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Abstract

We investigate the testable implications of the theory that markets produce match-

ings that are optimal for one side of the market; i.e. stable extremal matchings. A leading

justification for the theory is that markets proceed as if the deferred acceptance algorithm

were in place. We find that the theory of stable extremal matching is observationally

equivalent to requiring that there be a unique matching, or that the matching be con-

sistent with unrestricted monetary transfers. We also present results on rationalizing a

matching as the median stable matching.

We work with a general model of matching, which encompasses aggregate and random

matchings as special cases. As a consequence, we need to work with a notion of strong

stability, and extend the standard theory on the existence and structure of extremal

matchings.
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Existence and Testable Implications of Extreme

Stable Matchings∗

Federico Echenique SangMok Lee M. Bumin Yenmez

1 Introduction

The celebrated deferred acceptance algorithm was first introduced by Gale and Shapley

(1962). It has been widely adapted to clearinghouses for centralized two-sided matching

markets. The algorithm produces the outcome which is the best outcome for one side of

the market and the worst for the other side (Roth and Sotomayor, 1990); dubbed as the

extremal outcomes. For instance, in the market for medical residents, the clearinghouse

selects the optimal matching for doctors, while in the application to school choice the

student-optimal matching is chosen (Roth, 2008). In fact, the deferred acceptance algo-

rithm is not only viewed as a recipe of how we should clear centralized markets, but also

as a template for how actual decentralized markets behave: Roth (2008, p. 550) notes

that the algorithm corresponds to a “folk model” of how markets proceed when they

work in an orderly fashion. Indeed, if offers in a labor market are driven by the firms

then we may expect a firm optimal matching. If men make most marriage proposals,

then perhaps marriages are optimal for men.

To empirically verify this intuition for decentralized markets, we need to understand

when there exist underlying preferences for agents that rationalize a matching as ex-

tremal. We suppose that we have data on who matches with whom, but that we do not

observe agents’ preferences. We want to know which observed matchings are compatible

with the outcome of the deferred acceptance algorithm: this exercise is the main focus

of our paper. In other words, we study the testable implications of extremal selections

in cases where agents’ preferences are not known.

∗We thank Lars Ehlers for questions that motivated the current research.



Our assumption on data is entirely realistic; as we shall see, a special case of our

model is the class of data empirical researchers use for studying marriage matching. We

want to know when we can say that agents have matched as in the optimal matching for

one side. For example, if we have information on the decentralized matching of college

freshmen to different dorms, can we determine if the matching in this decentralized

market is also optimal for the freshmen? In a dating or marriage market, can we say if

the observed relationships correspond to a matching that is optimal for either men or

women? It turns out that our model can also accommodate random matching, so that

given a table of probabilistic assignments (for example one matching children to schools,

see Abdulkadirolu, Pathak, and Roth (2005)), we can tell whether the random matching

is compatible with stability and extremal stability.

To lay some necessary groundwork, we first study stability in a general model of

population matching; including, as special cases, aggregate and random matching. In

doing so, we extend the basic theory of stable matching to our general model; including

proofs of the existence and polarity properties of strongly stable matchings. These results

are important because, in order to study extremal matchings empirically, we must first

establish that they exist and behave in the usual ways.

Our model encompasses aggregate matchings (Choo and Siow, 2006; Dagsvik, 2000;

Echenique, Lee, and Shum, 2010), and random matching (Hylland and Zeckhauser, 1979;

Roth, Rothblum, and Vate, 1993; Kesten and Ünver, 2009; Alkan and Gale, 2003) as spe-

cial cases. We look at the notion of strong stability, which is the natural notion of stability

for aggregate matching. For random matching, strong stability captures the possibility

of ex-ante trades among agents, or, alternatively, it captures basic fairness properties.

In contrast with standard (or weak) stability, strong stability results in non-linear con-

straints on matchings. As a result, the geometry of stable matchings is complicated, and

we need to use fixed-point methods instead of the linear programming approach.

Our main results are as follows. We characterize the matchings that are rationaliz-

able as the optimal matching for one side of the market.1 The main implication of the

characterization is that a matching is rationalizable as optimal if and only if it is ratio-

nalizable as the unique stable matching in the market; in turn this happens if and only

if the matching is rationalizable if the market allowed for transfers. Hence, the empirical

1We do not study the deferred acceptance procedure per se, which is shown to produce extremal
outcomes for less general matching markets (Roth and Sotomayor, 1990), but the extremal outcomes
themselves. It is clear that in aggregate markets the Gale-Shapley result still holds. Kesten and Ünver
(2009) adopt the deferred acceptance algorithm to environments when matchings can be non-integer.
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content of the hypothesis that marriage matching is man-optimal, or woman-optimal, is

the same as the hypothesis that there are unlimited quasilinear monetary transfers in the

market. In other words, the theory of one-sided optimal stable matching is observation-

ally equivalent to the theory of unique stable matching; and observationally equivalent

to the theory of transferable-utility matching.

The theory of stable matching without transfers was first developed by Gale and

Shapley (1962). Gale and Shapley also propose the algorithm that finds an extremal

stable matching. On the other hand, the theory of matching with transfers was developed

by Shapley and Shubik (1971), and (with great impact) applied to marriage matchings

by Becker (1973). Our results imply that from the purely empirical viewpoint, these

theories are equivalent. They have the same empirical content.

Our results are directly applicable to actual data on matchings. For examples, there

are “marriage tables” readily available: these show the numbers of agents of a particular

age, level of education and income (for example) that are married in a particular year.

By simply inspecting these tables one can test for extremal stability (or equivalently for

unique stable matching). Similarly, one could analyze a random matching, such as the

one proposed by a particular randomized mechanism for assigning students to schools.

For example, if we guarantee a set of students a strictly positive probability of matching

with a set of schools, then our results imply the resulting random matching cannot be

student (or school) optimal.

1.1 Related literature

A number of papers study the empirical content of stability for aggregate matching (Choo

and Siow, 2006; Dagsvik, 2000; Echenique, Lee, and Shum, 2010). There are not results,

however, on the joint hypothesis that matchings are stable and optimal for one side of the

market. Echenique, Lee, and Shum (2010) characterize the aggregate matchings that are

rationalizable as stable, but their results are silent on which stable matching is selected

when a matching is rationalized.

Random and fractional matchings are studied by Vande Vate (1989); Rothblum

(1992); Roth, Rothblum, and Vate (1993); Kesten and Ünver (2009), but not from the

revealed preference perspective of understanding which random matchings are rational-

izable when preferences are unobserved. With the exception of Kesten and Ünver (2009),

these papers focus on the standard notion of stability for fractional matching. Roth,
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Rothblum, and Vate (1993) introduce the idea of strong stability, as we use it, but ob-

tain only very weak results: as we explain in Section 5, the problem is that strong stability

gives rise to a system of quadratic equations (Vande Vate (1989); Rothblum (1992); Roth,

Rothblum, and Vate (1993) use linear programming techniques). Our existence results

are closer to Alkan and Gale (2003), who present a general approach to stable matching.

Alkan and Gale work with choice functions instead of the incomplete first-order stochas-

tic dominance preference relation that we use, but it is likely that their methods can be

adapted to show existence of extremal matchings in our model. Of course, Alkan and

Gale do not treat the issue of rationalizing a matching as stable when preferences are

unknown.

We use Tarski’s fixed point theorem to show the existence of stable matchings that

are optimal for one side of the market. This approach has been used in the matching

literature before. For example, see Roth and Sotomayor (1988); Adachi (2000); Fleiner

(2003); Echenique and Oviedo (2004, 2006); Echenique and Yenmez (2007); Ostrovsky

(2008); Hatfield and Milgrom (2005); Komornik, Komornik, and Viauroux (2010).

