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Money metric utilitarianism

Christopher P. Chambers Takashi Hayashi

Abstract

We discuss a method of ranking allocations in economic environments which applies
when we do not know the names or preferences of individual agents. We require that
two allocations can be ranked with the knowledge only of their aggregate bundles and
community indifference sets—a condition we refer to as aggregate independence. We also
postulate a basic Pareto and continuity property, and a property stating that when two
disjoint economies and allocations are put together, the ranking in the large economy
should be consistent with the rankings in the two smaller economies (reinforcement). We
show that a ranking method satisfies these axioms if and only if there is a probability
measure over the strictly positive prices for which the rule ranks allocations on the
basis of the random-price money-metric utilitarian rule. This is a rule which computes
the money-metric utility for each agent at each price, sums these, and then takes an
expectation according to the probability measure.

JEL classification numbers: D60, D63

Key words: Money metric, utilitarianism, social choice, GDP, aggregate equivalent in-
come



Money metric utilitarianism *

Christopher P. Chambers Takashi Hayashi

1. Introduction

The question addressed in this paper is on the evaluation of social welfare in large
economies in which information about individual characteristics is not available. Data in
a large economy come in the form of aggregate statistics. Data about the preferences or
consumption of all individuals in society are prohibitively costly or impossible to obtain.
Indeed, the US Census, for example, typically provides only an estimate of the number
of people residing in the US, let alone their names, preferences, or consumption. The
social choice literature has generally ignored this issue. Social choice is largely concerned
with distributional considerations—considerations which reliance on aggregate data rule
out forthright.!»?

In contrast, economic indicators such as the GNP are easy to compute with aggregate
data. However, preferences only enter into such indicators through price. Any welfare
indicator depending on prices and consumption alone cannot respect the Pareto property
(on this, see Samuelson [34] p. 146-156).> The Pareto property is a minimal property
that a measure of welfare should satisfy. Consequently, to make basic welfare judgments,
we need to know more than just aggregate consumption and prices in equilibrium.

In this work, we take an intermediate stance. Our aim is to show that some basic
statements about welfare can be made, even if the preferences of individuals are unknown.

*Division of the Humanities and Social Sciences, California Institute of Technology. Mail Code 228-77.
Phone: (626) 395-3559. Email: chambers@hss.caltech.edu, and Department of Economics, University of
Texas at Austin, BRB 1.116, Austin, TX 78712. Email: th925Qeco.utexas.edu. Phone: (512) 475-8543.
We are grateful to David Donaldson, Franois Maniquet, and John Weymark for useful comments. We
are especially indebted to Marc Fleurbaey for many detailed comments and suggestions. All errors are
our own.

1Strictly speaking, data about the income distribution is readily available. However, this data does
not allow us to identify the preferences of individuals with given incomes. From a Bergson-Samuelson
welfare perspective then, it is of no use. Moreover, even if preferences could be backed out of the income
distribution, welfare would necessarily depend non-trivially on price except in very special circumstances
(on this, see Roberts [32]).

2Another possible reason that social choice theory assumes all individual preferences are known is
that its’ most celebrated result—Arrow’s general possibility theorem [2]-shows that paradoxical results
obtain even when we know binary comparisons of all individuals.

30ther problems can result as well; see Gorman [20] or Chipman and Moore [7], for example.



Instead, we suppose that data about community preferences and aggregate consumption
can be attained. The names, preferences, and consumption of individuals are not avail-
able. Our main contribution is a characterization of a well-known class of social welfare
functionals based on this informational parsimony requirement. A description of this
class follows.

Many measures of well-being of a society are stated in monetary terms in order to
facilitate cost benefit analysis. One such measure works as follows. It depends on some
initial efficient allocation, which is supported by prices p. The social welfare of another
allocation is the aggregate amount of money at prices p needed to bring everybody to
their individual level of welfare-the aggregate equivalent variation in the case of indirect
utility. If this amount of money is positive, then a change to the new allocation is deemed
beneficial. Like the GNP, aggregate equivalent variation depends on an initial allocation,
and leads to transitivity (as well as symmetry) violations. Further, given an equilibrium
(p, ) in an exchange economy, for any other efficient allocation y with supporting prices
q # p, the aggregate equivalent variation in moving to (¢, y) at prices p is strictly negative.
The rule is thus rendered practically useless in such an environment as no change will
ever be recommended from an initially efficient allocation.*

Hence, in order to use money to evaluate social welfare meaningfully, prices must be
exogenous.® For fixed prices p, define the social welfare of allocation = to be the amount
of money society would need to distribute to make every agent at least as well off as at
x. This involves finding, for each agent in society, the “money-metric” utility (the term
was coined by Samuelson [36]), and summing these across agents. We call such a rule
“money-metric utilitarian.”® This welfare function has a long history in applied welfare
€conomics.

Fixing prices may be inappropriate-Donaldson [12] claims that the choice of prices
can have non-trivial ethical consequences. For example, relatively high prices of “luxury
goods” assign higher importance to the wealthy. To circumvent this issue, we could allow
prices to be random. Instead of finding the amount of money needed to make society as
well off as a given allocation, we instead calculate the expected amount of money needed
to make society as well off as a given allocation. We call such a social welfare function
random-price money-metric utilitarian. Unfortunately, even this added generality will
typically rule out most notions of distributive justice.

Our main result shows that a rule can be computed from aggregate data alone and
satisfies basic efficiency properties if and only if it is random-price money-metric utili-
tarian.

It is worth emphasizing that we axiomatize this family of social welfare orderings as

4For more on this, see Boadway [6].

5 Axiomatizations of Hicks’ variation concepts which rely on price as a primitive can be found in Ebert
[13].

5Tt has also been called an “aggregate generalized variation,” in the sense of Chipman and Moore [9]
or an “aggregate equivalent income.”



a function of preferences alone. Neither prices nor utility is a primitive of our model, dis-
tinguishing this work from works which take utility as a primitive—such as D’Aspremont
and Gevers [3] or Maskin [28]. We study a variable population model to provide rankings
of allocations.”

Our main axiom is called aggregate independence. The ranking of two allocations
should be determined by the aggregate allocations under consideration and the commu-
nity indifference curves “passing through” them.® The community indifference curve of
an allocation, first discussed formally by Scitovsky [38], has as an upper contour set all
aggregate bundles which can be allocated in a way to Pareto dominate the allocation.
These curves typically cross and are not indifference curves of a representative consumer
(unless the properties of Gorman [19, 21] are satisfied). Nevertheless, community indiffer-
ence curves, by their very nature, are more readily observable than individual indifference
curves. Asking that any less information be available in ranking allocations results in
impossibility (for more on this, see Fleurbaey et al [17]).

The remaining axioms are standard. We require that a ranking of allocations should
respect the Pareto principle.  Second, we require an analogue of Young’s [41] rein-
forcement principle. Two disjoint economies when considered as a whole should rank
allocations in a manner consistent with the ranking of the allocations of the original
economies. Finally, in the hope of being able to measure welfare in monetary units, we
require a continuity axiom, ensuring a real-valued representation. However, money plays
no role whatsoever in our analysis.

