CaltechAUTHORS
  A Caltech Library Service

DNA-Based Programmed Assembly of Gold Nanoparticles on Lithographic Patterns with Extraordinary Specificity

Kannan, Balaji and Kulkarni, Rajan P. and Majumdar, Arun (2004) DNA-Based Programmed Assembly of Gold Nanoparticles on Lithographic Patterns with Extraordinary Specificity. Nano Letters, 4 (8). pp. 1521-1524. ISSN 1530-6984. doi:10.1021/nl049247a. https://resolver.caltech.edu/CaltechAUTHORS:20170728-145104428

[img] PDF - Supplemental Material
See Usage Policy.

49kB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20170728-145104428

Abstract

We demonstrate the highly specific and programmed assembly of oligonucleotide-conjugated gold nanoparticles on lithographically defined microscale gold patterns. A key feature of our fabrication technique is the use of poly(ethylene glycol) (PEG) groups to form an inert coating on regions of the chip where no nanoparticle assembly is desired. By assembling multiple layers of DNA-conjugated nanoparticles we illustrate the capability of PEG surface coatings to exquisitely direct the nanoparticles onto the lithographic patterns with almost zero nonspecific reaction per square micron. We further suggest that the use of PEG to eliminate nonspecific reaction may be extended to micro- and nanoscale fabrication systems that make use of a variety of different nanostructures.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1021/nl049247aDOIArticle
http://pubs.acs.org/doi/abs/10.1021/nl049247aPublisherArticle
http://pubs.acs.org/doi/suppl/10.1021/nl049247aPublisherSupporting Information
Additional Information:© 2004 American Chemical Society. Received 19 May 2004. Published online 1 July 2004. Published in print 1 August 2004. The authors are grateful to Professor Paul Alivisatos of the University of California at Berkeley, who graciously allowed us to make use of all the facilities of his laboratory in the Department of Chemistry. We also thank Dr. Daniele Gerion of Lawrence Livermore National Laboratory and Professor Ram Datar of University of Southern California for useful discussions and suggestions. We acknowledge the Berkeley Microfabrication Laboratory for providing microfabrication facilities and the assistance of Dr. Gordon Vrdoljak of the Robert D. Ogg Electron Microscopy Center with SEM imaging. A.M. was initially supported by an SGER grant from the National Science Foundation and later by funding from Basic Energy Sciences, Department of Energy. He appreciates the support of SINAM, an NSF-supported NSEC. He also thanks the Miller Institute for a Professorship. B. K. was supported by a scholarship from the Department of Mechanical Engineering at UCB. R.P.K. was supported by an NSDEG fellowship
Funders:
Funding AgencyGrant Number
NSFUNSPECIFIED
Department of Energy (DOE)UNSPECIFIED
SINAMUNSPECIFIED
NSECUNSPECIFIED
Miller Institute for Basic Research in ScienceUNSPECIFIED
National Defense Science and Engineering Graduate (NDSEG) FellowshipUNSPECIFIED
Issue or Number:8
DOI:10.1021/nl049247a
Record Number:CaltechAUTHORS:20170728-145104428
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20170728-145104428
Official Citation:DNA-Based Programmed Assembly of Gold Nanoparticles on Lithographic Patterns with Extraordinary Specificity Balaji Kannan, Rajan P. Kulkarni, and Arun Majumdar Nano Letters 2004 4 (8), 1521-1524 DOI: 10.1021/nl049247a
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:79555
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:28 Jul 2017 23:02
Last Modified:15 Nov 2021 17:48

Repository Staff Only: item control page