2 Model

2.1 Preliminary definitions

If S is a set, and ≤ is a partial order on S we say that the pair (S,≤) is a partially

ordered set. We say that x, y ∈ S are comparable if x ≤ y or y ≤ x.

A partially ordered set (S,≤) is a lattice if, for every x, y ∈ S, the least upper bound,

and the greatest lower bound of {x, y} exist in S for the partial order ≤. We denote the

least upper bound of {x, y} by x∨ y; and the greatest lower bound of {x, y} by x∧ y. A

lattice (S,≤) is distributive if the following holds: for all x, y, z ∈ S:

• x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and

• x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

An (undirected) graph is a pair G = (V, L), where V is a set and L is a subset of

V × V . A path in G is a sequence p = 〈v0, . . . , vN〉 such that for n ∈ {0, . . . , N − 1},
(vn, vn+1) ∈ L. We write v ∈ p to denote that v is a vertex in p. A path 〈v0, . . . , vN〉
connects the vertices v0 and vN . A path 〈v0, . . . , vN〉 is minimal if there is no proper
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subsequence of 〈v0, . . . , vN〉 which is also a path connecting the vertices v0 and vN . The

length of a path 〈v0, . . . , vN〉 is N .

A cycle in G is a path c = 〈v0, . . . , vN〉 with v0 = vN . A cycle is minimal if for any

two vertices vn and vn′ in c, the paths in c from vn to vn′ and from vn′ to vn are minimal.

We call v and w adjacent in c if there is n such that vn = v and vn+1 = w or vn = w and

vn+1 = v. If c and c′ are two cycles, and there is a path from a vertex of c to a vertex of

c′, then we say that c and c′ are connected.

If X = (xi,j) is a matrix then xi,· is the ith row and x·,j the jth column. When it is

not ambiguous, we write xi for xi,· and xj for x·,j.

2.2 Model

The primitives of the model are represented by a four-tuple 〈M,W,P,K〉, where

• M and W are finite and disjoints sets of, respectively types of men, and types of

women.

• P is a preference profile: a list of preferences Pm for every type of man m and Pw

for every type of woman w. Each Pw is a linear order over W ∪{∅}, and each Pm is

a linear order over M ∪{∅}. Here, ∅ represents the alternative of being unmatched.

The weak order associated with Pa is denoted by Ra for any a ∈M ∪W .

• K is a list of non-negative real numbers Km for each m ∈ M and Kw for each

w ∈ W . There are Km men of type m and Kw women of type w.

Suppose that there are l types of women and n types of men. Therefore, we can

enumerate W as {w1, . . . , wl} and M as {m1, . . . ,mn}.

Let Xm =
{
x ∈ Rl+1

+ :
∑

i xi = Km

}
.2 Define a partial order ≤m on Xm as follows

y ≤m x iff

∀w ∈ W
∑

i:wiRmw

yi ≤
∑

i:wiRmw

xi;

interpret wl+1 as ∅, the option of remaining single. Note that ≤m is defined by analogy

to first order stochastic dominance. Letting Xw =
{
x ∈ Rn+1

+ :
∑

i xi = Kw

}
, we define

≤w in an analogous way.

2R+ denotes the set of non-negative real numbers.
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A matching is a matrix X = (xm,w)(m,w)∈M×W such that xm,w ∈ R+,
∑

w xm,w ≤ Km

and
∑

m xm,w ≤ Kw.

We introduce two partial orders on matchings. Suppose X and Y are matchings,

then:

• X ≤M Y if, for all m, x′m ≤m y′m

• X ≤W Y if, for all w, x′w ≤w y
′
w.

where x′m is the vector in Rl+1
+ obtained from x·,w ∈ Rl

+ by assigning Km −
∑

w xm,w to

the entry corresponding to l + 1 (Km −
∑

w xm,w being the mass of single m-agents in

X). Similarly for y′m, x′w and y′w.

Definition 1. A matching X is individually rational if xm,w > 0 implies that w Rm ∅
and mRw ∅.

A pair (m,w) is a blocking pair for A if there is m′ and w′ such that mPwm
′, wPmw

′,

xm,w′ > 0, and xm′,w > 0.

A matching X is stable if it is individually rational and there are no blocking pairs

for X.

Denote by S(M,W,P,K) the set of all stable matchings in 〈M,W,P,K〉.

Two special cases of our model are worth emphasizing: The model of random match-

ing is obtained when Km = 1 for all m, and Kw is a positive integer, for all w. The

interpretation of random matching is that men are “students” and women are “schools.”

Students are assigned a school at random, and each school w has Kw seats available for

students. In real-life school choice, the randomization often results from indifferences in

schools’ preferences over students (Abdulkadirolu, Pathak, and Roth, 2005); Matching

theory requires strict preferences, so a random “priority order” is produced for the schools

in order to break indifferences. Random matchings arise in many other situations as well

because random assignment is often a basic consequence of fairness considerations. Here

we are mainly interested in situations where a random assignment is given in unambigu-

ous terms, but preferences are unobserved (it is also possible that they are observed but

we suspect that they have been misrepresented, or observed with error).

The second model is that of aggregate matching, where all numbers Km and Kw are

natural numbers, and all entries of matchings X are natural numbers. The interpretation
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is that there are Km men of type m, and Kw women of type w, and that a matching X

exhibits in xm,w how many men of type m matched to women of type w. The model of

aggregate matching captures actual observations in marriage models. We observe that

men and women are partitioned into types according to their observable characteristics

(age, income, education, etc.); and we are given a table showing how many men of type

m married women of type w. These observations are essentially “flow” observations

(marriages in a given year), so the aggregate matchings do not have any single agents.

Finally, canonical matchings are those matchings X for which the entries xm,w are

either 0 or 1. Some of the results depend only on whether entries are zero or positive, so

canonical matchings play a key role in our analysis.

3 Testable Implications

We study the testable implications of extremal matchings. First, we establish that they

exist for our general model of matchings. In fact, the standard theory of the structure of

stable matching extends.3

Theorem 2. (S(M,W,P,K),≤M) and (S(M,W,P,K),≤W ) are nonempty, complete,

and distributive lattices; in addition, for X, Y ∈ S(M,W,P,K)

1. X ≤M Y iff Y ≤W X;

2. for all types a ∈M ∪W , either xa ≤a ya or ya ≤a xa;

3. for all m and w,
∑

w∈W xm,w =
∑

w∈W ym,w and
∑

m∈M xm,w =
∑

m∈M ym,w.

Theorem 2 implies that there are two stable matchings, XM and XW , such that for

all stable matchings X,

XW ≤M X ≤M XM

XM ≤W X ≤W XW ,

we refer to XM as the man-optimal (M-optimal) stable matching, and to XW as the

woman-optimal (W-optimal) stable matching. A matching X is the unique stable match-

ing if S(M,W,P,K) = {X}; in this case X coincides with the M - and the W -optimal

matchings.

3As we explain in Section 5, since we work with strong stability, the existing results on stable random
matchings do not apply to our case. For the model of aggregate matching, there are no previous results
on the structure of stable matchings.
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Theorem 2 also presents versions of other classical results on matching for our model.

Statement (1) is a “polarity of interests” results, saying that a stable matching X is better

for men if and only if it is worse for women. Statement (2) says that the outcomes in

two stable matchings are always comparable for an agent: note that ≤a is an incomplete

preference relation. Statement (3) is the “rural hospitals theorem,” which says that single

agents in any two stable matchings are the same.

Having established that extremal matchings always exist, we turn to the revealed

preference question of when we can rationalize a given matching as extremal stable.