Our result states that a social welfare ordering satisfies these properties if and only if
there exists a probability measure over the set of strictly positive prices for which social
rankings are made on the basis of the random price money-metric utilitarian rule.

Any random money-metric utilitarian rule typically lacks basic equity properties. This
point has been made by Blackorby and Donaldson [5], Hammond [22], and McKenzie
[29]. Our result illustrates exactly why this is the case. Any rule satisfying aggregate
independence necessarily ignores distributional issues, as it relies only on aggregate data.
To some extent, this is unavoidable for a rule that can only consider aggregate data.
One benefit of the axiomatic approach is in illuminating such tradeoffs (informational
parsimony versus equity, in this case).

Section 2 describes the model. Section 3 is devoted to the discussion of our primary
axioms. Section 4 states the main theorem, and Section 5 provides a proof. Section 6
concludes.

" Arrow’s work lays the foundations for ranking economic allocations [2]. More recently, a line of inves-
tigation initiated by Fleurbaey and Maniquet [14] studies the theory of equitable rankings in economic
environments.

8If an allocation is inefficient, the community indifference curve will not actually pass through the
aggregate bundle. It is with this motivation that we discuss what we call a “Scitovsky upper contour
set” instead.



2. The model

Let X = R, a space of commodities. Let N, the natural numbers, index a set of
potential agents. A finite subset of agents N C N will represent a society. The set
of all societies is denoted NV. For a society N, a typical element is denoted 7 € N.

For a society N, an allocation for N is a vector (z;) € XV. An allocation specifies
consumption for all agents in N. A binary relation over X is denoted by >=.2 The set
of preferences R on X is the set of binary relations which are complete, transitive,
continuous, convex, and monotonic.'%!!

An economy is a pair consisting of a society and its’ preferences; that is, a pair
(N, (=i)ien)- The set of economies is denoted .

Denote the set of binary relations on X by R%. A social welfare ordering, or
a rule, is a mapping =: & — U R such that for all (N, (=;)ien) € €, =% (N, (=;
NeN
ien)) € Ry. A social welfare ordering takes as input a society and their individual
preferences over consumption bundles, and ranks allocations for that society.

The focus here is on a specific social welfare ordering. Let A(m) denote the unit
simplex in R™, and let A, (m) denote the strictly positive elements of the unit simplex.
For p € A(m), define the p-money metric for preference > as

UL (v) =inf{p-y:y =z}

Under our conditions, U? is a utility representation of = when p € A, (m) (see Weymark
[40] Proposition 1), but it need not be otherwise. The money-metric function is closely
related to the expenditure function of McKenzie [30], but is a distinct mathematical
object. For more on the money-metric utility, see Weymark [40]. In Figure 1, a money-
metric utility is illustrated. Here, we suppose the price of the first good is normalized to
one. Then the money-metric utility of x is equal to y.

For an economy (N, (=;);en) € € and p € Ay (m), define FP(N, (=;)ien) : XV - R
by

FP(N, (=i)ien)((z:)ien) = > _ UL ().

This will be termed the p-money metric utilitarian social welfare function. Let
7 be a Borel probability measure over A, (m), and define the random-price money

9The asymmetric part of = is denoted >, whereas the symmetric part is denoted ~.

0Complete: For all z,y € X, x = yory = x

Transitive: For all x,y, z € X for which x = y and y > z, it follows that x = z

Continuous: For all x € X, the sets {y : y = z} and {y : z > y} are both closed

Convex: For all z,y € X and all a« € [0,1], if z = y, then az + (1 — )y = y

Monotonic: For all z,y € X, if x >y, then > y and if z > y, then z > y

HVector inequalities are as follows: o > y if for all k = 1,....m, 2% > y*, 2 > yif x > y and = # ¥,
and >y if for all k =1,....,m, zF > y*.



Figure 1: A money-metric utility function

metric utilitarian social welfare function F'™ as

FT((N, (=2)ien)) (@2)ien) = / 0L e ).

Apy(m

The function F™ induces a social welfare ordering =™ by

r =" (N’ (ti)ieN) Y

if and only if
FT(N, (=)ien)((i)ien) = FT(N, (=i)ien) ((Yi)ien)-

The purpose of this work is to axiomatize the family of social welfare orderings consistent
with random-price money-metric utilitarianism.

3. Axioms

Let us now define some properties that a social welfare ordering may have.

Weak order: For all e € £, =° (e) is complete and transitive.

Pareto: For all ¢ = (N, (=;)ien) € € and all z,y € XV if 2; =; y; for all i € N, then
x =% (e)y. If in addition there exists i € N for which x; =; y;, then z =° (e)y.



The following axiom is common in works axiomatizing utilitarian-like social welfare
functions. It essentially first appears in Young [41, 42] and Smith [39]. It is similar
to the Pareto criterion; and if a rule satisfies the requirement that when applied to an
economy consisting of a single individual, the rule coincides with her preference (referred
to by Young as faithfulness), then it in fact implies Pareto.

Reinforcement: For all N, N’ € N for which NN’ = @, all z,y € XV, all z,w € XV,
and all (=;)ienons € RYN'if 2 =0 (N, (=)ien)y and 2z =0 (N, (=))ien’)w,
then (z,2) =% (N U N, (=:)ienun')(y, w), with strict preference if either original
preference is strict.

Our next axiom states that the rule should be applicable with as little information as
possible. It requires that for two economies and two allocations, the ranking of the two
allocations is determined by their “community indifference maps.” In order to ensure
that the aggregate bundle actually lies on the “community indifference map,” we may
require that the actual allocation under consideration is Pareto efficient. However, in
the interest of simplicity, we state the axiom without this caveat.

Instead of talking about indifference maps, it is useful to talk about the upper contour
sets of those maps. For an economy e = (N, (=;);cn) and an allocation z € X define
the Scitovsky upper contour set as

S(e,z) = {ZyZ cy; =i x for all i € N}

1EN

Thus, S(e, x) is the set of aggregate bundles that could be allocated in a way as to make
everybody in society weakly better off than under the allocation x. The allocation x
may not be on the boundary of S(e, z), but it is when it is Pareto efficient.

Aggregate independence: For all e = (N, (=;)ien), € = (N, (%))ien’) € €, all 2,y €
XN for which " 2; = > 9 and all z,w € XV for which 3" 2z = Y wy, if S(e,z) =
S(€',z) and S(e,y) = S(¢/,w), then z =° (e)y if and only if z =° (¢/)w.

