A Caltech Library Service

The Free Rider Problem: a Dynamic Analysis

Battaglini, Marco and Nunnari, Salvatore and Palfrey, Thomas R. (2011) The Free Rider Problem: a Dynamic Analysis. Social Science Working Paper, 1355. California Institute of Technology , Pasadena, CA. (Unpublished)

[img] PDF (SSWP 1355 - Jul. 2011) - Submitted Version
See Usage Policy.

[img] PDF (SSWP 1355 - Revised Mar. 2012) - Submitted Version
See Usage Policy.


Use this Persistent URL to link to this item:


We present a dynamic model of free riding in which "n" infinitely lived agents choose between private consumption and contributions to a durable public good "g". We characterize the set of continuous Markov equilibria in economies with reversibility, where investments can be positive or negative; and in economies with irreversibility, where investments are non negative and "g" can only be reduced by depreciation. With reversibility, there is a continuum of equilibrium steady states: the highest equilibrium steady state of "g" is increasing in "n", and the lowest is decreasing. With irreversibility, the set of equilibrium steady states converges to the highest steady state possible with reversibility, as depreciation converges to zero. We also show that in economies with reversibility there are always non-monotonic equilibria in which "g" converges to the steady state with damped oscillations; and there can be equilibria with persistent limit cycles.

Item Type:Report or Paper (Working Paper)
Related URLs:
URLURL TypeDescription
Palfrey, Thomas R.0000-0003-0769-8109
Additional Information:First WP July 2011, Revised March 2012. Battaglini gratefully acknowledges financial support from the Alfred P. Sloan Foundation. Palfrey gratefully acknowledges financial support from NSF (SES-0962802), and The Gordon and Betty Moore Foundation. We are grateful to seminar participants at the London School of Economics for helpful comments. Juan Ortner provided excellent research assistance.
Group:Social Science Working Papers
Funding AgencyGrant Number
Alfred P. Sloan FoundationUNSPECIFIED
Gordon and Betty Moore FoundationUNSPECIFIED
Other Numbering System:
Other Numbering System NameOther Numbering System ID
NBER Working Paper17926
Series Name:Social Science Working Paper
Issue or Number:1355
Record Number:CaltechAUTHORS:20170727-105218172
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:79489
Deposited By: Hanna Storlie
Deposited On:02 Aug 2017 21:42
Last Modified:22 Nov 2019 09:58

Repository Staff Only: item control page