Formally, a matching X is M-optimal rationalizable if there is a preference profile P =

((Pm)m∈M , (Pw)w∈W ) such that X is the M-optimal stable matching in 〈M,W,P,K〉.
Analogously, it is W-optimal rationalizable if there is a preference profile such that X

is the W-optimal matching in the corresponding market. We assume that there are no

singles in our data: we observe only formed couples.4

It is worth remarking that rationalizing preferences must be strict. If we assume weak

preferences, there is a trivial rationalization by making each agent be indifferent between

all potential partners.

Given a matchingX, we use a graph defined by the strictly positive entries inX, where

there is an edge between two entries in the same row, and an edge between two entries

in the same column. Formally, consider the graph (V, L) for which the set of vertices

is V := {(m,w)|m ∈ M,w ∈ W such that xm,w > 0}, and ((mi, wj), (mk, wl)) ∈ L if

(mi, wj), (mk, wl) ∈ V and mi = mk or wj = wl.

Theorem 3. Let X be a matching. The following statements are equivalent:

1. X is rationalizable as a M-optimal stable matching;

2. X is rationalizable as a W -optimal stable matching;

3. X is rationalizable as the unique stable matching;

4. the graph (V, L) associated to X has no cycles.

The theorem is easily applicable to aggregate matchings or random matchings. For

example consider a random matching where there is a set S of students and C of schools.

Suppose that there is a set of two students S0 which have a positive chance of being

admitted at every school. Then the resulting matching cannot be student optimal, no

4This is the case in actual data: see Echenique, Lee, and Shum (2010).
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matter what the students’ preferences are, or what schools preferences (priorities) are

chosen. To see this simple point, imagine that students are men and schools are women

in the notation above. Then if we consider the rows corresponding to the students in S0

we will have only positive entries:
...

...

. . . ps,c ps,c′ . . .

. . . ps′,c ps′,c′ . . .
...

...


The graph (V, L) would then contain as a subgraph the cycle

ps,c ps,c′

ps′,c ps′,c′

By Theorem 3, this random matching is not rationalizable as either student optimal

or school optimal, regardless of what preferences-priorities one may assume for the two

sides.

3.1 Transferable Utility

We now turn to the model of matching with transfers. The focus of our paper is on the

models without transfers, but it is instructive to compare extremal rationalizability with

rationalizability under transfers.

Fix sets M , W and list K. For a matching X, suppose that a type m man who

matches with a type w woman can generate a surplus αm,w ∈ R. So the total surplus

generated by the matchings of types m and w in X is xm,wαm,w. The surpluses are

contained in a matrix

α = (αm,w)|M |×|W |.

We want to know when a matching X is rationalizable using the standard model of

matching with transfers.

Let X be a matching. Say that X is TU-rationalizable by a matrix of surplus α if X

is the unique solution to the following problem.

9



maxX̃

∑
m,w αm,wx̃m,w

s.t.

∀w
∑

m x̃m,w = Km

∀m
∑

w x̃m,w = Kw

.
(1)

Remark 4. Note that we require X to be the unique maximizer in (1). If we instead

require X to be only one of the maximizers of (1), then any matching can be rationalized

with a constant surplus. (αi,j = c for all i, j). Uniqueness in the TU model holds for

almost all real matrices α, and it seems to be the natural way to phrase the revealed

preference question.

Corollary 5. A matching X is TU-rationalizable if and only if it is M-optimal rational-

izable.

The corollary follows from Theorem 3 above and Theorem 3.6 in Echenique, Lee, and

Shum (2010) that a matching X is TU rationalizable if and only if the associated graph

(V, L) has no cycles.

4 Median Stable Matching: Existence and Testable

Implications

Extremal stable matchings may be unreasonable because they favor one side over the

other. One may instead be interested in matchings that present a compromise: median

stable matchings are such a compromise. Informally, the median stable matching gives

each agent the partner that is in the median of his/her preference list, once the preference

list is restricted to his/her partners in some stable matching. To calculate the median

we weight each partner by the number of stable matching in which the two are matched.

It is not obvious that median stable matchings exist: for the standard models of

(deterministic) matching, existence was proven by Teo and Sethuraman (1998); see also

Klaus and Klijn (2010), and Schwarz and Yenmez (2007) for other matching markets.

For our model, we shall first show the existence of median stable matching, and then

present a sufficient condition for rationalizability as median stable matchings.

In this section, we only consider aggregate matchings. So we assume a market

〈M,W,P,K〉, where all numbers Km, Kw and entries of matchings X are non-negative in-

tegers. As a result, the number of stable matchings is finite, say k. Let S(M,W,P,K) =
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{X1, . . . , Xk} be the set of stable matchings. For each agent a we consider all the stable

outcomes and rank them according to ≥a. We can rank all the outcomes by (2) of The-

orem 2. More formally, let {x(1)
a , . . . , x

(k)
a } = {x1

a, . . . , x
k
a} and x

(1)
a ≥a . . . ≥a x

(k)
a . Using

these ranked outcomes for all the agents we construct the following matrices: y
(i)
m = x

(i)
m

and y
(i)
w = x

(k+1−i)
w for all i = 1, . . . , k. The matrices Y (i) give each type of men the i-th

best outcome, and each type of women the i-th worst outcome out of the outcomes in a

stable matching.

Proposition 6. Y (i) is a stable aggregate matching.

If k is odd we term Y (k+1/2) the median stable matching. If k is even we refer to Y (k/2)

as the median stable matching (but of course this choice is arbitrary). In our proofs we

construct preferences such that the number of stable matchings is odd, so our results do

not depend on this choice.

Corollary 7. The median stable matching exists.

Having established that median matching always exists in the model of aggregate

matching, we proceed to understanding their testable implications. We want to know

when a matching can be rationalized as the median stable matching. Formally, an ag-

gregate matching X is median rationalizable if there is a preference profile P such that

X is a median matching in 〈M,W,P,K〉.

Recall that if 〈v0, . . . vN〉 is a cycle, then N is an even number. Say that a cycle c is

balanced if

min {v0, v2, . . . , vN−2} = min {v1, v3, . . . , vN−1} .

Theorem 8. An aggregate matching X is median rationalizable if it is rationalizable and

if all cycles of the associated graph (V, L) are balanced.

Corollary 9. A canonical matching X is either not rationalizable or it is median ratio-

nalizable.

Unfortunately, the result in Theorem 8 is only a sufficient condition for median ra-

tionalizability. Corollary 9 gives a characterization, but for the limited case of canonical

matching. To sketch the boundaries of these results, we present two examples. Ex-

ample 10 shows that there are indeed matchings that are not rationalizable as median

matchings: so Corollary 9 does not extend to all aggregate matchings. Example 11 shows

that the sufficient condition in Theorem 8 is not necessary.
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Example 10. A rationalizable aggregate matching that cannot be rationalized as the

median:

1 3

3 1

The only way to rationalize this aggregate matching is to direct the edges so that

the cycle is a flow, i.e., if w1Pm1w2 then m2Pw1m1, w2Pm2w1, and m1Pw2m2. Similarly,

if w2Pm1w1 then the preferences of agents are such that there is a flow. Regardless of

how the flow is directed, all the feasible aggregate matchings are stable, so there are 5

stable aggregate matchings in total. Therefore, the median aggregate stable matching is

the one where each agent is matched to both possible partners twice.

Example 11. The following example shows that the sufficient condition in Theorem 8

is not necessary. Suppose that there are four types of men, three types of women, and

consider the aggregate matching

X =


0 0 2

0 2 1

1 3 0

3 1 0

 .

We choose the preferences such that the graph corresponding to X is as follows. Note

that we indicate preference with an arrow, so that for example xi,j → xi,h means that

wh Pmi
wj.