Aggregate independence formalizes the notion that a rule should be as informationally
parsimonious as possible and still not conflict with other basic postulates. Allocations
can be compared on the basis of the aggregate allocations under consideration and the
Scitovsky upper contour sets of the allocations. Here, we ask that the rule not conflict
with the basic Pareto principle. It is necessary in a large economy in which information
about individual preferences is not attainable, but aggregate information about demand
is available. It is formally unrelated to Arrow’s independence of irrelevant alternatives [2].
However, it is implied by a slightly weaker notion studied in [23, 16, 18, 31|, among other
works. This weaker notion states that in determining the ranking of two alternatives, a
rule is allowed to use information about the indifference surfaces passing through the two
alternatives for each individual'?> Our axiom requires that a rule only use information

2There are other notions that are meaningful in economic environments, such as independence of
infeasible alternatives. For more on this, see Le Breton [26].



about the individual indifference surfaces after they have been collapsed into aggregate
indifference surfaces. It is clear that stricter notions of informational parsimony will
lead to impossibility—on this, see [17].!> We note that while, in principle, Scitovsky sets
are more readily observable than individual preferences (indeed, preference profiles are a
sufficient statistic for Scitovsky sets, while the converse is not true), in practice at this
stage, it may not be any easier to elicit Scitovsky sets than to elicit individual preferences.

Our last property rules out pathological rules that may not have a functional rep-
resentation. In many practical situations, social welfare should be stated in monetary
terms (on this, see Samuelson [35] or McKenzie [29]). To facilitate such a possibility, we
require the following.

Continuity: For all e € £, =Y (e) is a continuous binary relation.

4. Results

The following is our main result. It states that our axioms are satisfied if and only if a
rule is a random-price money-metric utilitarian rule.

Theorem 1 =0 satisfies weak order, Pareto, reinforcement, aggregate independence,
and continuity if and only if there exists a probability measure m over A, (m) for
which =0=>7.

e For any list of positive prices p, and any real-valued social welfare function respect-
ing the Pareto property, one may, for a fixed population, write this social welfare
function in the Bergson-Samuelson form, so that U(x) = W((UL (2;))ien). The
real content of the theorem is therefore the joint restriction on the functional form
of utility and social welfare function.

e Most importantly, utilities are not primitive, and are not meant to be interperson-
ally comparable. Money-metric utilities are part of the representation of the social
choice rule but have no meaning (in terms of interpersonal comparison) in and of
themselves. Criticisms of the mechanism based on the representation, or in terms
of interpersonal comparisons are not meaningful.

e Criticism of the axioms characterizing the rule is valid. In general, rules satisfy-
ing reinforcement tend to preclude equity considerations as they imply a type of
separability across agents. Aggregate independence, moreover, precludes equity
considerations as it ignores distributional considerations among agents altogether.
If data comes in aggregate form; then this is unavoidable.

13While aggregate independence appears very strong (and it is), it is satisfied by several well-known
concept of economic theory and at least one which does not deal with Paretian rankings. The coefficient
of resource utilization, introduced by Debreu [11], is easily seen to satisfy it. This was pointed out to us
by Francois Maniquet.



e Not only is =™ (e) continuous for all e € £, F™ (e) is a continuous function for all
e € & as well.

We now proceed with an intuition for why the result is true. The key axiom here
is aggregate independence: this axiom states that in comparing two allocations, only the
Scitovsky upper contour sets of those allocations and aggregate bundles are relevant. In
fact, by constructing an appropriate economy, we can establish that a rule satisfying
aggregate independence and Pareto only need consider the Scitovsky upper contour sets
(the aggregate bundles become irrelevant). Hence, such a rule simply ranks Scitovsky
upper contour sets. An important fact is that a given Scitovsky upper contour set can
be determined uniquely by a function mapping prices into reals which, for each list of
prices, specifies the sum of money-metric utilities evaluated at that list of prices. Key is
to show that the ranking depends in a monotonic and linear way on these induced func-
tions. Linearity follows from the reinforcement property (which is formally a condition
of additive separability), whereas positivity follows from the Pareto property. Once we
have established that such an order can be represented by a positive linear functional,
we use the Reisz representation theorem to identify this positive linear functional with a
probability measure. This gives the desired representation.

5. A proof of the result

Necessity of axioms:

To see Pareto, note that for p € A, (m), U? is a utility representation for =€ R

(Weymark [40] Proposition 1). Consequently, | At (m) UL (x)dm (z) is a utility repre-
sentation for > (this verifies Pareto). Reinforcement is trivially satisfied. To see that
aggregate independence is satisfied, let e = (N, (ii)ieN) € ande = (N’ (= )leN/) €€,
and suppose that S (e, z) = S (¢/,y). Then for all p € A (m), >y UL (x;) = > UL (vi),
establishing the result. For example, see Proposition 5, Proposition 7, and Propo_sition

8, below.

To verify continuity, we will verify that for all =€ R, [ Ay (m) UL (x)dr (p) is con-
tinuous in z. So, suppose that {z*} — z. Continuity of UL for all p € Ay, (m)
(implied by Weymark [40] Proposition 2 or Honkapojha [25] Proposition 5) implies that
for all p € Ayy (m), UL (2¥) — UL (x). As {z"} is a convergent sequence, there ex-
ists some y € X such that for all v, y > 2* and y > z. Consequently, by definition,
for all p € Ay (m) and all v, 0 < UL (2¥) < UL (y); and 0 < UZ (z) < UL (y). As
/ At (m) U (y) dr (p) exists and is finite, by the Lebesgue dominated convergence theorem
(11.21 in Aliprantis and Border [1]), we may conclude that

/ Ug (") dm (p) — Ui (x)dm (p),
A++(m) A++(m)

verifying continuity of f A, )U (x)dm (p) as a function of z, and as a consequence,
continuity of F'™ (e) for all ¢ E £.



Sufficiency of axioms:

For =€ R and = € X, denote U(>=,2) = {y € X : y = z}. By our assumptions
on R, for all x € X, U(>,x) is a convex, closed set. We will say a set A C R7 is
upper comprehensive if r € A and y > = implies y € A. Denote by K the set of all
nonempty, closed, convex, and upper comprehensive sets in R’. By our assumptions on
R, for all € R and all x € X, U (=,x) € K. We say =€ R is homothetic if for all
r,ye Xandal a >0,z >y <= azr > ay.

Proposition 2 For all K € IC, there exists a homothetic =€ R and x € X such that
K=U(r,x).

Proof. Let K € K. If K = X, then we may choose u(z) = Hmi, for example, and

=1
set x = 0. Otherwise, let a utility representation u : X — R be defined as

u(w) =inf{\: w ¢ AK}.

As 0 ¢ K, by assumption, there exists some neighborhood ¢ of 0 for which N.(0)NK = &.
Consequently, for all w, there exists A large for which w ¢ AK. Hence, u is well-defined.

We first establish that u is homogeneous of degree zero (so that for all & > 0 and
all w € X, u(aw) = au(w).) Thus, let w € X and let o > 0. If u(w) = 0, then for
all A > 0, w ¢ MK, so that in particular, for all A > 0, w ¢ %K, or aw ¢ MK, so
that u (aw) = au(w). Otherwise, note that w ¢ AK if and only if aw ¢ aAK, so that
u(aw) = au(w).

