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Abstract

We prove that the entanglement entropy of any state evolved under an arbitrary 1/rα long-range-

interacting D-dimensional lattice spin Hamiltonian cannot change faster than a rate proportional to 

the boundary area for any α > D + 1. We also prove that for any α > 2D + 2, the ground state of 

such a Hamiltonian satisfies the entanglement area law if it can be transformed along a gapped 

adiabatic path into a ground state known to satisfy the area law. These results significantly 

generalize their existing counterparts for short-range interacting systems, and are useful for 

identifying dynamical phase transitions and quantum phase transitions in the presence of long-

range interactions.

Quantum many-body systems often have approximately local interactions, and this locality 

has profound effects on the entanglement properties of both ground states and the states 

created dynamically after a quantum quench. For example, the entanglement entropy, 

defined as the entropy of the reduced state of a subregion, often scales as the boundary area 

of the subregion for ground states of short-range interacting Hamiltonians [1]. This “area 

law” of entanglement entropy is in sharp contrast to the behavior of thermodynamic entropy, 

which typically scales as the volume of the system. While the study of area laws originates 

from black hole physics [2,3], area laws have received considerable attention recently in the 

fields of quantum information and condensed matter physics. In particular, area laws are 

known to be closely related to the velocity of information propagation in quantum lattices 

[4], quantum critical phenomena [5], bulk-boundary correspondence [6], efficient classical 

simulation of quantum systems [7], topological order [8], and many-body localization [9].

However, the description of many-body systems in terms of local interactions is often only 

an approximation, and not always a good one; in numerous systems of current interest, 

ranging from frustrated magnets and spin glasses [10,11] to atomic, molecular, and optical 
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systems [12–17], long-rangeinteractions are ubiquitous and lead to qualitatively new 

physics, e.g., giving rise to novel quantum phases and dynamical behaviors [18–25], and 

enabling speedups in quantum information processing [26–30]. Particles in these systems 

generally experience interactions that decay algebraically (~1/rα) in the distance (r) between 

them. As might be expected, α controls the extent to which the system respects notions of 

locality developed for short-range interacting systems: For α sufficiently small, it is well 

established [19] that locality may be completely lost, and for α sufficiently large there is 

ample numerical and analytical evidence [31–34] that area laws may persist. However, there 

is currently no general and rigorous understanding of when area laws do or do not survive 

the presence of long-range interactions.

The modern understanding of area laws draws heavily from several rigorous proofs, all of 

which require some restrictions on the general setting discussed above. As the most notable 

example, Hastings [35] proved that ground states of one-dimensional (1D) gapped 

Hamiltonians with finite-range interactions satisfy the area law. A subsequent development 

was made later in Refs. [36,37], which proved that states in 1D with exponentially decaying 

correlations between any two regions (a set that includes the ground states of gapped short-

range interacting Hamiltonians) must satisfy the area law. Generalizing these proofs to 

include long-range interacting Hamiltonians is, however, rather difficult. For example, it is a 

well-known challenge to generalize Hastings’ proof of the area law [35] to higher 

dimensions [38], and long-range interacting systems are in some sense similar to higher-

dimensional short-range interacting systems [23,24]. In addition, since ground states of 

gapped long-range interacting systems can have power-law decaying correlations [39–41], 

one would need to relax the condition of exponentially decaying correlations in the proof of 

Refs. [36,37] to algebraically decaying correlations. However, this relaxation invalidates the 

proof, as there exist 1D states with subexponentially decaying correlations that violate the 

area law [42].

To circumvent these challenges in proving area laws for long-range interacting systems, here 

we employ a “dynamical” approach. Specifically, we prove that a state satisfies the area law 

if it can be dynamically created in a finite time by evolving a state that initially satisfies the 

area law under a long-range interacting Hamiltonians [43]. We then use the powerful 

formalism of quasiadiabatic continuation [44] to relate such a state to the ground state of a 

spectrally gapped long-range interacting Hamiltonian. This strategy is made possible by the 

recent proof of Kitaev’s small incremental entangling (SIE) conjecture [43,45], and by 

significant recent improvements in Lieb-Robinson bounds [4] for long-range interacting 

systems [46,47].

The manuscript is divided into two proofs of two different area laws, the latter of which 

builds on the former. The first area law states that for any initial state, the entanglement 

entropy of a subsystem cannot change faster than a rate proportional to the subsystem’s area. 