0 oo

��

��

2

2 // 1

OO

1 //
OO 3

��

OO

3 oo 1.

Note that there is a cycle 〈x3,1, x3,2, x4,2, x4,1〉 and that . . .

By “rotating” the cycle 〈x3,1, x3,2, x4,2, x4,1〉 in a clockwise direction we obtain the

12



aggregate matching 
0 0 2

0 2 1

0 4 0

4 0 0

 ,

which is better for the men. However, by counterclockwise rotations we obtain the

matchings 
0 0 2

0 2 1

2 2 0

2 2 0

 ,


0 0 2

0 2 1

3 1 0

1 3 0

 ,


0 0 2

0 2 1

4 0 0

0 4 0

 ,

which are all better for women than X.

Now, with the rationalization in the arrows above, the following “joint” rotation of

the cycle and the upper entries of the matchings is stable as well:
0 1 1

0 1 2

0 4 0

4 0 0

 ,


0 2 0

0 0 3

0 4 0

4 0 0

 .

These two matchings are better for the men. In all, then, under the rationalizing prefer-

ences in the arrows, there are 7 stable matchings: and X is the median matching.

There is a crucial aspect of the example that makes this possible. Note that, if we

are to rotate the upper part of the graph, we need preferences to be as indicated by the

arrows. In particular, we must have x2,3 → x1,3 for the graph to be rationalizable; then,

to accommodate a > 0 entry in x1,2 after the rotation, we must have x1,3 → x1,2 or we

would get a blocking pair (m1, w3). But since we have positive entries in x1,3 and in x3,2,

x1,3 → x1,2 implies that we need x1,2 → x3,2 (the long dotted arrow in the graph). Now,

a modification of X that has a positive entry in x1,2 is only possible if we simultaneously

set x3,1 = 0, as x3,1 → x3,2 and x1,2 → x3,2. Hence the rotation of the upper side of the

graph is not feasible under any of the modification of X that improve the matches of the

women.

There is, therefore, an asymmetry in the graph that allows us to offset the unbal-

ancedness of the number of men and women in the cycle.
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5 Strong Stability

In this section we argue that (a) strong stability is the natural notion of stability for

aggregate matchings, and of ex-ante stability for random matchings; and (b) that one

cannot analyze strong stability using the standard linear programming tools.

First, it is rather obvious that strong stability is the natural notion of stability for

aggregate matchings. Concretely, if there is a pair (m,w) that can block an aggregate

matching X, then there are two agents: one man of type m and one woman of type w,

such that the two agents can block in the usual sense. However, the case of random

matching requires more explaining.

If X is a random matching, we can view the row xm as a probability distribution over

the set of women who may be partners of m; similarly for xw. Then (m,w) is a blocking

pair (in the strong sense) if and only if there are distributions x′m and x′w such that

• x′m first order stochastically dominates xm and x′w first order stochastically domi-

nates xw;

• (m,w) can achieve x′m and x′w by mutual agreement, without the consent of any

other agents, because x′m,w̃ ≤ xm,w̃ and x′m̃,w ≤ xm̃,w for any m̃ and w̃.

The ex-ante perspective makes sense if we think that agents can trade probabilities

or time shares — see Hylland and Zeckhauser (1979). After agents trade, any random

matching can be implemented physically by a decomposition into deterministic, simulta-

neous, matchings (using the Birkhoff von-Neumann theorem). If trades in probabilities or

time-shares are somehow ruled out, then one can still justify strong stability on fairness

grounds (Kesten and Ünver, 2009).

The standard notion of stability can be analyzed by linear programming methods

(Vande Vate, 1989; Rothblum, 1992; Roth, Rothblum, and Vate, 1993). The reason

is that stability results in a collection of linear constraints on matchings: a fractional

matching X is stable if and only if it satisfies a set of linear inequalities. Strong stability,

on the other hand, does not result in linear constraints.

Specifically, the property that an individually rational X is strongly stable is equiva-

lent to the following statement. For all pairs (m,w),( ∑
w′:wPmw′

xm,w′

)( ∑
m′:mPwm′

xm′,w

)
= 0.
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Hence X is a strongly stable matching if and only if it is feasible, individually rational,

and satisfies a set of quadratic constraints. The resulting set of matrices does not have

the geometry that one can exploit for fractional stable matching. On the other hand,

observe that the weak notion of stability is captured by the constraints: for all (m,w)∑
w′:wPmw′

xm,w′ +
∑

m′:mPwm′

xm′,w ≤ 1;

which conforms a linear system of inequalities.

6 Conclusion

The deferred acceptance algorithm was first introduced in Gale and Shapley (1962). How-

ever, it was already being used in several markets even before then (see Roth (2008)).

Indeed, it is viewed as not only a recipe of how we should organize clearinghouses for

two-sided matching markets, but also a folk model of how decentralized markets behave.

Although economists have built clearinghouses based on the deferred acceptance algo-

rithm (NY and Boston school mechanisms, the National Residence Matching Program,

etc.), there has been no analysis of whether the decentralized market outcomes can be

the deferred acceptance algorithm outcomes. We have filled in this void.

We show for a general two-sided matching market that a matching can be rationalized

as the outcome of the deferred acceptance algorithm, which produces extremal outcomes

in the lattice of stable matchings, if and only if there are no cycles in the graph associated

with the matching which in turn is equivalent to the rationalizability of the matching

as a stable matching if transfers were allowed between agents. Therefore, the empirical

content of rationalizability as an extremal outcome without transfers is the same as

rationalizability in the transferable utility setup.

Thus, our analysis provides the tools necessary for the empirical analysis of match-

ing data. To be specific, the question of whether a market behaves as in the deferred

acceptance algorithm can now be studied.
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7 Proofs

7.1 Proof of Theorem 2

We split up the proof in short propositions.

Lemma 12. (Xm,≤m) is a complete lattice, with a largest and smallest element.

Proof. That (Xm,≤m) is a partially ordered set follows from the definition of ≤m. Take

a subset Sm of Xm. We need to show that Sm has a least upper bound and a greatest

lower bound in (Xm,≤m) to complete the proof.

Reorder W ∪ {wl+1} according to m’s preference such that w1Pmw2Pm . . . Pmwl+1.

Let z1 = sup{x1|x ∈ Sm}. Define zi inductively as follows: zi = sup{x1 + . . .+ xi|x ∈
Sm} − (z1 + . . .+ zi−1). Note that by definition zi ≥ 0 and

∑
i

zi = Km, so z ∈ Xm.

Claim: z is a least upper bound of Sm.

Proof: By definition,
j=i∑

j=1

zj = sup{x1 + . . . + xi|x ∈ Sm} which is greater than

x1 + . . . + xi for all x ∈ Sm and i. Therefore, z ≥m x for all x ∈ Sm, which means

that z is an upper bound. Suppose that z′ is another upper bound of Sm. Therefore,

z′1 + . . . + z′i ≥ x1 + . . . + xi for all x ∈ Sm and i. If we take the supremum of the right

hand side, then we get z′1 + . . . + z′i ≥ sup{x1 + . . . + xi|x ∈ Sm} for all i. On the other

hand, z1 + . . .+ zi = sup{x1 + . . .+ xi|x ∈ Sm} for all i by definition of z. The last two

impressions imply z′1 + . . . + z′i ≥ z1 + . . . + zi for all i, so z′ ≥m z. Thus, z is a least

upper bound.

Similarly we can construct a greatest lower bound as follows: u1 = inf{x1|x ∈ Sm}.
Define ui inductively: ui = inf{x1 + . . .+ xi|x ∈ Sm} − (u1 + . . .+ ui−1). The proof that

u is a greatest lower bound is similar to the proof that z is a least upper bound, so it is

omitted.