Moreover, u is quasiconcave. That is, suppose that u(z) > u(w) and let a € [0, 1]
If u(w) = 0, the result is trivial, so suppose that u(w) > 0. We claim that w € u(w)K
In particular, by definition of u(w), for all 0 < e < 1, w € eu(w)K. Hence, ¥ € u(w)K,
or, taking limits and using the fact that u(w)K is closed, w € u(w)K. Similarly, this
demonstrates that z € u(z)K C u(w)K. As u(w)K is convex, az + (1 —a)w € u(w)K.
Consequently, u(az + (1 — a)w) > wu(w), by definition of u.  Monotonicity follows
similarly; that is, suppose that z > w. Again, if u(w) = 0, the result is trivial; otherwise,
we may again conclude that w € u(w)K. As K is upper comprehensive, conclude that
z € u(w)K, or that u(z) > u(w). If 2> w, then if u(w) =0, 2 € R, , and hence there
exists A > 0 small enough so that z € MK, so that u(z) > 0. Otherwise, z € int u(w)K,
and consequently there exists € for which z € [u(w) + €] K, so that u(z) > u(w). Lastly,
we verify that u is continuous. Suppose that w” — w and let ¢ < 1. First, we show that
for v large, u(w”) > eu(w). Again, if u(w) = 0, this is trivial, so suppose that u(w) > 0.
Then, by homogeneity, u(cw) = cu(w), so that we can conclude ew € eu(w)V. Hence,
by monotonicity, w € inteu(w)V. Consequently, for all v large, w” € inteu(w)V, so
that u(w”) > eu(w). Now, suppose € > 0; we verify that for v large, u(w”) < u(w) + «.
By definition w ¢ [u(w) 4 €]V. But the complement of [u;(w) + €]V is open; so for v
large, w” ¢ [u(w) + €]V, so for v large, u(w”) < u(w) + . This verifies continuity.



Next, we show that w € K if and only if w(w) > 1. Thus, suppose w € K. Then
in particular, if w ¢ MK, then A > 1. Consequently, u(w) > 1. Now, suppose that
u(w) > 1. We have proved before that w € u(w)K; consequently we may conclude that
w e K.

Let > be the binary relation represented by u. Furthermore, by choosing x on the
boundary of K, we ensure that u(x) = 1; so that U(>,z) = K. B

We introduce the following strengthening of aggregate independence. It requires that
a rule only take into consideration the Scitovsky sets of the allocations under considera-
tion, while ignoring the actual aggregate bundle under consideration.

Strong aggregate independence: For all e = (N, (=;)ien), € = (N, (=))ien’) € &,
all 7,y € XV and all z,w € XV if S(e,x) = S(¢/, z) and S(e,y) = S(¢/,w), then
x =0 (e)y if and only if z =0 (¢/)w.

Proposition 3 If a rule satisfies Pareto and aggregate independence, then it satisfies
strong aggregate independence.

Proof. Let e = (N, (=)ien), € = (N, (=))ien) € €, z,y € XV, and z,w € XV
satisfy S(e,z) = S(€/,2) and S(e,y) = S(¢/,w), and suppose that = =° (e)y. We claim
that z =0 (¢/)w—by symmetry of the definition, this will complete the proof.

We construct a new economy as follows. Let ¢” consist of three agents, N = {1, 2, 3}.
As S (e,x) € K, by Proposition 2, there exists =€ R and 2’ € X such that S (e,z) =
U(=,2'). In fact, we may choose = (not homothetic) so that the boundary of S (e, z) is
equal to {y :y ~ 2'}.1 Let =;==. Similarly, there exists =’€ R and y’ € X such that
S(e,y) =U(=',y). Let =a=>'. Lastly, let =3 be a Leontief preference, represented by
the utility function u (z) = min {z°}.

Now, let us fix a commodity, say, commodity 1. Define e(x) =
max {e € R:z —elyyy € U(x,2’)}. Define 2” = x — ¢ () 1{1}, and note by construc-
tion that z” ~y 2/. As S(e,z) = S(e,x), we may similarly ¢ (z) and define 2" as

z — (2) 11y, and note as well that 2” ~; 2. Now, consider the two allocations
(2”,0,e(z) 1q1y) and (2”,0,e(2) 151y). Clearly 2” ~¢ z” and as =3 is a Leontief pref-
erence, € (v) 11y ~ € (2) 1;1y. By Pareto, therefore

(2",0,e (x) 1i13) ~° (") (2",0,2 (2) 111y) -
Note in particular that 2" + ¢ () 1f1y = 2 and 2" 4 € (2) 11y = 2.

We may construct similar allocations, defining e (y) =
max{e € R:y—¢clpy € U(¥,y)}, and & (w) analogously.  From this we also
construct ¢’ =y — &' (y) 1y and w” = w — €' (w) 1g1y. It is then easy to see that

(0,9",€" (y) 1y) ~° (") (0, 0", &' (w) Li1y) -

14The argument can be established using techniques similar to those in Proposition 10 below.
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Moreover, " + ¢’ (y') 1y = y and w” + &' (w') 1y = w.

Now note that S (e”, (:1:”, 0,¢ (z) 1{1})) =S (e x), S (e”, (z”, 0,e(2) 1{1})) =S (¢, z),
S(e” (0,9, (y)1113)) = S(e,y) and S (€, (0,w”, ' (w)1py)) = S(¢/,w). By
aggregate independence, as =z =° (e)y, we conclude that (x”, 0,e(x) 1{1}) =0
(¢") (0,y",¢' (y) 113). By transitivity, we therefore conclude (2”,0,e(2)1f1;) *=°
(") (0,w”,&" (w) 1(1y). Applying aggregate independence again, we conclude z =% (¢') w.
|

Define K + K' ={z+y:x € K,y € K'}.

Proposition 4 For K, K' e K, K+ K' € K.

Proof. Let K, K’ € K. It is trivial to verify that K + K’ is convex and upper
comprehensive. Closure follows as each of K, K’ C R. That is, let {"} C K + K’

be a sequence where ¥ — z*. Then for all v, 2¥ = z¥5 + 2% for some ¥ € K,
"5 e K'. Note that

2

R I

2
= e

The inequality follows as 2%, 2% € R7?. Now, as z” is convergent, sup, ||z"] <
+00. Moreover, for all v, ||z"X]|| < sup, [|z*|| and ||z**"|| < sup, ||z”|. Consequently,
each sequence {x”’K } and {x”’K/} lies in a compact set and hence have convergent

subsequences. We may therefore without loss of generality suppose 2% — 2**E ¢ K
and 2% — K ¢ K'. Thus, 2* = 25 + 0K c K+ K'. W

A well-known fact is that for all e € £, where e = (N, (=;)ien), S(e,x) = > N U(>;
,x;). We will prove this below.

