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1 Introduction

The empirical tests of standard urban economic models involve their compar-

ative statics as well as characterizations of equilibrium. The characterizations

of equilibrium generally include conditions such as a downward sloping rent

function as one moves away from a city center or central business district

(CBD), increasing land consumption with distance from the CBD, as well as

a “Muth-Mills” condition. The latter states that the change in land price as

one moves farther from the CBD multiplied by land consumption at the base

location is exactly equal to the change in commuting cost multiplied by (-1).

An analogous expression replacing “land” with “housing” can be formulated,

depending on the commodities placed in the model.

Examples of work testing urban models include Mills (1969), Kau and

Sirmans (1979), Yinger (1979), McMillen (1990) and McMillen (2003). Of

particular importance to us is Coulson (1991), which is the origination of the

ideas we present.1

Since we attempt here to cover large classes of urban economic models,

we do not use assumptions on their primitives, such as utility functions and

preferences, but rather we assume that general implications of equilibrium

in the models hold. These assumptions are the ones usually considered to

have empirical content. We do not need to restrict attention to the standard

monocentric city model, though that model is included in the class we consider.

Instead, we examine the structure of the empirical models constructed to test

the implications of urban economic models; clearly, these are reduced form

rather than structural models.

The first assumption we impose is that there are at least two locations

and two house types. Second, we assume that in each location, there are no

arbitrage possibilities at equilibrium. What this means is that the value of

housing or land at a location is proportional to its quantity. That is, the cost

of a house is its price times quantity. Finally, we impose the ceterus paribus

condition used to derive the Muth-Mills condition and its variants: if we take

a house and move it farther from the CBD, its price must go down by exactly

the commuting cost (actually, the present discounted value of commuting cost

over the infinite time horizon). Notice that we do not require that identical
houses actually are built in equilibrium at different distances from the CBD,

for this would contradict classical results for the monocentric city model, that

1See, in particular, pp. 300-301 of that paper. We noticed that conditions [3] and [4]
seemed to be in contradiction, though they are derived from the same model.
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house or land consumption strictly increases with distance from the CBD.

Rather, we only require that such houses be priced in equilibrium. In fact,

the pricing of all possible houses in all locations is necessary even to have agent

optimization problems well-defined.

From these three assumptions, we obtain a contradiction. We conclude

that the common tests of the hedonic housing models actually contradict one

of the no arbitrage conditions. Next we formulate an example to motivate our

result.

Example 1 Suppose that the present discounted value of commuting cost is

$2000 per mile (this is in rough agreement with the empirical estimate of Coul-

son (1991, p. 304)). Suppose that a nice 2-bedroom house sells for $100,000

at distance 1 mile from the CBD. So if this house were available 2 miles from

the CBD, it would sell for $98,000. Now consider a 3-bedroom house, and

suppose that it would sell for $150,000 at distance 1 mile from the CBD if it

were available. Suppose that it actually sells for $148,000 and is available 2

miles from the CBD (in equilibrium). Now let’s calculate the per unit cost of

housing, assuming that housing is priced proportionately. If a 2-bedroom house

were given housing quantity 2, then the per unit cost of housing at distance 1

mile from the CBD is $50,000. If the 3-bedroom house were given housing

quantity 3, then its unit cost is also $50,000. Now let’s look at the unit cost of

housing at distance 2 miles from the CBD. The per unit cost of the 2-bedroom

house is $49,000. The per unit cost of the 3-bedroom house is $49,333.33.

This contradicts “no arbitrage” in the housing good. Independent of whether

these houses are actually built in equilibrium, the hedonic price function must

be well-defined for all possible houses in all locations.

In essence, the argument is that if commuting cost differences have to be

spread over different numbers of units of housing, then there will be a violation

of no arbitrage, since the unit cost of housing must be different for the different

houses. The same argument would apply if we used land parcels instead of

houses.

