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Abstract

In the Bayesian approach to factor analysis, available prior knowl-
edge regarding the model parameters is quantified in the form of
prior distributions and incorporated into the inferences along with
the data. The incorporation of prior knowledge has the added con-
sequence of eliminating the ambiguity of rotation and the need for
model constraints found in the traditional factor analysis model.
A focus of recent work (Rowe, 2000a and Rowe, 2000b and Rowe,
2000c) has been on quantifying and incorporating available prior
knowledge when estimating the population mean. This previous
work has considered, vague, conjugate and generalized conjugate
distributions for the population mean. In this paper, unlike previ-
ous work, the population mean vector and the factor loading matrix
are taken to be jointly distributed which allows available interre-
lated prior information to be quantified and incorporated with the
data. The model parameters are estimated by Gibbs sampling and

iterated conditional modes algorithms.
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1 Introduction

In the Bayesian approach to statistics, available prior knowledge regard-
ing the model parameters is quantified in the form of prior distributions.
Information contained in the data is quantified in the form of a likelihood
distribution. The priors and the likelihood are combined by Bayes’ rule
so that knowledge from both sources is incorporated into the inferences.
Bayesian statistical methods not only incorporate available prior informa-
tion either from substantive experts or previous data, but allow the knowl-
edge regarding the parameter values to accumulate as subsequent data is

acquired.

In the non-Bayesian factor analysis model, the factor loading matrix is
determinate up to an orthogonal rotation. Typically after a non-Bayesian
factor analysis, an orthogonal rotation is performed on the factor loading
matrix according to one of many subjective criteria. This is not the case
in Bayesian factor analysis. The incorporation of prior knowledge has the
added consequence of eliminating the ambiguity of rotation and the need
for model constraints found in the traditional factor analysis model (Press

& Shigemasu, 1989).

A focus of recent work (Rowe, 2000a and Rowe, 2000b and Rowe, 2000c¢)
has been on quantifying and incorporating available prior knowledge when
estimating the population mean. This previous work has considered, vague,
conjugate and generalized conjugate distributions for the population mean
when quantifying prior knowledge. However, in the aforementioned pre-

vious work, the prior distributions for the population mean vector and



the factor loading matrix were taken to be independent. In this paper,
the population mean vector and the factor loading matrix are taken to be
jointly distributed which allows available interrelated prior information to

be quantified and incorporated with the data.

The model parameters are estimated by both Gibbs sampling (Geman &
Geman, 1984 and Gelfand & Smith, 1990) and iterated conditional modes
(Lindley & Smith, 1972 and O’Hagen, 1994) algorithms which find pos-
terior marginal mean and posterior joint modal (maximum a posteriori)

estimates respectively.

The plan of the paper is to review the model and to adopt prior distri-
butions in Section 2. Present the conditional posterior distributions along
with the Gibbs sampling and ICM algorithms in Section 3. In Section 4
an example is detailed, and estimates from both the Gibbs sampling and

the ICM estimation methods are presented.

2 Model

2.1 Likelihood Function

The Bayesian factor analysis model is:

(xj|/1'aA:fj) = H + A fj + €; , m<p,
(px1) (px1) (pxm) (mx1) (px1)
(2.1)
for j = 1,...,n, where z; is the 5" observation, x is the overall population

mean, A is a matrix of constants called the factor loading matrix; f; is the

factor score vector for subject j; and the ¢;’s are observation errors.

In order to incorporate jointly distributed prior knowledge regarding the
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mean vector and factor loading matrix, the model is rewritten as

(z;|C, f;) = C 9; + ¢ , m<p,
(p x 1) px(m+1) (m+1)x1 px1

(2.2)
where C'= (p, A) and g; = (1, f}).
As in the traditional factor analysis model, the errors are specified to be

mutually uncorrelated and normally distributed N(0, ¥) variables. With

the error specification, the distribution of each x; can be written as
pla;]C, £, ) = (2m) 75 |@| 3¢ 3Cm T mmCn) (23
If proportionality is denoted by “oc” then the likelihood for (C, F, ¥) is
p(X|C, F,0) o || T 2ir¥ ™ (X-GC)(X-GC) (2.4)

where the p-variate observation vectors on n subjects are X' = (z1, ..., z,),
the factor scores are contained in G' = (g¢1,...,¢n), and the errors of ob-
servation are E' = (e1,...,€,). The notation p(-) will generically denote
a probability distribution which is distinguished by its argument whose

proportionality constant does not depend on its argument.