Proposition 5 For all e € &, where e = (N, (=;)ien), and all x € XV, S(e,z) =
2on U (zi ).

Proof. Suppose that y € S(e,x). Then y = >\ vy; where y; >=; x; for all i € N.

Consequently, y; € U(>;, ;) for all i € N, so that y € > U(>;,z;). The converse is
easily seen to be true as well. W

A rule satisfying our axioms is completely determined by a complete, transitive, or-
dering on the possible community indifference sets (or equivalently, community upper
contour sets).

Proposition 6 If a rule =° satisfies weak order and strong aggregate independence, then
there exists a complete, transitive binary relation =% on K such that for all e € &,
e = (N, (=)ien), for allz,y € XV, & =0 (e)y if and only if S(e,x) =X S(e,y).
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Proof. That there exists an order =% on K such that for alle € £, ¢ = (N, (=;)ien),
for all z,y € XV, x =% (e)y if and only if S(e,z) =& S(e,y) is the definition of strong
aggregate independence. To show that it is complete, let Ki, Ky € K. Let N = {1,2}.
We construct (=;)ien € RY and allocations z,y € X such that if e = (N, (=:)ien),
then S(e,z) = K; and S(e,y) = K,. By Proposition 2, there exists =1, =2€ R and
x1, 29 € X for which Ky = U(>=1,x1) and Ky = U(>3, x2). Consequently, by Proposition
5, S(e, (x1,0)) = K; and S(e, (0,23)) = K,. By completeness of =9 either (z;,0) =°
(€) (0,z3), or (0,29) =% (&) (x1,0), so that either K; =¥ K, or Ky =% K;. Hence =¥ is
complete.

Now, let K, Ky, K5 € K and suppose that K; =% K, and Ky, =% K;. Let N =
{1,2,3} and let =1, =9, =3€ R and x,x9, 23 € X such that Ky = U(>=1,21), Ko = U(=2
, o), and K3 = U(>x3,x3) (again that this is possible follows from Proposition 2). Let
e = (N, (=i)ien). Then by definition of =%, (z1,0,0) =% (€)(0,22,0) and (0, z5,0) =°
(€) (0,0, 23). Consequently, by transitivity of =° (e), (z1,0,0) =° (e) (0,0, z3). Thus, by
definition of =%, K; =¥ Kj, establishing transitivity of =*. B

The preceding proposition allows us to study the problem from the perspective of
ranking community indifference surfaces.

The support function H : L x A(m) — R is defined as

H(K,\)=inf \-x.

zeK

It is well-known that for all K € K, H (K, ) is continuous in .

Proposition 7 For all K, K' € K, H(K,-) = H(K',-) implies K = K'; furthermore,
H(K+K',-)=H (K, )+ H(K',-) and for alla >0, H(aK, ) = aH(K,-).

Proof. We establish that for all K, K’ € K, H (K,:) = H (K’,-) implies K = K’;
to do so, we show that if K, K’ € K satisfy K # K’, then there exists some A\ € A(m)
such that H(K,\) # H(K’, \). So, suppose that K # K’ and without loss of generality,
suppose that there exists © € K\K’. Then as K’ is closed, there exists some A € R™\{0}
such that A -z +e < Ay for all y € K’ and some ¢ > 0 (see, for example, Rockafellar
[33] Corollary 11.4.2.) In particular, A € R (if A € R™\R", then there exists some j
for which A; < 0; consequently, by upper comprehensivity of K’, one may choose y € K’
for which A -y < X -, a contradiction). We may of course normalize A to lie in A(m).
Consequently,

H(K,\) <Xz < inf \-y=H(K' \).

yeK'

The remaining parts of the Proposition are simply verified; see for example Rockafellar
[33] Corollary 13.1.1 and the remaining discussion on p. 113. B

The following proposition follows by definition.
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Proposition 8 For all =€ R and all z € X,
H(U (=,2),\) = UL (2) .

These properties of the support function allow us to work with the space of functions
induced as support functions. In fact, we can now define another binary relation, this
time on C' (A(m)) (the space of continuous functions on A(m)). Define

C__(A(m))={feC(A(m)): f(s) <0forall se A(m)}.

For f, g € C(A(m)), define =¢ on C (A(m)) by

f=%g
if and only if there exists K, K’ € K for which for f(-) = H(K,-) and g(-) = H(K',-) for
which
K" K
The order =¢ is clearly transitive, as =¥ is transitive. It is also complete when restricted

to
{H(K,"): K € K}.

We now define the following subset of C'(A(m)):

F={9-f:9=°f}.

The first claim ensures that this set captures all that is relevant for recovering >=°.

Proposition 9 Let K, K' K" K" ¢ K such that H(K,-) — H(K',-) = H(K",-) —
H(K",-). Then

H(K,)=“H(K',-) & H(K",) = H(K"").
Hence H(K,-) = H(K',-) <= H(K,-) — H(K',") € F.

Proof. Let K,K' K", K" be as in the hypothesis of the theorem, and suppose
that H(K,-) =¢ H(K',:). We claim that H(K",-) =¢ H(K",-). So, suppose by
means of contradiction that this statement is false. As =€ is complete on the domain of
support functions, we may conclude that H(K",-) =¢ H(K",-). Note that H(K,-) +
H(K",.)=H(K',-)+ H(K",-). Let e = (N, (>)ien), € = (N, (=:)ien’) € & such that
NNN =@, and let z,2' € XV, 2”,2"” € X" be allocations such that S(e,z) = K,
S(e,2') = K', and S(¢/,2") = K", S(¢/,2") = K" (such economies exist by Proposition
2). By strong aggregate independence, we know that x = (e)a’ and 2" =0 (¢')a”.
Let ¢’ = (N U N',(=)ienun'). By reinforcement, (x,2”) =° (”)(2/,2"). However,
this contradicts strong aggregate independence, as S(e”, (x,z")) = S(e”, (z',2")). Hence
H(K”, ) —c H(KW, ) ]

The following is related to Proposition 2, but does not guarantee homotheticity.
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Proposition 10 Let K, K' € K, and suppose that K’ C int K (here, int denotes the
relative interior). Then there exists =€ R and w,w' € X for which U(=,w) = K and
U=, w') =K'

Proof. The strategy of the proof is to use convex analytic techniques to construct
such a utility function which represents such a preference. If, in fact, K = X, then the
result follows from Proposition 2 above. Hence, we suppose without loss of generality
that K C int R™".

Now, for all = ¢ K, define
w(z) =inf{\:x ¢ \K}.
For all x € K\ K, define
u(@)=1+inf{Ae€0,1]]:2¢ K"+ (1—\)K}.
Finally, for all € K’, define
w(z)=2+inf{\:z ¢ \K'}.