The components critical to this example are that (1) no arbitrage implies a

linear housing price function at a given location, and (2) the Muth-Mills model

implies changes in prices for identical houses across locations that depend

only on commuting costs. In standard urban models, at equilibrium, houses

are generally identical at a given location, and houses generally differ across

locations. However, hedonic models require that all houses be priced at all
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locations, even when they are not actually present in equilibrium. Empirically,

neighboring houses are often quite different and the same houses often are

built at very different locations. No arbitrage requires that the hedonic price

function be linear for houses in the same neighborhood. The Muth-Mills model

implies that houses that are identical in all ways except location must differ in

price by commuting cost multiplied by the difference in distance from the city

center. A price schedule in which prices vary across locations independently

of house characteristics is inconsistent with no arbitrage at each location.

After stating and proving this result, we shall examine equilibrium price

systems that satisfy one of the two no arbitrage conditions, as well as some that

satisfy neither. There is a continuum of price systems (or models) that yield

the same equilibrium allocation (the one generated by the standard monocen-

tric city model) and price the bundles purchased in equilibrium the same, but

that disagree for bundles not purchased in equilibrium. Thus, all of these mod-

els are observationally equivalent, so the “tests” of the standard model cannot

distinguish it from the rest of these models, even if the consumer wealth and

utility function are known. We present an example based on quasi-linear

utility. How bundles not purchased in equilibrium are priced is crucial for

assessment, for instance, since in the real world, heterogeneous houses in the

same neighborhood can be found.

The bottom line is that there is no price system or model that satisfies

both no arbitrage conditions, and there is a continuum of models that are

observationally equivalent to the standard model. There is one such model

consistent with each of the two no arbitrage conditions, and a continuum of

models consistent with neither.

It is important to relate our work to the general literature on hedonic

pricing, such as Rosen (1974) or Mas-Colell (1975) and the many papers that

followed them. The link is that location is one of many characteristics of a dif-

ferentiated commodity called housing. The first and most obvious difference

is that there is no location or commuting cost in the general hedonic model.

Thus, there is no analog of the Muth-Mills condition in the general model,

so a no arbitrage condition that applies across locations (or one dimension

of differentiated goods) is lacking. Second, there are usually indivisibilities

in the general literature, so complete repackaging of commodities is not al-

lowed. No arbitrage at a given location or for a given type of good will not

hold in general because the good cannot be completely repackaged when some

characteristics are fixed or indivisible. On the other hand, in urban hedonic
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models, if the locational or differentiated good is land at a particular location,

then repackaging is clearly possible since the quantity of land purchased is not

fixed. If the locational good is housing differentiated by location, then there

is the potential for a no repackaging assumption or an indivisibility. In urban

economic theory, it has simply been traditionally assumed that the housing

good is divisible, and this is the kind of model we analyze. Moreover, for

our results below, we only require that two types (or packages) of houses be

conceivable; we do not require that arbitrary linear combinations of a housing

good be possible. In empirical urban economics, linearity of prices at the

micro level has been used to identify submarkets in a small geographical re-

gion. So an assumption of no repackaging of commodities would seem not to

be empirically relevant.

We begin with the notation and assumptions in Section 2. Section 3 of

the paper simply makes Example 1 formal and general. Section 4 discusses

the continuum of models that are observationally equivalent to the standard

monocentric city model. Section 5 contains our conclusions.

2 The Notation and Assumptions

Our assumptions are not on primitives. This is done both to reduce the

amount of notation as well as to cover classes of models that generate the same

or similar testable implications. The following basic framework is typical of

most urban models. We assume that location is represented by a variable x ∈
X ⊆ <+, the set of all possible locations. We assume that the CBD to which
every consumer must commute is represented by 0 ∈ X. Multiple subcenters
would cause no problems for us, but we defer the discussion of extensions to

Section 5. The housing good (or land) is represented by h ∈ H ⊆ <+. We

define G to be an abstract set of other locational characteristics, and let g ∈ G
be a generic element of the set. (The set G need not be a subset of a Euclidean

space.) For example, suppose that there were certain characteristics that vary

with location in equilibrium, such as neighborhoods, schools and local public

goods in general. These need not be exogenous variables in the structural

model. The value of g could be exogenous (for example, if we took schools

associated with a location as exogenous) or it could be the equilibrium value

of some endogenous variables, like neighborhood income. Then the hedonic

pricing function takes as its domain housing purchase, location, and the values

of these characteristics at the selected location. In other words, we write the
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hedonic pricing function as P (h, x, g), where P : H×X×G→ <. It value is the
total price of the specified house, not the unit cost. If there are no locational

characteristics other than location itself, we can simply let G be a singleton

(constant across location). In fact, if one interprets h as land consumption,

one could also include in g other housing characteristics, such as the number of

bedrooms. Our analysis is robust to all of these variations and interpretations.