For each m, let the choice Cm be defined as follows. For a vector x ∈ Rl+1
+ , let Cm(x)

be the vector in

{y ∈ Xm : yj ≤ xj, j = 1, . . . , l}
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that is maximal for ≤m. In other words, if x represents the quantities of women available

for m, Cm chooses according to Pm from best choice downwards until filling quota Km.

Note that if ∅Pmwj then yj = 0, and that yl+1 = Km−
∑

j:wjPm∅ yj. Define Cw analogously.

Proposition 13. (S(M,W,P,K),≤M) is a nonempty, complete lattice.

Proof. A man pre-matching is a matrix A = (am,w) such that am,w ∈ R+ and
∑

w am,w =

Km. A woman pre-matching is a matrix B = (bm,w) such that bm,w ∈ R+ and
∑

m bm,w =

Kw.

We consider pairs (A,B), where A is a man prematching, and B is a woman pre-

matching, ordered by a partial order ≤. The order ≤ is defined as (A,B) ≤ (A′, B′)

if

∀m∀w
(
am,· ≤m a′m,· ∧ b′·,w ≤w b·,w

)
.

The order ≤ is a product order of complete lattices by Lemma 12, so that the set of all

pairs (A,B) ordered by ≤ is a complete lattice.

We define a function C, mapping pairs (A,B) of prematchings into pairs of prematch-

ings. Fix (A,B): For a man m, the number of women of type w who are willing to match

with m at B is θm,w ≡
∑

i:mRwmi
bmi,w. Let θm ≡ (θm,w1 , . . . , θm,wl

), i.e., the l-vector such

that entry w is the number of women of type w who are willing to match with m at

B. Similarly, for w ∈ W , let ηw be the vector for which entry m is the number of men

of type m who are willing to match with w at A. Now let C(A,B) = (A′, B′) where

a′m = Cm(θm) and b′w = Cw(ηw), with a′m being m’s row in A′ and b′w w’s column in B′.

We now prove that C is isotone. Suppose that (A,B) ≤ (A′, B′). We prove that

C(A,B) ≤ C(A′, B′). Fix m. For any wj, note that if m is not the top man in Rwj
we

obtain ∑
i:mRwj mi

bi,j = Kwj
−

∑
i:miPwj m

bi,j ≤ Kwj
−

∑
i:miPwj m

b′i,j =
∑

i:mRwj mi

b′i,j,

as b′wj
≤wj

bwj
. Ifm is the top man inRwj

we obtain
∑

i:mRwj mi
b′i,j = Kwj

=
∑

i:mRwj mi
bi,j.

As a consequence, in B′ man m has weakly more women of each type willing to match

with him than in B: θm ≤ θ′m. Thus Cm(θm) ≤m Cm(θ′m). Similarly, for women w,

Cw(η′w) ≤w Cw(ηw). It follows that C(A,B) ≤ C(A′, B′)

By Tarski’s fixed point theorem, there is a fixed point of C, the set of fixed points of

C is a complete lattice when ordered by ≤.
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Let (A,B) = C(A,B) be a fixed point of C. Assume that amw > bmw for some m

and w. Cw(ηw) = bw and bmw < amw implies that although amw number of type m men

were available, only bmw of them are chosen by Cw. Therefore, all nonnegative entries in

bw are at least as good as m with respect to Rw. This implies that θmw = bmw. Since

bmw < amw, we get θmw < amw which contradicts am = Cm(θm). Therefore, amw = bmw

for all m and w. Hence a fixed point has the property that A = B is an aggregate

matching, not only prematchings.

Finally we prove that the set of fixed points of C is the set of stable aggregate

matchings. More precisely, (A,A) is a fixed point of C if and only if A is a stable

aggregate matching.

Suppose that a fixed point (A,A) is not stable. Then there is a blocking pair (m,w).

That is, there is m′ and w′ such that mPw m
′, w Pm w′, am,w′ > 0, and am′,w > 0. Now,

the number of women of type w who are willing to match with m is

θm,w =
∑

i:mRwmi

ai,w ≥ am,w + am′,w > am,w,

as am′,w > 0. But θm,w > am,w and am = Cm(θm) contradicts that there is w′ with wPmw
′

and am,w′ > 0.

Suppose that A is a stable aggregate matching. Fix m and we show that am = Cm(θm)

where θm,w =
∑

i:mRwmi
ai,w. Denote wj as the most preferred type of women such

that am,wj
6= (Cm(θm))j. By definition of Cm, am,wj

> (Cm(θm))j is not feasible. For

all wj′ preferred to wj, am,wj′
= (Cm(θm))j′ . Thus, am,wj

> (Cm(θm))j implies either

am,wj
> θm,wj

or
∑

j′:wj′Rmwj
am,wj′

> Km. On the other hand, am,wj
< (Cm(θm))j

contradicts that A is stable. Although there are type wj women available more than

am,wj
, some type m men are matched to less preferred women; That is there is j′ such

that wjPmwj′ and am,wj′
> 0. (m,wj) is a blocking pair. Similarly, we can show that

aw = Cw(θw), and therefore (A,A) = C(A,A).

Proposition 14. Suppose that X and Y are two stable matchings. Then for any men

or women type a, either xa ≤a ya or ya ≤a xa. Consequently, xa ∨a ya = max≤a{xa, ya}
and xa ∧a ya = min≤a{xa, ya}.

Proof. We only prove the first part: that either xa ≤a ya or ya ≤a xa, in three steps
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depending on whether X and Y have integer, rational, and real entries. The second part

is implied immediately: xa ∨a ya = max≤a{xa, ya} and xa ∧a ya = min≤a{xa, ya}.

Case 1 (Integer Entries) We first start with the case when X and Y have integer

entries. Therefore, Kw and Km are also integers. From 〈M,W,P,K〉, we create a many-

to-one matching market (of colleges and students) as follows.

The set of men remains the same; interpreted as the set of colleges. A college m has

a capacity of Km. Whereas, each woman w is split into Kw copies, all of which have the

same preferences Pw over men; women are interpreted as students. On the other hand,

man m’s preferences P ′m replaces woman w in Pm with her copies enumerated from 1

to Kw, in increasing order. Denote wi’s j-th copy by wj
i . So wj

i P
′
m wk

i if and only if

k > j. In addition, each man has responsive preferences over groups of women. The new

matching market with |M | men and
∑

w Kw women is a many-to-one matching market

where an outcome for a man is a group of women and an outcome for a woman is either

a man or being single.

Now, we construct a new matching, X ′, in the new market from X. It is enough to

describe the matches of women in X ′. Rank woman w’s outcomes in X in decreasing

order according to her preference Pw. Let the jth copy of wi, w
j
i , match to the jth highest

outcome of w in X. Similarly construct Y ′ from Y .

We claim that X ′ and Y ′ are stable matchings in the new market. Suppose for

contradiction that X ′ is not a stable matching. Since X ′ is individually rational by

construction, there exists a blocking pair (m,wj
i ). This means that wj

i ’s match is worse

than m. Similarly, m’s match includes an agent worse than wj
i : this agent cannot be wk

i

where k < j by definition of P ′, and it cannot be wk
i where k > j because by construction

wk
i ’s match is worse than wj

i ’s match with respect to Pwi
. Hence, one of m’s matches is

worse than wj
i , and not a copy of wi. This means that (m,wi) forms a blocking pair in

X: A contradiction to the stability of X. Therefore, X ′ must be stable. Similarly, Y ′ is

also stable.

Now, by Theorem 5.26 of Roth and Sotomayor (1990), for any man m the outcomes

in X ′ and Y ′ are comparable. This means that the responsive preferences over groups of

women inherited from P ′m, which is equivalent to the first order stochastic dominance, can

compare the outcomes of m in these two stable matchings. Therefore, ≤m can compare

the outcomes in X and Y since Pm is a coarser order than P ′m.
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An analogous argument shows that ≤w can compare Xw and Yw.