This statement is known to hold for short-range interacting systems [43,48], and we have 

generalized it to systems with interactions decaying faster than 1/rD+1. A direct implication 

of this new area law is that matrix-product-state calculations of quench dynamics should 

remain efficient at relatively short times for generic 1/rα Hamiltonians with α > D + 1.
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Our second area law states that if a Hamiltonian has interactions decaying faster than 

1/r2D+2, then its ground state satisfies the area law if it can be connected to an area-law state 

by adiabatically deforming the Hamiltonian. Here adiabaticity implies a finite energy gap 

during the adiabatic evolution and requires interactions to still decay faster than 1/r2D+2. 

This area law leads to two new insights. (1) The entanglement area law for the ground state 

of a gapped short-range interacting Hamiltonian remains stable if we add long-range 

interactions without closing the gap. For certain frustration-free Hamiltonians, including 

Kitaev’s toric code [49] and the Levin-Wen model [50], the area law is strictly implied for α 
> 2D + 2 due to a proven stability of the gap for interactions decaying faster than 1/rD+2 

[51]. Thus the short-range nature of interactions, believed to be crucial for area laws, is in 

fact not necessary. (2) The entanglement area law might be violated without destroying the 

energy gap or making the energy nonextensive by using 1/rα interactions with D < α < 2D 
+ 2 [31]. Thus there may exist exotic quantum phase transitions between gapped phases, 

challenging the conventional wisdom that quantum phase transitions cannot take place 

between gapped phases in an adiabatic evolution [52].

Main results.—

In this manuscript, we consider the following Hamiltonian H on a D-dimensional finite or 

infinite lattice:

H =
i j

hi j, ∥ hi j ∥ ≤ 1/ri j
α i ≠ j . (1)

Here, hij is an operator acting on sites i and j that can be time dependent, ∥hij∥ denotes the 

operator norm (largest magnitude of an eigenvalue) of hij, and rij represents the distance 

between sites i and j. We define d as the maximum local Hilbert space dimension for any site 

and assume d is finite. The strength of the on-site interaction hii can be arbitrary, and is 

unimportant in the following area laws and proofs.

We define the entanglement entropy of a state |ψ〉 with respect to a subregion V by SV(|ψ〉) 
≡ −tr[ρV log ρV], where ρV = trV‒ ψ ψ  and V‒ is the complement of V. We use ∂V to 

denote the set of sites at the boundary of V, and |V| to denote the number of sites in the set 

V. To clarify the presentation without sacrificing rigor, we frequently use the identification 

g x = 𝒪 x  if there exists finite positive constants c and x0 such that g(x) ≤ cx for all x ≥ x0. 

The constants c and x0 may be different each time the 𝒪 notation appears, but do not depend 

on anything other than the lattice geometry and fixed parameters α, D, d, and Δ (introduced 

later). We now state our first area law.

Theorem 1. (Area law for dynamics) For any state |ψ〉 under the time evolution of H 
defined in Eq. (1) with α > D + 1,

dSV ψ t
dt ≤ 𝒪 ∂V . (2)
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To prove Theorem 1, let us introduce the following lemma, which can be directly obtained 

from the Kitaev’s SIE conjecture recently proven in Ref. [43].

Lemma 1. If H = ΣZhZ with hZ acting on a set of sites Z, then for any state |ψ〉

dSV ψ t
dt ≤ 18 log d

Z Z V Z V
hZ |Z | . (3)

Roughly speaking, this lemma tells us that the entanglement entropy at most changes at a 

rate proportional to the total strength of interactions that cross the boundary of V.

With the help of lemma 1, the proof of theorem 1 reduces to the proof of 

∑i ∈ V , j ∉ V ∥ hij ∥ ≤ 𝒪 ∂V . Let us now assign a coordinate (xi, ri) to each site i ∈ V, with 

xi measuring the directions parallel to the boundary, and ri measuring the distance of i to the 

boundary (rounded down to the next integer). Upon bounding the sum by a D-dimensional 

integral, it is straightforward to show that for a given i ∈ V, ∑ j ∉ V ∥ hij ∥ ≤ 𝒪 ri
D − α . Since 

for a given value of ri, the possible choices of xi is at most proportional to |∂V|, it follows 

that ∑i ∈ V , j ∉ V ∥ hij ∥ ≤ 𝒪 ∂V ∑r = 1
∞ rD − α. Theorem 1 is then proven because 

∑r = 1
∞ rD − α converges for α > D + 1. Note that the method used here is an improvement 

over a similar method used in Ref. [43], which if used leads to the condition α > D + 2 

instead.