In general, we will assume that P is the equilibrium hedonic price function,

since we shall be examining conditions that characterize equilibrium in urban

models. This formulation of the hedonic price function is simple but general.

We assume that commuting cost is given by t · x for a person living at x ∈ X,
where t > 0. This is also standard in the literature.

In hedonic models, it is necessary to have prices defined for all possible

bundles of goods at each location. For example, this is common in the local

public finance literature, where membership in every jurisdiction, whether it

happens to be present in equilibrium or not, must be priced (see Ellickson,

Grodal, Scotchmer and Zame (2000) for a recent incarnation of this feature).

The reason, of course, is that without prices for some goods (or jurisdictions),

the optimization problems of agents are not well-defined since they cannot

compute the cost of each bundle. In our context, the implication is that

P (h, x, g) must be defined for each x ∈ X, each h ∈ H and each g ∈ G. The
theoretical models imply that all house types or lot sizes must be priced at all

locations. The empirical hedonic models actually do price all house types at

all locations. Of course, this is necessary in order to assess properties, one of

the main applications of the model.

Axiom 1 : There are at least two distinct members of X (called x and y),

at least two distinct members of H (called h and i), and at least one member

of G, g ∈ G.
It shouldn’t be too controversial to assume that there are at least two

locations and two types of houses. Moreover, we assume that there is at least

one common member of G that is priced across these two locations and for

these two housing types. As long as the hedonic price function P is
defined for the four bundles P (h, x, g), P (i, x, g), P (h, y, g), and P (i, y, g),
how the hedonic price function P is defined for other bundles is
completely irrelevant. Without loss of generality, we take H = {h, i},
X = {x, y}, and G = {g}. For consistency below, we will often say “∀g ∈ G”;
for our purposes, the reader can take this to mean “for the unique element of

G”.
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Axiom 2 (No Arbitrage): At each location, the total cost of housing is linear
in the quantity consumed. Formally, ∀g ∈ G, ∀x ∈ X, ∀h ∈ H, P (h, x, g) =
h · p(x, g) + c(g), where p : X ×G→ < and c : G→ <.

The interpretation, of course, is that people can not make positive profits

by simply trading in land or housing at a given location. The price function

p(x, g) is the type usually used in the urban economics literature. It represents

the per unit price of housing with characteristics g located distance x from the

CBD. If one wants to dispense with this condition and use nonlinear pricing for

h, then one can kiss the first welfare theorem good-bye; equilibrium allocations

might not be Pareto optimal. The usual proof of the first welfare theorem relies

heavily on linearity of prices. In the theoretical literature, it is typical that

c ≡ 0. In the empirical literature, it is typical for c to represent components
of the regression other than terms and interaction terms involving h.

WhenH is land rather than housing and c ≡ 0, the interpretation of Axiom
2 is particularly compelling. If we consider h and i to be vacant lots where one

is twice the size of the other, then since the parcels can be split into pieces,

no arbitrage says that agents cannot make a profit by breaking the parcels

up or combining them.2 Vacant lots need not be present in equilibrium;

we only require that the hedonic price function prices them. We allow the

generalization c 6= 0 to cover empirical work.
When H is housing, since we only need to use the values at two points (at

each location), this is really just agreement (among agents) about the units

used to measure the housing good. Such an assumption is usually justi-

fied in the literature by a production function for housing that is location-

independent (often Cobb-Douglas in capital and land). This leads to a

location-independent scale for measuring housing, though the price of housing
can still be location-dependent due to the location-dependence of the price of

land. In that case, lot size can either be embodied in h through the production

function and/or included in g.

One way to capture many of the empirical models in our framework is to

make h land and throw all of the housing characteristics into g. Then the

houses we are comparing differ only in lot size and, once again, no arbitrage

in land seems compelling.

Empirically, this is a semiparametric regression.