Case 2 (Rational Entries) Suppose for now that all entries of X and Y are rational

numbers. Therefore, Kw and Km are also rational numbers. Define a new matching

market from 〈M,W,P,K〉 as follows.

M , W , and P are the same. We change the capacities as follows. Find a common

factor of denominators in all entries in X and Y , say r, and multiply all capacities by

r. Therefore, the new market is 〈M,W,P, rK〉. Define X ′ ≡ rX and Y ′ ≡ rY with

non-negative integer entries. By the argument above, for any agent a, rXa and rYa can

be compared with respect to ≤a which implies that Xa and Ya can also be compared.

Case 3 (Real Entries) Suppose now that entries of X and Y are real numbers. We

construct two sequences of matrices, X(n) and Y (n), as follows:

1. X(n) and Y (n) have rational entries,

2. x
(n)
ij = 0 ⇐⇒ xij = 0 and y

(n)
ij = 0 ⇐⇒ yij = 0 for all i, j,

3. the sum of entries in row i and column j is the same for X(n) and Y (n), and

4. X(n) ⇒ X and Y (n) ⇒ Y as n⇒∞.

By construction the stability of X and Y imply stability of X(n) and Y (n) where the

capacities of types are adjusted. By the argument above, for each type a, x
(n)
a and y

(n)
a

can be compared with respect to ≤a. Take a subsequence such that the ordering is the

same for all entries. Therefore, x
(n)
a ≤a y

(n)
a for all n or y

(n)
a ≤a x

(n)
a for all n. By taking

n to ∞ we get that either xa ≤a ya in the former case, or ya ≤a xa in the latter.

Using the proposition above, we show that (S(M,W,P,K),≤M) is distributive.

Proposition 15. (S(M,W,P,K),≤M) is a distributive lattice.

Proof. We have shown that (S(M,W,P,K),≤M) is a lattice in Proposition 2. We show

that the lattice is distributive.

Suppose that X, Y , and Z are stable matchings. We are going to prove that type a

have the same matching in X ∧ (Y ∨ Z) and (X ∧ Y ) ∨ (X ∧ Z) for all agents a:
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(X ∧ (Y ∨ Z))a = min{xa,max{ya, za}}

= max{min{xa, ya},min{xa, za}}

= max{(X ∨ Y )a, (X ∨ Z)a}

= ((X ∧ Y ) ∨ (X ∧ Z))a,

where min and max operators are defined with respect to ≤a and where we repeatedly

use Proposition 14.

The proof that X ∨ (Y ∧ Z) = (X ∨ Y ) ∧ (X ∨ Z) is analogous.

Proposition 16. Suppose that X and Y are stable matchings. Then
l∑

j=1

xij =
l∑

j=1

yij for

all i and similarly
n∑

i=1

xij =
n∑

i=1

yij for all j.

Proof. The proof has the same structure as in the proof of Proposition 14: it has three

steps depending on whether X and Y have integer, rational, and real entries.

Case 1 (Integer Entries) We first start with the case when X and Y have integer

entries. Therefore, Ka is also an integer for all a. From 〈M,W,P,K〉, we create a many-

to-one matching market and also stable matchings X ′ and Y ′ in this new market as in

the proof of Proposition 14.

Now, by Theorem 5.12 of (Roth and Sotomayor, 1990), the set of positions filled for

any man m in X ′ and Y ′ are the same. Therefore,
l∑

j=1

xij =
l∑

j=1

yij for all i. Similarly,

n∑
i=1

xij =
n∑

i=1

yij for all j.

Case 2 (Rational Entries) Suppose for now that all entries of X and Y are rational

numbers. Therefore, Ka is also a rational number for all a. Define a new matching market

from 〈M,W,P,K〉 as follows.

M , W , and P are the same. We change the capacities as follows. Find a common

factor of denominators in all entries in X and Y , say r, and multiply all capacities by

r. Therefore, the new market is 〈M,W,P, rK〉. Define X ′ ≡ rX and Y ′ ≡ rY with

non-negative integer entries.
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By the argument above,
l∑

j=1

rxij =
l∑

j=1

ryij for all i and
n∑

i=1

rxij =
n∑

i=1

ryij for all j. The

conclusion follows.

Case 3 (Real Entries)

Suppose now that entries of X and Y are real numbers. We construct two sequences of

matrices, X(n) and Y (n), as follows:

1. X(n) and Y (n) have rational entries,

2. x
(n)
ij = 0 ⇐⇒ xij = 0 and y

(n)
ij = 0 ⇐⇒ yij = 0 for all i, j,

3. the sum of entries in row i and column j is the same for X(n) and Y (n), and

4. X(n) ⇒ X and Y (n) ⇒ Y as n⇒∞.

By construction, stability of X and Y imply stability of X(n) and Y (n) where the

capacities of agents are adjusted. By the argument above,
l∑

j=1

x
(n)
ij =

l∑
j=1

y
(n)
ij for all i and

n∑
i=1

x
(n)
ij =

n∑
i=1

y
(n)
ij . If we take the limit of these equalities as n ⇒ ∞, we get the desired

equalities.

7.2 Proof of Theorem 3

We proceed by proving first that rationalizability as eitherM - orW -optimal (i.e. extremal

rationalizability) stable matching implies the absence of cycles. Second, we prove that

the absence of cycles implies rationalizability as a unique stable matching. Since a unique

stable matching is trivially both M - and W -optimal, the result follows.

7.2.1 Proof that extremal rationalizability implies the absence of cycles

Let X be an aggregate matching that is extremal rationalizable. There exists a preference

profile P such that X is M-optimal or W-optimal stable matching in 〈M,W,P,K〉.

By means of contradiction, suppose that the graph (V, L) associated to X has a

minimal cycle c = 〈v0, . . . , vN〉. We denote mn for the type of the men in vn, and wn

for the type of the women in vn, respectively. We call an edge ((m,w), (m′, w′)) ∈ L

vertical if w = w′ and horizontal if m = m′. The following result is Lemma 14 and 15 of

Echenique, Lee, and Shum (2010).

22



Lemma 17. If c = 〈v0, . . . , nN〉 is a minimal cycle, then no vertex appears twice in c,

and
(vn, vn+1) ∈ L is vertical ⇒ (vn+1, vn+2) ∈ L is horizontal

(vn, vn+1) ∈ L is horizontal ⇒ (vn+1, vn+2) ∈ L is vertical

An orientation of (V, L) is a mapping d : L→ {0, 1}. We shall often write d((mi, wj), (mi, wk))

as dmi,wj ,wk
and d((mi, wj), (ml, wj)) as dwj ,mi,ml

. Fix an orientation d of (V, L). A path

〈vn〉Nn=0 is a flow for d if d(vn, vn+1) = 1 for all n = 0, . . . , N − 1.

A preference profile (Pmi
, Pwj

) defines an orientation d by setting dwj ,mi,ml
= 1 ⇐⇒

mi Pwj
ml and dmi,wj ,wk

= 1 ⇐⇒ wj Pmi
wk. Let d be the orientation defined by the

preference profile P that rationalizes X as an extremal matching.

Lemma 18. The index of the cycle c can be chosen such that the path 〈vn〉N−1
n=0 is a flow

for d.

A result similar to Lemma 18 is shown by Echenique, Lee, and Shum (2010). By

Lemma 18, for all n = 0, 1, . . . , N − 1, if edge (vn, vn+1) is vertical (i.e. wn = wn+1), we

have dwn,mn,mn+1 = 0, and when the edge is horizontal, we have dmn,wn,wn+1 = 0.

