects operators A to B and contributes to the commutator
[A(t), B].

Now we assume that A and B act on two arbitrary sets X and Y respectively, which results in a number of changes. First,
AX(t) will instead act on %,(X), which is defined as the set of sites with distance < (vt + £)x from any site in X. But
AL (#)]| < ||A]l O(e™") holds independent of the size of X, because it is obtained using a finite-range Lieb-Robinson bound
[2]. Second, D;(&;1) in Eq. (3) should now be replaced by Dx (&1), which restricts the summation over £; to the cases where
Bo(X) N By, (x1) # 2. Finally, D;(&,) should be replaced by Dy (€,) such that the summation over &, is restricted such that
<%)E(Yv) N %nu (ya) 7é g.

Next, we observe that the summation over &; with the constraint % (X) N %B,,, (v1) # & is upper bounded by the summation
over &; with the constraint %y (i) N By, (x1) # @ plus an extra summation over all ¢ € X. This is true because for %,,, (x1) to
overlap with %, (X), it has to overlap with %,(i) for some ¢ € X. In summing over all ¢ € X, we may count the same %, (x1)
that overlaps multiple times, but since the summand in Eq. (3) is always non-negative we nevertheless obtain an upper bound. A
similar treatment will be applied to the summation over &, as well.

As a result, we will replace Jq (7, j) in Eq.(2) by >_,c ¢ jey Ja(i,j). The summation S IILAY(E), B]|| in Eq. (2) is now
restricted only to /s satisfying (vt + £)x > rxy, These two changes together lead to a modified version of Eq. (1), which reads

i 5 te(14+7)
I[A(t), Bl < [IAI[IB]| [O(e? /")y + Y~ Of )| (4)
i€eX,jey ij

Finally, we set B = Ug, which is an arbitrary unitary acting only on sites with distance larger than or equal to R from all sites
in X, and obtain (whenever o > D)
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Using ||A(t) — A(t, R)|| < [ du(Ug) ||[A(t), Ug]||, we have proven Lemma 2 in the main text.

As mentioned towards the end of the main text, it can be shown that Eq (4) is the optimal generalization of Eq. (1). To see
this, consider a long-range Ising model H = }_,. Jijo707 with J;; = r; ;% if i € X and j € Y, and J;; = 0 otherwise. We
define
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which is a GHZ state for all sites in X and Y. Now let us choose A =[], x aj' and B=) . It is not hard to find that
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Asaresult, fort <7/(437,c v jey Jij), we have
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Although the time dependence is different from Eq. (4), the distance dependence (for large r;;) and the summations over 7 € X
and 7 € Y match those in Eq. (4). Thus we claim that Eq. (4) is the optimal generalization of Eq. (1).
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