2As is standard in most of economics, we assume that consumers ignore feasibility con-
straints when solving their optimization problems, so they think it’s possible to purchase
vacant lots of any size at any location.
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Axiom 3 (Coulson-Muth-Mills): If we take a house and move it d units

farther from the CBD, then its cost goes down by the commuting cost multiplied

by d. Formally, ∀g ∈ G, ∀h ∈ H, ∀x, y ∈ X, P (h, x, g) = P (h, y, g)+t·[y−x].

There are many remarks to be made about the last axiom. First, the

intuition is clear and well-known. If we take two houses or vacant lots that

are identical in every respect except distance from the CBD, then the difference

in price must be equal to the commuting cost. In terms of Coulson (1991),

equation [3] of that paper is the differential version of our Axiom 3. In our

notation, presuming that P is differentiable in x, Coulson’s equation [3] is

∂P (h, x, g)/∂x = −t. (1)

This can be derived from Axiom 3 by letting x tend to y and using the

definition of a derivative.

As Coulson notes, the argument for the standard Muth-Mills condition is a

bit harder, since the ceterus paribus conditions are more complicated. That’s

because the equilibrium consumption of housing increases with distance from

the CBD under the “normal”3 assumptions. Let h(x) denote the equilibrium

value of h at x, the number of units of housing or land purchased in equilibrium

at distance x from the CBD. In terms of our notation, the standard differential

version of the Muth-Mills condition is as follows.

∂p(x, g)/∂x · h(x) = −t (2)

It can be derived from the budget constraint and equal utility equilibrium

condition of the standard model (see the usual texts Fujita (1989) or Mills and

Hamilton (1994, chapter 6), or see Coulson (1991, equation [4a])), though its

derivation can be a bit messy.

We prefer the discrete version since it simplifies our analysis and avoids

the use of additional assumptions, such as differentiability of P . The discrete

version is a bit more involved.

∀x, y ∈ X, P (h(y), y, g) + t · y ≤ P (h(y), x, g) + t · x (3)

3That is, the usual assumptions plus normality of housing. Pun intended. See Fujita
(1989).
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The intuition here is pretty much the same as the other intuitions we have

advanced. Bear in mind that in these models, price is generally decreasing with

distance from the CBD while housing consumption is generally increasing with

distance from the CBD. If we look at the equilibrium housing profile across

locations h(y), then if we move farther from the CBD and look at the same

house, the price decrease from moving farther from the CBD must not exceed

the increase in commuting cost. If we move closer to the CBD and look at

the same house, the price increase must be at least as large as the decrease

in commuting cost. The reason this differs from the differential statement

(2) above that uses only the equilibrium value of housing at a point is that

in the discrete case, equilibrium housing consumption changes with a discrete

change in location, and no arbitrage should prevent consumers from moving

and buying the identical house in equilibrium. Evidently, we can obtain the

differential version (2) by imposing Axiom 2, by using the inequalities (3), and

by applying the definition of derivative by taking limits as x approaches y.4

Notice that the difference between our inequality (3) and our Axiom 3 is that

Axiom 3 uses equalities, while inequality (3) uses inequalities. In fact, Axiom

3 implies inequality (3), but not conversely.

So how can we obtain Axiom 3 from the discrete version of the Muth-Mills

condition (as opposed to the Coulson condition)? Here it is useful to quote Ed

Coulson (1991, p. 301). “Furthermore, in a hedonic regression where distance

and other housing attributes are included on the right-hand side, the coefficient

on location must be interpreted in precisely the ceterus paribus context noted

for [3].” Our equation (1) is his equation [3] in our notation. In other words,

when hedonic regressions are run to test urban models (or for other purposes,

such as real estate assessment), equation (1) and thus Axiom 3 are implicitly

assumed, since houses not priced by the Muth-Mills condition (and thus not

bought at equilibrium) are priced by the hedonic price function when it is

estimated. And they are priced according to Axiom 3. So although neither

the continuous nor the discrete version of the Muth-Mills condition implies

Axiom 3, the hedonic regressions used to test the standard model do imply

it. This is due to the fact that distance from the CBD enters the right hand

sides of the hedonic regressions in an additive manner, where the coefficient on

distance from the CBD is the estimated commuting cost per unit of distance.

The intuition for this restriction is exactly as Coulson suggests.