To connect from this dynamical area law to a ground-state area law, we introduce the 

formalism of quasiadiabatic continuation. Consider a continuous family of Hamiltonians,

H s = 1 − s H 0 + sH 1 , (4)

parametrized by s ∈ [0,1] with each H(s) being a time-independent Hamiltonian satisfying 

Eq. (1) and having a unique ground state |ψ0(s)〉 and a finite energy gap of at least Δ. As 

shown in Ref. [44], the evolution (or continuation) of |ψ0(s)〉 from s = 0 to s = 1 is governed 

by an effective Hamiltonian 𝒟 s , given by the “Schrödinger equation” 

d ψ0 s ds = − i𝒟 s ψ0 s . We emphasize that the evolution of |ψ0(s)〉 is not governed by 

H(s), because despite the existence of a finite gap Δ, adiabatically evolving under H(s) from 

|ψ0(0)〉 to |ψ0(1)〉 exactly requires an infinite evolution time, in contrast to the unity time 

needed for the evolution under 𝒟 s . As a result, the evolution of |ψ0(s)〉 under 𝒟 s  is 

usually called quasiadiabatic continuation [44].

For a given H(s), the choice of 𝒟 s  is not unique, and here we choose a convenient form 

given in Ref. [53],
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𝒟 s = − i
∞

∞
f Δt eiH s t ∂H s

∂s e−iH s tdt . (5)

Here, f(x) belongs to a family of subexponentially decaying functions, meaning that for any 

δ < 1, there exists an x-independent constant cδ such that |f(x)| ≤ cδ exp(−|x|δ) [the explicit 

form of f(x) is not important]. The 𝒟 s  given in Eq. (5) has a remarkable feature: if H(s) is a 

short-range interacting Hamiltonian [Eq. (4) in the α → ∞ limit], then 𝒟 s  contains 

interactions that decay subexponentially with distance, approximately inheriting the locality 

of the underlying interactions [44]. For a finite but suitably large α, it is reasonable to expect 

that 𝒟 s  contains interactions that decay as a power law in distance, as inherited from H(s). 

If so, then we expect to be able to prove a result analogous to theorem 1, guaranteeing that 

the entanglement entropy SV(|ψ0(s)〉) satisfies the dynamical area law 

dSV ψ0 s ds ≤ 𝒪 ∂V  for α larger than a certain critical value. Upon integrating from 

s = 0 to s = 1, this leads immediately to our theorem 2 [54].

Theorem 2. (Area law for ground states) For H(s) defined in Eq. (4) with α ≥ 2D + 2, |

ψ0(0)〉 satisfying the area law implies that |ψ0(s)〉 satisfies the area law for any s ∈ [0,1].

Here the assumption that |ψ0(0)〉 satisfies the area law may come from the scenario where 

H(0) contains only short-range interactions. The proof of this area law is much more 

challenging than the proof of theorem 1. To see the challenge, let us write H(s) = ∑ijhij(s) 

and 𝒟 s = ∑ij𝒟ij s ; then

Di j s = − i
∞

∞
f Δt hi j

s t dt (6)

with h ij
(s)(t) ≡ eiH(s)th ije

−iH(s)t and h ij ≡ hij(1) − hij(0). Unlike hij(s), which acts only on sites i 

and j, in general 𝒟ij(s) acts on the entire lattice. Thus we cannot directly apply lemma 1 to 

constrain the growth of SV(|ψ(s)〉), as we did for theorem 1. To overcome this challenge, we 

need to derive some locality structure of the interaction 𝒟ij(s) despite the fact that it acts on 

the entire lattice. As mentioned above, our intuition is that 𝒟ij(s) should be similar to hij(s), 

in that it “mostly” acts on sites close to i and j while its interaction strength should still 

decay as 1 rij
α. In order to turn this intuition into a precise statement, we need to first look at 

the locality structure of A(t) = eiHtAe−iHt for A acting on a set of sites X and H defined in 

Eq. (1).

Formally, we define A t, R = ∫ dμ UR URA t UR
‡ , with UR being a unitary operator acting on 

all sites with distance larger than or equal to R from any site in X and μ(UR) being the Haar 

measure for UR. By this definition, A(t, R) only acts on sites within a distance R from ∂X. 

Let us first obtain some intuition in the α → ∞ limit, where H is a nearest-neighbor 

Hamiltonian. It is reasonable to expect that A(t, R) is a good approximation of A(t) if we 
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choose R ≫ t, because it takes a time t ∝ R to “spread” the operator A to sites a distance R 
from its boundary. More precisely, one can apply the Lieb-Robinson bound [4,56] in this 

case to obtain ∥ A t − A t, R ∥ ≤ ∥ A ∥ 𝒪 e4et − R . In fact, in the limit of α → ∞, theorem 

2 has already been proven in Ref. [43].