Firstly, we note that u is in fact well-defined. The only case in which this needs to
be verified is the case in which z € K’. We claim that there exists some A for which
x ¢ AK'. To see this, note that as K’ is closed, and since 0 ¢ K’, then in particular,
there exists an open neighborhood about 0 not intersecting K’. Some multiple of x is
in this neighborhood, say ux ¢ K’ for 0 < g < 1. But then x ¢ iK’, so in fact u is
well-defined.

Now, we work with all three cases (x ¢ K, v € K\K’, and x € K') to establish the
result.

Let us first show that for all z ¢ K, u(z) < 1. So suppose that = ¢ K, yet u (z) > 1.
Then in particular, for all e < 1, 2 € €K, so that £ € K, implying (by closedness of K)
that x € K, a contradiction.

Next let us show that for all z ¢ K', u(z) < 2. So, suppose that x ¢ K’, yet u(xz) > 2.
Then, in particular, for all A < 1, z € AK'+ (1 — \) K. Consequently, ¥ € K'+ (52) K,
but as K’ is upper comprehensive, and as (%) K C R, we may conclude that
or in particular, since A is arbitrary and K’ closed, x € K'.

Without loss of generality, we let 0/ = R (as opposed to {0}). First, if ¢ K, then
u(z) < 1. Now, we claim that u(y) > u(z) if and only if y € u(z)K. This result is trivial
in the case u(x) = 0, so suppose otherwise. Note that if y € u(x)K, then either y € K
(in which case u(y) > u(z)), or y ¢ K and by definition u(y) > u(z). Next, suppose that
u(y) > u(z). Then in particular either y € K (in which case y € u(z)K), or for all e < 1,
y € eu(r)K. Thus, £ € u(x)K, from which the result follows from closure of u(z)K.
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Now, suppose that x € K\K’'. Define \*(2) = inf{A € [0,1] : 2 ¢ AK' + (1 — \) K'}.
We claim that u(y) > wu(z) if and only if y € A*(z)K’ + (1 — A\*(z)) K. To see this,
suppose that u(y) > u(x). Then it follows that u(y) > 1; in particular, this implies that
either y € K’ (in which case the result is obvious) or that y € K\ K’. In the latter case,
it is clear that u(y) > u(z) implies that A*(y) > A" (z).

First, suppose that \*(z) = 0. Asy € K,y € 0K'+ (1 — 0) K, establishing the result.
Otherwise, \*(x) > 0. In this case, for all € < 1,

y € eXN(@)K' +(1—eX(2)K
= N @)K +(1-XN(2)K]+(1-¢)K.

Consequently

g e N (@)K + (1— X (2) K + & - 20

But as A*(z)K’' + (1 — A*(z)) K is upper comprehensive and all elements of OE;E)K are
elements of R?, we therefore conclude that

g e N (@)K + (1 - \(2)) K.

The result then follows by closedness of \*(z)K’ + (1 — A*(z)) K. Now, suppose that
y € N'(x)K'+ (1 — X*(x)) K. Then in particular, either y € K’ (in which case u(y) >
2 > u(x)), or by definition A*(y) > A*(z), in which case u(y) > u(x).

Lastly, if x € K', define A™(2) = inf {\: z ¢ AK'}. Again, we claim that u(y) > u(z)
if and only if y € A** () K’. But this is entirely analogous to the first part of the proof.

We have therefore succeeded in showing that u is both upper semicontinuous (in the
sense of having closed weak upper sections) and quasiconcave. We also have established
that y > = u(y) > u(x) (as K consists of upper comprehensive sets).

We now proceed to show that it is lower semicontinuous. To do so, we will show
that u has open strict upper sections. First, suppose that = ¢ K. We claim that
u(y) > u(z) if and only if y € intu(x)K. So, suppose that u(y) > u(x). Then either
y € K, in which case the result is obvious, or y ¢ K. However, note that by definition,
y € [M} K, consequently, y € intu(x)K (as there are elements of u(z)K which

are strictly smaller than y and u(x)K is upper comprehensive). Now, suppose that
y € intu(z)K. Then either y € K (in which case u(y) > 2 > u(x)) or there exists € > 1
for which y € inteu(x)K, so that u(y) > eu(zx) > u(z). (This follows as if y € int u(z) K,
there exists some element strictly less than y in u(x)K; by choosing ¢ close enough to
one, an € multiple of this element is still strictly less than y).

Now suppose that z € K\K’'. We claim that u(y) > u(x) if and only if y €
int \*(z) K’ + (1 — X*(x)) K. So suppose that u(y) > u(z). It is clear that u(x) < 2
(as otherwise one could establish that x € K’), so if u(y) > u(z), then either y € K', in
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which case it is obvious that y € int \*(x) K’ + (1 — A*(z)) K, or y € K\K’. But again,

X (@) X () X (@)X (1)
S RS € e

by definition, we know that y € [ ) K, from which we con-

clude that y € int \*(z)K’ + (1 — A*(z)) K (this follows as K’ C int K'). Now, suppose
that y € int \*(z) K’ 4 (1 — A*(z)) K. Then either y € K, in which case u(y) > 2 > u(z),
or again, there exists some € > 1 such that y € inte\"(z) K’ + (1 — eX*(z)) K, in which
case we establish that A*(y) > eA*(z) > A*(x), so that u(y) > u(z).

The last case, in which x € K’, is entirely analogous to the first, so we do not prove
it here. We have therefore established that u has both open strict upper sections, and
closed weak upper sections, so that it represents a continuous binary relation.

Lastly, let us show that u is monotonic in the sense that y > x implies u(y) > u(x).
But this is also trivial; for example, in the case in which z ¢ K, x € u(z)K, and
consequently y € int u(x) K, from which we establish that u(y) > u(z) (using the results
above). The results follow analogously for the case x € K\K' and =z € K'.

Let = be the preference relation represented by w. Let w be on the boundary of
K, and let w’' be on the boundary of K’. It is clear to see that U (>=,w) = K and
Ul-,w)=K.1R

Proposition 11 The convex hull of F is disjoint from C__(A(m)).

Proof. Let f—g,f —¢ € F. We first show that (f+ f') — (¢ +¢') € F. The
structure of the proof is as follows. We know that f >¢ ¢ and f' =° ¢’. By strong
aggregate independence and reinforcement, we will establish that f + f' =¢ g + f’ and
f"+ g =¢ ¢ + ¢g. Transitivity will allow us to conclude f + f* = g + ¢’, so that
(f+f)—(g+g)eF.

In particular, by definition, there exist e = (N, (=;)ien), € = (N, (>=i)ien’) and
z,y, 2’y € XY for which H(S(e,x),-) = f(), H(S(e,y),-) = g(-), H(S(¢',2'),-) = f'(-),
and H (S(¢/,y'),-) = ¢'(+), where x =° (e)y and 2’ =° (¢')y’ and N N N’ = & (that we
may choose N N N’ = & follows from strong aggregate independence).

