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In this supplemental material, we prove Lemma 2 in the main text by generalizing the following result of Ref. [1]:

For any operators A and B acting on sites i and j respectively, there exists constants v = O(1) such that for
α > 2D, γ = D+1

α−2D , and 0 < t < tR ≡ ( R6v )
1

1+γ ,
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[
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γ
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α(1+γ)

rij
)

]
. (1)

In order to prove Lemma 2 in the main text, the above Lieb-Robinson-type bound must be extended to allow for operators A and
B that are supported on an arbitrary number of sites. To proceed we will need to recall how Eq. (1) is derived. Let us first quote
Eq. (11-12) in Ref. [1],

‖[A(t), B]‖ ≤
∑
`

[
‖[A`(t), B]‖+ 4c
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]
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Ja(i, j) = 4n
∑

`,ξ1,...,ξa

e−`Di(ξ1)‖Wξ1‖D(ξ1, ξ2)‖Wξ2‖ × . . . · · · × ‖Wξa−1‖D(ξa−1, ξa)‖Wξa‖Df(ξa). (3)

We will not introduce all of the notation used in the above two equations, as it can be found Ref. [1], but we will explain the
aspects of the notation that are relevant for our purposes. The operator A`(t) is exclusively supported on the set B`(i), which
is the set of sites with distance ≤ (vt + `)χ from site i, with v = O(1) the so-called Lieb-Robinson velocity. Importantly,∥∥Al(t)∥∥ ≤ ‖A‖O(e−l) (see Eq. (S8) in Ref. [1]). The collective index ξk = (xk, yk,mk, nk) specifies the support of the
operator Wξk , which is an interaction connecting sites in Bmk(xk) to sites in Bnk(yk) (and is supported on the unions of
these two sets). The quantity Di(ξ1) = 1 when B`(i) ∩ Bm1(x1) 6= ∅ and vanishes otherwise, while the quantity Df(ξa)
is unity when j ∈ Bna(ya) and vanishes otherwise. Similarly, D(ξk−1, ξk) = 1 when Bnk−1

(yk−1) ∩Bmk(xk) 6= ∅, and
vanishes otherwise. Intuitively, these quantities ensure that Ja(i, j) connects operatorsA toB and contributes to the commutator
[A(t), B].

Now we assume that A and B act on two arbitrary sets X and Y respectively, which results in a number of changes. First,
A`(t) will instead act on B`(X), which is defined as the set of sites with distance ≤ (vt + `)χ from any site in X . But∥∥Al(t)∥∥ ≤ ‖A‖O(e−l) holds independent of the size of X , because it is obtained using a finite-range Lieb-Robinson bound
[2]. Second, Di(ξ1) in Eq. (3) should now be replaced by DX(ξ1), which restricts the summation over ξ1 to the cases where
B`(X) ∩Bm1

(x1) 6= ∅. Finally, Dj(ξa) should be replaced by DY (ξa) such that the summation over ξa is restricted such that
B`(Y ) ∩Bna(ya) 6= ∅.

Next, we observe that the summation over ξ1 with the constraint B`(X)∩Bm1(x1) 6= ∅ is upper bounded by the summation
over ξ1 with the constraint B`(i)∩Bm1(x1) 6= ∅ plus an extra summation over all i ∈ X . This is true because for Bm1(x1) to
overlap with B`(X), it has to overlap with B`(i) for some i ∈ X . In summing over all i ∈ X , we may count the same Bm1

(x1)
that overlaps multiple times, but since the summand in Eq. (3) is always non-negative we nevertheless obtain an upper bound. A
similar treatment will be applied to the summation over ξa as well.

As a result, we will replace Ja(i, j) in Eq. (2) by
∑
i∈X,j∈Y Ja(i, j). The summation

∑
`‖[A`(t), B]‖ in Eq. (2) is now

restricted only to `s satisfying (vt+ `)χ ≥ rXY , These two changes together lead to a modified version of Eq. (1), which reads
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Finally, we set B = UR, which is an arbitrary unitary acting only on sites with distance larger than or equal to R from all sites
in X , and obtain (whenever α > D)

‖[A(t), UR]‖ ≤ ‖A‖ |X|[O(evt−R/t
γ

) +O( t
α(1+γ)

Rα−D
)]. (5)
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Using ‖A(t)−A(t, R)‖ ≤
∫
dµ(UR) ‖[A(t), UR]‖, we have proven Lemma 2 in the main text.

As mentioned towards the end of the main text, it can be shown that Eq. (4) is the optimal generalization of Eq. (1). To see
this, consider a long-range Ising model H =

∑
ij Jijσ

z
i σ

z
j with Jij = r−αij if i ∈ X and j ∈ Y , and Jij = 0 otherwise. We

define
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which is a GHZ state for all sites in X and Y . Now let us choose A =
∏
i∈X σ

+
i and B =

∑
j∈Y σ

+
j . It is not hard to find that
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As a result, for t < π/(4
∑
i∈X,j∈Y Jij), we have

‖[A(t), B]‖ ≥ |〈ψ0|[A,B]|ψ0〉| = sin(2t
∑

i∈X,j∈Y
Jij) >

4

π
t
∑
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Although the time dependence is different from Eq. (4), the distance dependence (for large rij) and the summations over i ∈ X
and j ∈ Y match those in Eq. (4). Thus we claim that Eq. (4) is the optimal generalization of Eq. (1).
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