For a finite α the situation is much less clear. Using the direct generalization [39,57] of the 

Lieb-Robinson bound for the 1/rα Hamiltonian in Eq. (1) leads to 

∥ A t − A t, R ∥ ≤ ∥ A ∥ X 𝒪 evt Rα − D , which only guarantees that A(t) will be well 

approximated by A(t, R) when t ⪡ log(R), thus requiring exponentially larger R to maintain 

the level of approximation in the α → ∞ case. As shown later, this requirement t ⪡ log(R) 

prohibits a proof of theorem 2 using the strategy of Ref. [43]. However, recent 

improvements to the long-range Lieb-Robinson bound [46] significantly improve the 

situation. The improved bound enables the following lemma to be derived (see [58]), which 

together with additional techniques described below leads to a proof of theorem 2.

Lemma 2. There exists a constant v = 𝒪 1  such that for α > 2D, γ = (D + 1/α − 2D), and 0 

< t < tR ≡ (R/6v)1/1+γ [59],

∥ A t − A t, R ∥ ≤ ∥ A ∥ | X | 𝒪(e
vt − R

tγ ) + 𝒪 tα 1 + γ

Rα − D . (7)

A crucial consequence of lemma 2 is that we must only choose R polynomially large in t in 

order to ensure that A(t) is well approximated by A(t, R). The quantity tR characterizes the 

edge of the “light cone,” meaning that ∥A(t)−A(t,R)∥ is only parametrically small in R for t 
< tR.

The locality structure of 𝒟ij s  can be understood with the help of lemma 2 and the 

decomposition,

𝒟i j(s) =
R 1

∞
𝒢i j s R i

R 1

∞

∞

∞
Δt gi j

s t R dt (8)

Here, gij
s (t, R) ≡ h ij

s (t, R) − h ij
s (t, R − 1) and h ij

s (t, R) ≡ ∫ dμ(UR)URh ij
s (t)UR

‡ ; Eq. (8) follows 

by bringing the summation inside the integral, and using h ij
s (t, ∞) = h ij

s (t) and h ij
s (t, 0) = 0

to collapse the summation to ∑R = 1
∞ gij

s (t, R) = h ij
s (t). We emphasize that 𝒢ij(s, R) acts only 

on sites within a distance R from i or j (Fig. 1), and in this sense is local. In order to bound 

how ∥ 𝒢ij(s, R) ∥ decays with R and rij, we must first derive a bound for ∥ gij
s (t, R) ∥ with the 

help of lemma 2. But since lemma 2 only works for t < tR, we need to bound ∥ 𝒢ij(s, R) ∥

differently for t > tR.
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For 0 < t < tR, we use lemma 2 together with a triangle inequality 

∥ gi j
(s)(t, R) ∥ ≤ ∥ hi j

(s)(t) − hi j
(s)(t, R) ∥ + ∥ hi j

(s)(t) − hi j
(s)(t, R − 1) ∥, the inequality 

vt − R ∕ tγ < − 𝒪(R1 1 + γ ), and ∥ h ij ∥ ≤ 2rij
−α, leading to 

∥ gij
(s)(t, R) ∥ ≤ [𝒪(e−𝒪[R(1 1 + γ)]) + 𝒪[tα(1 + γ) ∕ Rα − D]]rij

−α.

For t > tR, it suffices to bound ∥ gij
s (t, R) ∥ directly by 2 ∥ h ij ∥ ≤ 4rij

−α, which follows 

because ∥A(t,R)∥ ≤ ∥A∥ for any A, t, and R.

Performing the integration over t in the definition of 𝒢ij(s, R) [see Eq. (8)], we find [60]

∥ 𝒢i j s, R ∥ ≤
𝒪(e−𝒪(R

1
1 + γ )) + 𝒪 RD − α + 𝒪 F 𝒪 tR

ri j
α ,

where F x = ∫ x
∞ f t dt also decays subexponentially. Importantly, because lemma 2 states 

that tR = 𝒪(R1 1 + γ ), ∥ 𝒢ij(s, R) ∥ is dominated by 𝒪(RD − α) for large R. Note that the 

directly generalized Lieb-Robinson bound in Refs. [39,57] gives tR ~ log(R); in this case, the 

term 𝒪 F 𝒪 tR  above would not decay in R for large R.