Let ¢/ = (N UN’, (=)ienun’). First, note that H (S(e”, (yn,yn)),") = (g +¢) (),
and that H (S(e", (zn,yn')),) = (f+7)(). By reinforcement, (zy,yyn/) =°
(") (yn,yn'), so that f+¢ =¢ g+ ¢. Similarly, H (S (¢, (zn,zn')),) = (f+ f) (),
and by reinforcement, (zy,zn/) =° (¢”)(xn,ynr), so that f+ f/ =¢ f+¢. As =¢is
transitive, we conclude that f + f' =¢ g+ ¢'. Consequently, (f + f') — (¢ +¢') € F.

Now, we show that if f — ¢ € F, then (1/2) (f —g) € F. The argument works as
follows. As f =¢ g, there exists e = (N, (=;)ien) and x,y € XV and such that f(-) =
H(S(e,x),"), g(-) = H(S(e,y),-), and =z =° (e)y. In particular, for all i € N, either
U(=i,x;) CintU(=4,9:), U(=i,y:) CintU(>=4, ), or U(=;, ;) = U(>=;,y;) (simply by
definition of preference relations). ~ We construct a preference =, R and w;, 2z; such
that U (=}, w;) = (1/2) U (=;,x;) and U(>=}, z;) = U (=;,v;). That this is possible follows
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easily from Proposition 10, alternatively it can be seen as follows. For all 7+ € N, there
exists a continuous utility representation u; : X — R of »=; (see for example Theorem
1 of Debreu [10]). Define u}(z) = u;(2x) and let w; = (1/2)z; and z; = (1/2)y;. In
particular, u; is continuous and hence represents a continuous binary relation >!; it is
also obviously monotonic and quasiconcave (as u; is). Note that y € U(>=}, w;) if and only
if u(y) > w(w;), which is true if and only if u;(2y) > w;(2w;) = w;(z;), or if and only
if 2y € U(=;,2;). But 2y € U(>=;,2;) if and only if y € (1/2) U(>=;,x;). Consequently,
U(xlw;) = (1/2) U (=4, x;). We may similarly verify that U (=}, z;) = (1/2) U (=4, y;).

Let ¢ = (N, (=))ien). By completeness of =% (¢'), either w =% (¢’)z or 2z =° (¢')w.
However, note that H(S(e/,w),-) = (1/2)f(-) and H(S(¢,z),-) = (1/2)g(-). Thus,
there are two cases: either (1/2)f = (1/2)g or (1/2)g > (1/2)f. In the second case, we
establish, using the first argument of the proof of this Proposition and reinforcement (for
strong preference), that g >=¢ f, contradicting the hypothesis that f =¢ g. Therefore,
(1/2)f =¢ (1/2)g. Conclude that F is a cone which is closed under dyadic convex
combinations.

Now, suppose that conv F N C__(A(m)) # @. Thus, there exists {f1,..., fx} C F
and o € A(K) such that Zle apfr(s) < 0 for all s € A(m). Let {a*},_ | C A(K)
be a series of dyadic rationals tending to a. We claim that for all w > 1, there exists
s* € A(m) such that

K

Z ap fr(s®) > 0.

k=1
Suppose false, so that there exists some o for which Zszl af fr(s) < 0 for all s €
A(m). In particular, F is closed under dyadic rational combinations, so Zle af fr € F.
Consequently, Zszl o) fr, = [ — g for some f =€ g, where f < g.

By Proposition 10, there exists <€ R and z,y € X for which f(-) = H({U(>,z),")
and ¢g(-) = H(U(>=,y),-). In particular, in this case, U(>=,y) C int U(>=, z), from which
we can conclude that y > x. Therefore, let i € N and consider e = ({i}, >). By Pareto,
y =% (e)r. But this latter statement implies that g =¢ f, a contradiction. So, in fact,
there exists {5} C A(m) for which S5 al¥ fi(s*) > 0. Now, simply let s* € A(m) be
a cluster point of {s*} and note that by continuity of each fj,

K
S anfils?) = 0.
k=1

As C__(A(m)) has an internal point, Proposition 11 demonstrates the existence of
a nonzero linear functional II separating F from C__(A(m)) (see Aliprantis and Border
5.61 [1]). This hyperplane generated by the functional clearly passes through zero (as
C__(A(m)) is a cone and F is closed under dyadic scalar multiplication). Assume that
for all f € C__(A(m)), (f,II) <0 and for all f € F, (f,II) > 0. We claim that, in fact,
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for all f € C__ (A (m)), (f,1I) < 0. First, note that there exists some f* € C__ (A (m))
for which (f*,II) < 0; otherwise, (f,II) = 0 for all f € C__ (A (m)), from which we
conclude that II is a zero functional (because all ¢ € C' (A (m)) can be expressed as

g=h—~h for h,h' € C__(A(m))), which is a contradiction.

Now, for all f € C__ (A (m)), there exists & > 0 small enough so that af* < f
(this follows as infseaim) f(s) > 0), so that f = af* + (f —af*), so (f,1I) = (af*, 1) +
<f—Oéf*,H> < 07 as f_af* eC__ (A(m))

Consequently, for all f € C__ (A (m)), (f,II) <O0.

We now claim that for all f <0, (f,1I) <0. Solet f <0. Let g € C__(A(m)) and
note that g + f < g. Let a < 1; then in particular, g + f < ag, so that (g + f,1I) <
(g, TT) = a{g,IT). As « is arbitrary, we conclude that (g + f,1I) < (g,II), so that
(f,1I) < 0. Consequently, I is monotonic.

By the Reisz Representation Theorem (Theorem 14.12 of Aliprantis and Border [1]),
there exists a nonnegative, countably additive measure 7 representing Il which can be
normalized to be a probability measure by rescaling, for which if f >=¢ g, then

E:[fl > Ex[g].

We show now that if f =¢ g, then E;[f] > E,[g]. To see this, we first suppose
without loss of generality that f,g > 0. For, we know that f,g > 0; and if they
are not both strictly positive, then we may choose some h > 0, and observe that by
reinforcement, if f >¢ g, then f+h =¢ g+ h; where f+h,g+h > 0. If we then establish
that E. [f + h] > Ex [g + h], it follows that E, [f] > E [g]. So assume without loss that
f,g > 0and that f =¢g. In particular, let N = {1, 2}, and let =1, =2€ R be homothetic
and let z1, 29 € X for which H (U(>1,21),-) = f(-) and H (U (=2,22),-) = g (-), and let
e = (N, (=);cy) (That this is possible follows by Proposition 2); clearly 1 > 0. Then
f()=H(S(e, (x1,0)),-)and g (-) = H (S (e, (0,22)),-) (for example, by Proposition 5).
Consequently, (x1,0) =° (e) (0, 2z3). In particular, by continuity, we may choose & small
enough so that (x; —¢1,0) =° (e) (0,2)."> By Pareto, (z1,0) =° (e) (z; — €1,0); and
further as >=; is homothetic, H(S(e, (1 —€1,0)),:) < H(S(e, (z1,0)),-). Consequently,

E:[f] = E:[H(S(e,x),")]
E.[H(S(e, (z; —e,2_;))

> 7']
> E:[H(S(e.y),")] = Exlg].