In the following proof, we show that we can make the men (women) weakly better

(worse) off by “rematching” men and women whose matches are involved in the cycle c

while preserving stability. We can also make women (men) weakly better (worse) off with

a similar rematching. Therefore, X is neither M-optimal nor W-optimal stable matching.

We capture “rematching,” using a matrix of differences in matches: let A be the set

of all |M | × |W | matrices A such that for all i and j:

1. ai,j = 0 if (i, j) is not in the cycle c;

2.
∑

h ai,h = 0,
∑

l al,j = 0; and

3. ∀(i′, j′) |ai,j| ≤ xi′,j′ .

Claim 19. For all A ∈ A, the matrices X + A and X − A are stable in 〈M,W,P,K〉;
and either

• X − A ≤M X ≤M X + A and X − A ≥W X ≥W X + A, or

• X + A ≤M X ≤M X − A and X + A ≥W X ≥W X − A.
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Proof. For any A ∈ A, X + A is a well defined matching: by Property (2) the row and

column sum of X + A respect the feasibility constrains; by Property (1) and (3), the

entries of X + A are non-negative. The matrix X + A is also a stable matching, as

(X + A)i,j > 0⇒ Xi,j > 0.

Indeed, if there were a blocking pair of type mi and type wj under X +A, it would also

be a blocking pair under X. Since A ∈ A ⇒ −A ∈ A, X − A is also well defined and

stable.

Observe that as a consequence of Properties (2)-(1), amn,wn alternate in sign. So that

if amn,wn ≥ 0 then amn+1,wn+1 ≤ 0; and amn,wn > 0 then amn+1,wn+1 < 0. This implies,

first, that if amn,wn = 0 for some n then A = 0. And, second, that one of the following

two cases has to hold. (a) For all n, if mn = mn+1 = m then am,wn > 0 and am,wn+1 < 0,

and if wn = wn+1 = w then amn,w < 0 and amn+1,w > 0. (b) For all n, if mn = mn+1 = m

then am,wn < 0 and am,wn+1 > 0, and if wn = wn+1 = w then amn,w > 0 and amn+1,w < 0.

Clearly, if A = 0 then there is nothing to prove. We shall proceed by assuming

that we are in case (a), and we shall prove that X − A ≤M X ≤M X + A. It will

become clear that if we instead assume that we are in case (b), we would establish that

X + A ≤M X ≤M X − A.

Fix m ∈M . By definition of minimal cycle, there is at most one n such that vn, vn+1 ∈
c and mn = mn+1 = m. If no such n exists, by Property (1) of A, (X − A)m,· =

(X + A)m,· = xm,·. Thus (X − A)m,· ≤m xm,· ≤m (X + A)m,·.

If, on the other hand, there is vn, vn+1 ∈ c such that mn = mn+1 = m, then (vn, vn+1)

is horizontal and (vn+1, vn+2) is vertical. From the orientation d, we have dm,wn,wn+1 = 1,

which implies wn Pm wn+1.

In Am,·, only amn,wn and amn+1,wn+1 are non-zero, and 0 < amn,wn = −amn+1,wn+1 , as

we have assumed that we are in case (a). By definition of ≤m, wn Pm wn+1 implies that

(X − A)m,· ≤m Xm,· ≤m (X + A)m,·.

Since the type m was arbitrary, we obtain X −A ≤M X ≤M X +A. By Theorem 2,

this also implies that X − A ≥W X ≥W X + A.
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7.2.2 Proof of that the absence of cycles implies unique rationalizability.

We prove that if the graph (V, L) associated to X has no cycles, then there are preferences

P such that (M,W,P,K) has X as its unique stable matching. The matching X is

therefore both M - and W -optimal.

We introduce a particular set of preferences. Let U = (um,w) ∈ R|M |×|W |+ in which

um,w 6= um′,w′ for all (m,w) 6= (m′, w′). For each m and w, a man of type m and a woman

of type w both receive utility um,w by being matched to each other. We denote by PU

the preferences induced by such utilities, called perfectly correlated preferences.

Lemma 20. If preferences are perfectly correlated, there exists a unique aggregate stable

matching.

Proof. Suppose for contradiction that X and Y are two distinct stable matchings. Let

U be the set of numbers um,w for m and w such that xm,w 6= ym,w. Let (m∗, w∗) be such

that um∗,w∗ ∈ U and um∗,w∗ ≥ u for all u ∈ U . Suppose, without loss of generality, that

xm∗,w∗ < ym∗,w∗ . Note that ∑
m:mPw∗m∗

xm,w∗ =
∑

m:mPw∗m∗

ym,w∗∑
w:wPm∗w∗

xm∗,w =
∑

w:wPm∗w∗

ym∗,w,

because m Pw∗ m
∗ ⇒ um,w∗ > um∗,w∗ ⇒ xm,w∗ = ym,w∗ by construction of (m∗, w∗), and

similarly for the second equality.

Then, ∑
m:m∗Pw∗m

xm,w∗ = Kw∗ −
∑

m:mRw∗m∗

xm,w∗

= Kw∗ − xm∗,w∗ −
∑

m:mPw∗m∗

xm,w∗

> Kw∗ − ym∗,w∗ −
∑

m:mPw∗m∗

ym,w∗

≥ 0,

as xm∗,w∗ < ym∗,w∗ . Similarly,
∑

w:w∗Pm∗w
xm∗,w > 0 and (m∗, w∗) is a blocking pair of X;

which contradicts the stability of X.
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We prove the result by using the absence of cycles to assign cardinal utilities U =

(um,w) so that agents’ preferences are perfectly correlated. Then Lemma 20 guarantees

that X is the unique stable matching.

We first prove the case when all nodes in V are connected, and later generalize to the

case where there are multiple connected components of (V, L).

Suppose that the graph (V, L) associated to X has no minimal cycles; so it has no

cycles. Choose a vertex v0 in V . Since (V, L) contains no cycles, for each v ∈ V there is a

unique minimal path connecting v0 to v in (V, L). Let η(v) be the length of the minimal

path connecting v0 to v.

We construct correlated preferences that rationalize X by constructing numbers U =

(um,w). For v ∈ V (i.e. xmv ,wv > 0), umv ,wv = (1 + η(v)) + εmv ,wv , and for all other

(m,w) with xm,w = 0, um,w = εm,w. All εmv ,wv and εm,w are positive, and distinct real

numbers; we assume all εm,w are small enough that if η(v) > η(v′) then umv ,wv > umv′ ,wv′
.

Specifically, let (εm,w) be a collection of distinct real numbers such that 0 < εm,w < 1/3

for all (m,w).5

Suppose that a man of type m and a woman of type w both receive the same util-

ity um,w by being matched to each other. We show that X is a stable matching in

〈M,W,PU , K〉. It follows that X is the unique stable matching because preferences are

correlated (Lemma 20).

Suppose for contradiction that a pair (mi, wj) blocks X. There exist mi′ and wj′

such that xmi,wj′
> 0, xmi′ ,wj

> 0, and umi,wj
> umi,wj′

and umi,wj
> umi′ ,wj

. Since

xmi,wj′
> 0 and xmi′ ,wj

> 0, they are nodes in V , and umi,wj′
> 1 and umi′ ,wj

> 1.

Thus umi,wj
> max{umi′ ,wj

, umi,wj′
} > 1, by definition of U , which implies xmi,wj

> 0.

Therefore, 〈(mi′ , wj), (mi, wj), (mi, wj′)〉 is a path.

There are unique paths from v0 to each (mi′ , wj), (mi, wj), and (mi, wj′).