To summarize what we have obtained so far,

𝒟 s =
i j R 1

∞
𝒢i j s R 𝒢i j s, R ∥ ≤

𝒪 RD − α

ri j
α . (9)

Equation (9) reveals the locality structure hidden in 𝒟 s  (see Fig. 1 for an illustration); 

theorem 2 can now be proved using lemma 1 by summing over all ∥ 𝒢ij(s, R) ∥ whose support 

overlaps with V and V‒ simultaneously. Our summation strategy is to first sum over all i and j 
that contribute to |dSV(|ψ0(s)〉)/ds| for a given R, and sum over R next. The first step 

involves two scenarios: (1) For i with ri ≤ R we need to sum j over the entire lattice because 

𝒢ij(s, R) always crosses the boundary, leading to the summation ∑i, ri < R ∑ jrij
−α~R ∂V | for α 

> D. (2) For i ∈ V and rt > R, we sum j over sites with rij > ri − R, corresponding to the 

summation ∑i, ri < R ∑ j, rij > ri − Rrij
−α ~ ∂V | for α > D + 1. Therefore,

dSV Ψ0 s
ds ≤

R 1

∞
R V 𝒪 RD α RD (10)
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where the final RD comes from the number of sites that 𝒟ij s, R  acts on. The summation 

converges for α > 2D + 2, proving theorem 2.

Note that the critical values of α in theorems 1 and 2 differ by D + 1, despite the fact that 

both ∥hij∥ and ∥ 𝒟ij(s, R) ∥ are bounded by 𝒪(rij
−α). This difference can be attributed to two 

differences between the locality structures of 𝒟(s) and H: (1) Each 𝒢ij(s, R) acts on 𝒪(RD)

sites while each hij only acts on two sites; (2) there is an extra summation over the one-

dimensional variable R in 𝒟ij(s).

Outlook.—

For the dynamical area law, an intriguing question is whether the area law can be extended 

to α < D + 1. Suppose the linear size of the subregion V is L and |V| ∝ LD; then from the 

proof of theorem 1 one finds that dSV ∕ dt ≤ 𝒪 L2D − α  for α ≤ D + 1. While this bound 

allows the area law to be violated, saturating it requires that each interaction hij in Eq. (1) 

provides the maximum (or a finite portion of the maximum) entanglement rate. Recently, a 

protocol using all hij in Eq. (1) was found for creating a single pair of entangled qubits 

separated by a distance L in a D-dimensional lattice, and requires a time t ∝ Lα−D [29] for D 
< α < D + 1 and a constant time for α < D. If such a protocol can be generalized to apply in 

parallel for all the qubits in V, then |dSv ∕ dt = 𝒪 L2D − α  is achieved. However it seems 

plausible that the parallelization of this protocol may violate the monogamy of entanglement 

[61]. We leave the de facto upper limit on the entanglement rate for Eq. (1) as an open 

question.

Similarly, it remains unclear whether the critical value of αc = 2D + 2 is optimal in our 

ground-state area law. While the specific value of αc may not have a fundamental 

importance so long as a finite αc exists, for many experimental systems such as the 1/r6-

interacting Rydberg atoms and 1/r3-interacting dipolar systems, knowing the smallest 

possible value of αc can be crucial for deciding whether certain topological phases remain 

stable in the presence of long-range interactions [20,62,63]. We can, however, rule out the 

relevance of improving lemma 2. As mentioned in the outlook of Ref. [46], the long-range 

Lieb-Robinson bound obtained there, which is the basis of lemma 2, is most likely not 

optimal. The best improvement of the long-range bound one could hope for is to 

demonstrate a linear light cone for α > D + 1 [29]. However, such a bound would not 

improve the value of αc in theorem 2, because the locality structure of 𝒟 s  [see Eq. (9)] 

remains intact so long as a polynomial light cone is implied in lemma 2. We also point out 

that the 1/Rα–D decay in lemma 2 cannot be improved further [58].

Finally, theorem 2 tells us the adiabatically connected ground states have similar 

entanglement properties. But do these ground states actually belong to the same quantum 

phase? The answer is known to be yes for short-range interacting systems [52], but is not yet 

clear if interactions are long ranged. In addition, will the proved stability of the area law 

imply the stability of topological orders [56]? We believe that our results will help obtain a 
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more general understanding of the emergent notion of locality that underpins a wide range of 

many-body physics in long-range interacting systems.
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FIG. 1. 
Illustration of the locality structure of 𝒟(s). Each 𝒢ij(s, R) is an interaction between a ball of 

sites centered on i with a radius R and a ball of sites centered on j with a radius R. The 

interaction strength ∥ 𝒢ij(s, R) ∥ decays as 1 ∕ rij
α and also as 1/RD−α for large R, represented 

by the fading color of the balls. For a given subregion V with boundary ∂V (blue square), the 

maximum rate of entanglement entropy change only involves interactions 𝒢ij(s, R) that act on 

both sites in V and sites outside V.
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