4In fact, Mills and Hamilton (1994, p. 110) requires some correction in this respect, since
they refrain from using calculus in the text but nevertheless derive a discrete version of the
result that uses an equality rather than inequalities.
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Axiom 3 is what sets urban economic hedonic models apart from hedonic

models in other fields.

From the viewpoint of theory, Axiom 3 has real bite or is a refinement

of hedonic equilibrium. If the bid rents of consumers cannot be ordered

uniformly by steepness, then it is not necessarily the case that land or housing

consumption increases with distance from the CBD in equilibrium. In that

circumstance, identical houses or parcels can be purchased in equilibrium at

different distances from the CBD, and Axiom 3 is essentially a no-arbitrage

condition. In the case where the theory implies increasing land or housing

consumption with distance from the CBD,5 then Axiom 3 can be viewed as a

refinement, in that if identical houses or parcels were purchased at different
distances from the CBD, then in equilibrium Axiom 3 would be satisfied.

3 The Result

Theorem 1 Axioms 1, 2, and 3 together imply a contradiction. Thus, for

any test of a hedonic housing model, at least one of the three axioms must be

violated. If all three axioms are assumed (either explicitly or implicitly), then

the model is internally inconsistent.

Proof: An almost trivial proof using calculations. Let the two different

locations given in Axiom 1 be x, y ∈ X, let the two different housing types
given in Axiom 1 be h, i ∈ H, and let the element of G given in Axiom 1

be g ∈ G. Then Axiom 3 implies P (h, x, g) = P (h, y, g) + t · [y − x] and
P (i, x, g) = P (i, y, g) + t · [y − x]. Applying Axiom 2 to these two equations,

h ·p(x, g) = h ·p(y, g)+t · [y−x] and i ·p(x, g) = i ·p(y, g)+t · [y−x]. Note that
the last two equations and x 6= y imply that p(x, g) 6= p(y, g). Combining the
last two equations, one obtains that h = i, a contradiction. Q.E.D.

5A common set of sufficient conditions for bid rents to be ordered uniformly by steepness
is that land or housing is a normal good, consumer preferences are identical, and consumers
are endowed with no land but only a composite consumption good. Then in equilibrium,

low endowment consumers live closest to the CBD while high endowment consumers live
farthest from the CBD. In equilibrium, land consumption is increasing with distance from
the CBD. These conditions are sufficient for existence of an equilibrium, but are much
stronger than necessary.
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4 The Take Home Lesson

In this section, we will show that the “tests” of the monocentric city model are

not tests at all. Even if the utility function and income of the identical con-

sumers in the one type model are known to the observer, there is a continuum

of models (equilibrium price systems) consistent with the observed housing

purchases and rent density, only one of which is the standard model. If the

income and utility function are unknown, there are huge numbers of models

that are observationally equivalent to the standard model, having downward

sloping rent and upward sloping land consumption. To make this idea more

concrete, we present the argument in the abstract and then provide an example

based on a common version of the standard model using log linear utility.

Note that the standard urban economic theory model satisfies Axiom 2

with c ≡ 0. Evidently, this model does not satisfy Axiom 3. However, it

is easy to construct an equilibrium price system for such a model that does

satisfy Axiom 3 but not Axiom 2. For simplicity, let’s ignore g. Suppose that

the equilibrium price of housing satisfying Axiom 2 is given by p : X → <
(defining P according to Axiom 2), and that the equilibrium housing function

h : X → < is one-to-one and onto (for example, h(0) = 0 and dh/dx > k > 0).
Denote the function h−1 by x(h). Define π : H × X → < by P (h, y, g) =
π(h, y) ≡ h · p(x(h)) + t · [x(h)− y]. Then the price system p satisfies Axiom

2 but not Axiom 3. The price system π satisfies Axiom 3 but not Axiom

2. The two price systems agree on the equilibrium bundles h(x), but no price

system satisfies both Axioms. Moreover, for any α ∈ (0, 1), define the price
system P (h, x, g) = πα(h, y) ≡ αhp(y) + (1 − α)π(h, y). Then πα is also an

equilibrium price system (with the same equilibrium bundles), but satisfies

neither Axiom 2 nor Axiom 3.