Note that umi,wj
> umi′ ,wj

implies that η((mi, wj)) ≥ η((mi′ , wj)). Observe that if

(v, v′) ∈ L then η(v) 6= η(v′) because if we had η(v) = η(v′) then v would not lie in the

path 〈v0, . . . , v
′〉 and v′ would not lie in the path 〈v0, . . . , v〉, so (v, v′) ∈ L would imply

the existence of a cycle. So we establish that η(v) 6= η(v′). So η((mi, wj)) ≥ η((mi′ , wj))

implies that

η((mi, wj)) > η((mi′ , wj)). (2)

5We use εmv,wv and εm,w only to ensure strict preferences.
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Now, (2) is only possible if the unique path from v0 to (mi, wj) contains (mi′ , wj). Then

η(mi, wj′) > η(mi, wi); but this contradicts that umi,wj
> umi,wj′

. So (mi, wj) cannot be

a blocking pair.

When (V, L) has multiple components, {(V1, L1), . . . , (VN , LN)}, we can partition M

and W as (M1, . . . ,MN) and (W1, . . . ,WN) such that for all v ∈ Vn, mv ∈ Mn and

wn ∈ Wn.

For each (Vn, Ln) with associated setsMn andWn, we assign utilities (um,w)(m,n)∈Mn×Wn

similar to the single component case. For other m and w, we assign um,w = εm,w. For

all (m,w), εm,w are small and positive real number, and εm,w 6= εm′,w′ when (m,w) 6=
(m′, w′).

Suppose a type m man and a type w woman are not matched under X. If there is

n such that (m,w) ∈ Mn ×Wn, then (m,w) is not a blocking pair by the proof above

for the case of a single connected component. If (m,w) ∈Mn ×Wl with n < l, then, by

the construction of um,w, w′ Pm w for any w′ with xm,w′ > 0. Thus (m,w) is again not a

blocking pair; X is stable matching. By Lemma 20 it is the unique stable matching.

7.3 Proof of Theorem 8

Let X be a rationalizable aggregate matching such that all cycles of the associated graph

(V, L) are balanced. Direct the edges of (V, L) such that each cycle is oriented as follows:

if 〈v0, . . . vN〉 is a cycle, then the edge (vn, vn+1) ∈ L is oriented such that d(vn+1, vn) = 1,

which we denote by vn → vn+1. For each path 〈v0, . . . vN〉, direct the edges in a similar

way. If the matching X is rationalizable, then such an orientation of the edges exists

and defines a rationalizing preferences profile P (Echenique, Lee, and Shum, 2010). The

rationalizing preferences have the property that if xi,j = 0 and xi′,j′ > 0 then wj′ Pmi
wj

if i = i′, and mi′ Pwj
mi if j = j′.

First, if X has no cycles, then it is rationalizable as the unique stable matching

(Theorem 3), so there is nothing to prove, as a unique stable matching is also the median

stable matching. Suppose then that X has at least one cycle c = 〈v0, . . . vN〉. Enumerate

the vertexes of the cycle such that vn → vn+1 in the orientation (directed graph) of (V, L)

above, and v0 lies in the same row as v1. Let

Θ = min {v0, v2, . . . , vN−2} = min {v1, v3, . . . , vN−1} .
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Let A be the set of all |M | × |W | matrices A of integer numbers such that

• ai,j = 0 if (i, j) is not in the cycle c;

• for all i and j,
∑

h ai,h = 0
∑

l al,j = 0; and

• |ai,j| ≤ Θ.

We want to make two observations about the matrices in A. First, (X +A)i,j > 0⇒
xi,j > 0, so X + A is a stable matching for all A ∈ A. Second, A ∈ A if and only if

−A ∈ A; and A ∈ A is such that xi,· ≤mi
(X + A)i,· iff (X − A)i,· ≤mi

xi,·. Similarly,

A ∈ A is such that x·,j ≤wj
(X + A)·,j iff (X − A)·,j ≤wj

x·,j.

We need to prove that there are no other stable matchings than the ones obtained

through matrices in A: Then X is a median stable aggregate matching.

Let Y 6= X be another stable matching in the resulting market 〈M,W,P,K〉. We

shall prove that yi,j 6= xi,j only if xi,j is a vertex in a minimal cycle of X. Suppose then

that yi,j 6= xi,j. The number of single agents of each type is the same in X as in Y

(Proposition 16; in this case it is zero, as X has no single agents). So, if xi,j < yi,j then

there is h 6= j and l 6= i such that yi,h < xi,h and yl,j < xl,j. Similarly, if xi,j > yi,j then

there is h 6= j and l 6= i such that yi,h < xi,h and yl,j < xl,j.

We can apply the previous observation repeatedly to obtain a sequence (i1, j1), . . . (iN , jN)

with (i1, j1) = (iN , jN) such that for each n mod N :

1. (xin,jn − yin,jn)(xin+1,jn+1 − yin+1,jn+1) < 0

2. in 6= in+1 ⇐⇒ jn = jn+1.

Claim 21. For n = 1, . . . , N , xin,jn > 0.

Suppose, by way of contradiction, that 0 = xi1,j1 < yi1,j1 . Without loss of generality,

assume that i1 = i2. By definition of the rationalization P , we have that wj2 Pmi1
wj1 ,

as xi1,j1 = 0 and xi1,j2 > yi1,j2 ≥ 0. We can now show that if (in, jn) and (in+1, jn+1)

differ in i, then jn prefers min+1 to min ; and that if they differ in j, then in prefers wjn+1

to wjn . This fact, which we prove in the next paragraph, establishes the contradiction:

iN 6= iN−1, but miN−1
PwiN

miN by definition of P and because 0 = xiN ,jN
= xi1,j1 .

To prove the fact, we reason by induction. We have already established that wj2 Pmi1

wj1 . Suppose that wjn Pmin
wjn−1 . By Property 1 of the sequence 〈(in, jn)〉Nn=1, either

28



xin−1,jn−1 > 0 and xin+1,jn+1 > 0; or yin−1,jn−1 > 0 and yin+1,jn+1 > 0 (or both hold).

Then the stability of X and Y implies that min+1 Pwjn
min . The proof for the case when

win Pwin
min−1 is similar.

The claim implies that the sequence 〈vn〉 = 〈xin,jn〉 is a cycle in (V, L). Thus a stable

Y can only differ from X in vertexes that are part of a cycle of (V, L). Let A = Y −X;

we shall prove that A ∈ A. We established above that ai,j 6= 0 only if xi,j is a vertex

in a cycle. We now prove that |ai,j| ≤ Θ. Clearly, ai,j ≥ −xi,j ≥ −Θ. We show that if

ai,j > 0 then there is h such that ai,j + ai,h = 0.

If ai,j > −ai,h for all h 6= i then there is h1 and h2 such that some men of type mi

who are married to women of type h1 and h2 in X are married to women of type wj in

Y . Then we can define two cycles, and xi,j would be a vertex in both of them. The first

cycle has (xi,j, xi,h1) as the first edge, and the remaining edges defined inductively, by

the definition of 〈(in, jn)〉 above. The second cycle has (xi,j, xi,h2) as the first edge, and

the remaining edges defined inductively. The resulting two cycles would be connected,

which contradicts the hypothesis that X is rationalizable. So there must exist some h

with ai,j ≤ −ai,h. An analogous argument applied to ai,h implies that ai,j ≥ −ai,h; so

ai,j = −ai,h. Then, ai,j ≤ Θ, as ai,h ≥ −Θ.

7.4 Other proofs

Proof of Proposition 6. The proof that Y (i) is a stable matching follows from lattice struc-

ture with the operators ∨ and ∧ and essentially the same as the proofs of median stable

matchings presented in (Klaus and Klijn, 2006; Schwarz and Yenmez, 2007).
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