The strict inequality follows from strict positivity of 7.

Lastly, let ¢ = (N, (=i)ien) € &, and let 2,y € XY,  Then 2 =° (e)y implies
H(S(e,xz),-) =° H(S(e,y),-), which in turn implies E,[H(S(e,x), )] > E.[H(S(e, x),")].

I5Here, 1 denotes a vector of ones.
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Figure 2: The preference >=*

Moreover,

/. U ()

= B> H(U(=2:),)]
= E.[H(S(e,z),")],

where the first equality follows from Proposition 8. So in fact, [ Am) >y UL (zi)dr(p) >

i

/ A(m) >~ UL (yi)dm(p). A similar statement holds for strict preference.
Lastly, we establish that 7(A(m)\A44 (m)) = 0.

Let h : R — [0, 1] be a monotonic and continuous function for which h («) < 1 for all
a<land h(a)=1for all « > 1. Define u: X — R by

u(x):inf{a: (h(a)1j+(1—h(a))%1) 2> afor allj}.

Here, 1; € X is one unit of commodity j, and zero units of all remaining commodities. It
can be verified that u is continuous (it is in fact a consequence of the Maximum Theorem
of Berge [4]) and monotonic. Convexity follows as well by construction. Let >=*€ R be the
preference represented by w. The important fact here is that for all p € A (m) \A, 4 (m)
and all & < 1, UL, (al) = 0, and for all p € A (m), UL. (1) = 1. Figure 2 displays an
example of such a preference. -
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Now, let ¥ < 1 be a sequence such that ¥ — 1. Then

/ UL. (a"1)dr (p) = / UL. (a”1) dr (p) —I—/ UL. (a"1)dr (p)
A(m) A(m)\A44(m)

Ayy(m)

= / UL, (a”1)dm (p).
Agpp(m)
We can show (as we did in verifying that =° (e) is continuous for all e € £), that

/A ()Ug* (a“1)dr () = | ()Ug* (1) dr (p) = 7 (Ays (m)).

Now, let =**€ R be a Leontief preference.!® Let e = <{1, 2}, (ii)ie{m})? where =,=>*
and =o=>"*. Let 2 € X" be given by

= (0/1, (1 _ /A++<m> UL, (a"1) dr (p)) 1) |

Note that for all p € A (m),

ve.. <(1 _ /A U <p)> 1) - /A @ Ndr (),

Now, F7™(e) (z*) = 1 for all v. Further, note that z¥ — (1,(1 — 7 (A;4 (m)))1). Con-
sequently, as ¥ ~0 (e) 2 for all v,/; and since =° (e) is continuous, it follows that
Fm(e)(1,(1 =7 (A4 (m)))1) =1 as well; but an explicit calculation obtains:

F™ () (1, (1= 7 (Ay () 1) = L+ (1= 7 (Apy (m)).

Consequently, 1 + (1 — 7 (A4 (m))) =1, or 7 (Ay4 (m)) = 1.

6. Discussion and concluding remarks
6.1. On the ethical value of money metric utilitarianism

Obviously, the main problem with money metric utilitarianism as a social welfare indi-
cator lies in its complete lack of ethical considerations. This point has been recognized
by many authors. Samuelson [36] himself cautions against attributing any ethical value
to the rule:

1680 that it has utility representation
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Whatever the merits of the money-metric utility concept developed here, a
warning must be given against its misuse. Since money can be added across
people, those obsessed by Pareto-optimality in welfare economics as against
interpersonal equity may feel tempted to add money-metric utilities across
people and think that there is ethical warrant for maximizing the resulting
sum. That would be an illogical perversion, and any such temptation should
be resisted.

In this regard, aggregate independence has a dual interpretation, which can be under-
stood as formally confirming the intuition of Samuelson. In fact, the axiom can almost
be viewed as a requirement that the distribution of resources is typically completely
irrelevant for the application of this rule. Unless one can infer something about the dis-
tribution of resources from the Scitovsky set and aggregate bundle under consideration
(typically a very difficult—often impossible-thing to do), then aggregate independence
rules out consideration of distributional issues. For a simple example when distribution
of resources is irrelevant for this rule, consider a two agent economy, where the two agents
have identical linear preferences. Suppose we wish to rank all non-wasteful allocations
of some aggregate bundle among the two agents. All such allocations have the same
Scitovsky set and thus must be considered indifferent.

6.2. Alternative methods of choosing allocations

We study a particular condition on the ranking of economic allocations. An alternative
approach is to simply recommend an allocation for a given economy, subject to some
constraints. The approach followed here allows us to make recommendations for broad
classes of allocation problems. That is, let e € £, and suppose that A C XV is a set of
allocations. We may define an allocation rule by:

FT .

arg max £ (e) ()

Allocation rules are slightly more general as they need not be generated by the maxi-
mization of any function.

6.3. Optimal allocations

In the case when there is some fixed amount of resources to divide among an economy,
it is natural to ask what is the optimal allocation. This is usually difficult to determine,
except in the case of a non-random money-metric utilitarian rule. If the rule is non-
random, then there exists an associated “price,” p. The maximal elements are then those
efficient allocations with supporting prices p (when they exist). Again, if such efficient
allocations do not exist, the rule recommends significantly more complicated allocations.
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6.4. Choosing the right probability

While the money-metric utilitarian rules depend on a parameter which can be interpreted
as a probability distribution over prices, this interpretation is not implied by the data
of the problem. The probability can be tied to the outside world, but it need not be.
In fact, it need not have any significance in terms of observable data at all. Presumably
the probability measure should be chosen carefully, to provide rankings which are either
intuitive in specific contexts, or which allow other general normative properties to be
satisfied.

6.5. Allowing more information into the model

We finish with a remark on what to do when there is more information available than just
the Scitovsky upper contour sets of the allocations. The current work is to be understood
as a first step in considering aggregate data in social choice. However, one can easily
imagine obtaining the Scitovsky upper contour sets of different sectors of the economy.
For example, one might have a set of types 7, and a mapping associating a type to each
agent in an economy. Aggregate independence could then be reformulated so that if the
Scitovsky upper contour sets and aggregate allocations corresponding to different types
are indistinguishable across two economies and corresponding allocations, the rankings
should not change either.!” The results would not largely change in this environment;
namely, for each type, we would have a corresponding probability measure m; and a
positive weight A (t) such that, letting ¢ () be the type of agent i in economy e, F'(e) ()

could be expressed as:
Z)\t(i)/U; (z3) dmyiy (p) -
N

The only requirement to obtain such a result is that types not be correlated with consump-
tion; that is, any type would be allowed to consume any amount (at least hypothetically).
Hence, it may not make sense to consider “poor” and “wealthy” agents as distinct types.
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