Next we prove formally that if p is an equilibrium price system, so is π (with

the same equilibrium bundles). To see this, let u(h, z) be the utility function

of all of the identical consumers, where z is a non-negative number repre-

senting composite good consumption. If w is a positive number representing

income, the budget constraint is w ≥ t · x + P (h, x) + z. Now suppose that

[h(x), z(x), p(x)] is an equilibrium in the sense that w ≥ t·x+h(x)·p(x)+z(x)∀x
and for all (h0, z0, x0) with w ≥ t · x0 + h0 · p(x0) + z0, u(h(x), z(x)) ≥ u(h0, z0).
Suppose that ∃(h0, z0) and ∃x with u(h0, z0) > u(h(x), z(x)). Then ∀x0, t ·x0+
π(h0, x0)+z0 = t·x0+h0·p(x(h0))+t·[x(h0)−x0]+z0 = h0·p(x(h0))+t·x(h0)+z0 > w.
In fact, ∀α ∈ [0, 1], P (h, x, g) = πα(h, y) ≡ αhp(y) + (1− α)π(h, y) is also an

equilibrium price system (this follows easily from the fact that the equilibrium
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allocation is the same), and πα satisfies neither Axiom 2 nor Axiom 3 when

α ∈ (0, 1).
Example 2 Take u(h, z) = z+ln(h), where the consumers are all identical and
of measure N . For computational ease, consider a linear city so that the land

available at each location is 1. Calculations using first order conditions yield

an equilibrium rent density of p(x) = Ae−xt, a standard exponential density,
where A = Nt

1−e−xt and x is the extent of the city. Moreover, equilibrium

housing consumption is h(x) = A−1ext, so x(h) = ln(Ah)/t and π(h, y) ≡
h · p(x(h)) + t · [x(h) − y] = 1 + ln(Ah) − t · y, while πα(h, y) ≡ αhAe−yt +
(1 − α)[1 + ln(Ah) − t · y]. The price systems p, π, and πα are equilibrium

prices. The equilibrium allocations are the same for all of these equilibrium

prices, though only p is derived from the standard model and satisfies Axiom

2. The price system π satisfies Axiom 3, while for any α ∈ (0, 1), πα satisfies

neither Axiom 2 nor Axiom 3.

5 Conclusions

Clearly what we have in mind is nihilism (as opposed to the hedonism of hedo-

nic models). There is no price system that simultaneously satisfies two natural

no arbitrage conditions, Axioms 2 and 3.6 For each condition, there is one

price system satisfying it and a continuum of price systems satisfying neither.

These price systems generate the same equilibrium bundles, but price bundles

not purchased in equilibrium differently. These models (with alternate price

systems) are observationally equivalent, so the tests of the standard hedonic

model cannot distinguish among them. The use of one particular price system

out of a continuum represents an assumption that cannot be tested.7

The main advantage of price systems or models satisfying Axiom 2 is that

it’s possible that every equilibrium allocation will be efficient; see Berliant,
6It is amusing to note that most theorists prefer Axiom 2, and most empiricists prefer

Axiom 3. Since the two axioms cannot be distinguished empirically, this must somehow be
connected to matters of faith.

7Scotchmer (1986) is a related model. There, the hedonic price function is assumed linear
and as a result is identified, but the preferences consistent with an equilibrium hedonic price
function are not. As a consequence, the benefits of non-marginal changes in amenities
(g in our notation) are not identified. In our model, the hedonic price function itself is

not identified (outside of equilibrium values), so the benefits of non-marginal changes in
amenities are unknown. This follows because it is unclear how such non-marginal changes
will affect prices of or willingness to pay for locational goods via c(g) or P (h, x, g), as the
only values of these functions that are known are those for equilibrium values of g.
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Papageorgiou and Wang (1990) for some counterexamples in small variations

of the standard model. If one chooses a model and price system consistent

with Axiom 3 instead of Axiom 2, then the nonlinear pricing in housing can

generate more equilibria, perhaps with heterogeneous housing in each location.

This would correspond closer to the data. On the other hand, such equilibrium

allocations are unlikely to be efficient.

Coulson (1989) presents empirical evidence that Axiom 2, linear prices for

housing at a given location, is violated. Evidently, this argues for acceptance

of Axiom 3 in its place.

Let us turn next to a detailed discussion of Theorem 1. One might

think that a way to get around the problem we have presented is to estimate

a hedonic model where commuting cost is not additively separable in price.

However, this approach would deny the essential intuition of Axiom 3, that

the prices of identical houses in different locations should be the same except

for the difference in commuting cost. If a hedonic model is additively separable

in commuting cost, then it likely violates Axiom 2.

The result can be extended in a number of ways. First, multiple city sub-

centers and different directions of commuting can be accommodated, as long as

there are two locations from which consumers commute to the same subcenter.

As Coulson (1991) notes, multiple incomes or types of consumers make no dif-

ference to Axiom 3 (or the other axioms). Notice that the construction of the

hedonic regression itself, linear in distance from the CBD, implies Axiom 3,

and thus leads to a contradiction. If we actually observe two pairs of identical

houses8 in different locations, then even without the specification of the hedo-

nic regression model, we’ve got a serious problem, since Axiom 3 is satisfied

(this is essentially the example given in the introduction). The latter idea can

be extended to chains of pairs of identical houses, where the locations are the

same for the second element of one pair and the first element of the next. If

we get a non-trivial cycle of pairs (returning to the location where the chain

starts), then there is a contradiction. The proof involves stringing together

all of the equations implied by the chain. Non-linear commuting cost can be

accommodated easily in the axioms and proof. Finally, the locational good

need not be housing. One could replace all occurrences of “housing” in this

paper by “land,” where the differences in land quantities are simply different

size parcels. The symbol h would represent land consumption in that case.

There is yet another level of generalization of our result that is feasible;

8A convenient example is the “Chicago bungalow.”
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it replaces the semiparametric regression in Axiom 2 with a non-parametric

regression. Let y > x. Retain Axioms 1 and 3. These alone imply that

P (h, x, g)−P (h, y, g) = P (i, x, g)−P (i, y, g). In differential terms, this would
imply that ∂P (h, x, g)/∂x ≡ ∂P (i, x, g)/∂x (or its messy discrete alternative).

Thus, ∂2P (h, x, g)/∂x∂h = 0 (or its messy discrete alternative). In place of

Axiom 2, one can use the generalization ∂2P (h, x, g)/∂h∂x 6= 0 or its messy
discrete equivalent. (When Axioms 2 and 3 are satisfied, ∂2P (h, x, g)/∂h∂x =

−t.) This yields a contradiction with a new, more general condition on the

hedonic price function than no arbitrage. It is essentially a single crossing

condition on P ! This avenue of research clearly deserves further attention;

supermodularity could play a key role.

There are two immediate implications of this analysis. First, it should

be clear that when we test urban economic models, we are actually assuming

more than the classical Muth-Mills condition. We are generally using Axiom

3 (stronger than the Muth-Mills condition). Second, if one attempts to tell a

story about an auctioneer setting prices, then having Axiom 3 apply only to

the levels of housing actually sold in equilibrium seems silly.

So where do we go from here? There are three obvious paths and one

less obvious path. The first is to make commuting cost individual-specific.

This path is likely to lead nowhere for two reasons. First, the framework

presented here remains a special case, so the results still apply. Second, the

empirical evidence (Deacon and Sonstelie (1985)) is that commuting cost is

not heterogeneous.

The second path is to study imperfect competition models of the housing

market. The hedonic regressions would have to be modified, for example

to account for the number of firms in the industry. Again, the framework

presented here will be a special case when firms have little or no market power,

so this path does not seem promising either.

The third path is to allow commuting cost to depend on both distance

from the CBD and on h. There are two problems with this idea. First, h is

a choice variable of each household. Does it make sense to have households

choosing housing knowing that this choice affects commuting cost independent

of distance from the CBD? This property seems unrealistic. Second, Axioms 2

and 3 imply that commuting cost must be proportional to h. So, for example,

commuting cost at any location must vanish as h tends to zero. Again, this

seems unrealistic.
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The fourth and less obvious path9 is to allow nonlinearities of the hedonic

price function P (h, x, g) in both housing h and in location x. For instance,

one could use a nonparametric regression to test the hypothesis that P is linear

in h or x, in other words, to see if Axioms 2 or 3 are satisfied. Thus, the data

itself would speak to the issue of whether or not the no arbitrage conditions

are satisfied. Of particular interest is whether or not Axiom 2 is consistent

with the data, since this would be a real test of the standard model.10
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