2.2 Priors

Available prior knowledge is incorporated into the inferences in terms of
prior distributions for the model parameters. The joint prior distribution

for the parameters is:

p(C, F, W) o< p(C¥)p(¥)p(F), (2.5)



where

P(CIW) oc [B|775 st O MO, (2:6)
p(¥) oo |W[TEeTYTIQ (2.7)
p(F) o« e 2F'F (2.8)

with M, @, and ¥ positive definite matrices. The matrix C' conditional
on ¥ has elements which are jointly normally distributed, and hyperpa-
rameters (Cyp, M) are to be assesssed. The hyperparameter C contains
both the prior means for the population mean vector and the factor load-
ing matrix as Cy = (g, Ag). The population mean vector and the loading
matrix are jointly distributed just as the intercepts and variable coeffi-
cients are in a multivariate regression model. The matrix ¥ follows an
inverted Wishart distribution, with hyperparameters (v, Q) which are to
be assessed. It is specified that E(¥) is diagonal, in order to represent
traditional views of the factor model containing “common” and “specific”
factors (Press & Shigemasu, 1989). The factor scores, the rows of F' are
taken to be normally distributed with mean zero and identity covariande
which is the model part of the traditional orthogonal factor analysis model

and thus @ is taken to be a diagonal.

2.3 Joint Posterior

Using Bayes rule, combine Equations (2.4)-(2.8), to get the joint poste-

rior distribution of the parameters

p(C,F,0|X) o e 3trFF|g |5 o—gtrv U (2.9)



where

U = (X —GC"Y(X —GC')+ (C—Cy)M™(C = Cy) + Q.
3 Estimation

As stated earlier, marginal mean and joint modal posterior estimates
are found by the Gibbs sampling (Geman & Geman, 1984 and Gelfand &
Smith, 1990) and iterated conditional modes (Lindley & Smith, 1972 and
O’Hagen, 1994) algorithms. For both methods of parameter estimation,

the conditional posterior distributions are needed.

3.1 Conditional Posterior Distributions
The posterior conditional distributions are as follows.

p(C|F, ¥, X) o p(Cl¥)p(X|C, F, V)
x |W[TH e 3ty HO—Co)M T (C—Co)
|\I,|_%e—%tr\ll—l(X—GC’)’(X—GC’)

x e 3tr¥THC-O)YMTI+GG)(C-C) (3.1)

where C' = (X'G + CoM V) (M ' +G'G) ™.

p(Y[C, F, X) o p(¥)p(Cl¥)p(X|C, F, ¥)
- |\I,|—%6—%tr‘1!_1Q‘\I;‘—mT“e—%tr\ll_l(C—Cg)M_l(C—Co)’
|\I,|—g6—§tr\1/—1(X—GC')'(X—GC')

(n+v+m+1) 1 -1
- e—gtr\ll U

x| (3.2)



where U = (X — GC")'(X — GC") + (C — Co)M1(C — Cp) + Q.

p(F|p, A, ¥, X) o< p(F)p(X|p, A, F,¥)
x e—%trF’F|\I]|—%e—%tr\ll—l(X—enu’—FA’)’(X—enu’—FA’)

o Str(F-F)(In+A w1 A)(F-F) (3.3)

where F' = (X — ep/) U~ A(T,,, + A"T~TA) L,
The modes of these conditional distributions are C, F, (as defined above),

and

- (3.4)

respectively.

3.2 The Gibbs Sampling Algorithm

For Gibbs estimation of the posterior, start with initial values for F' and

U say F(O) and \II(O). Then cycle through

Cu+1y = a random variate from p(C|Fy), ¥, X)
Ui;+1) = arandom variate from p(¥|Fyy, Cigy, X)

Fuy+1y = arandom variate from p(F|Ci1y, ¥(41), X).

An initial number of random variates called the “burn in” are discarded
and the remaining L variates are kept. The means of the remaining random

variates
1

ll
M=
|
Q)
Il
=
M=
Q
=1
Il
]

L —
> .
=1

are the marginal posterior mean estimates of the parameters.



3.3 The ICM Algorithm

For iterated conditional modes estimatiom of the posterior, start with
an initial value for F, say ﬁ‘(o), form é(o) = (eq, F’(O)), and cycle through

Cuvy = (X'Goy+CoM™) (M~ +GyGyy)™
gy = [(X = GoyClan)' (X = GoyCippy) +

(Curny — Co) MY (Cuyy — Co)' +Ql/(n+v+m+1)
F(l+1) = (X - 6nﬂ’(l))‘i’(_l-1+1)/~\(i+1)(1m + Al(l+1)\i}(_l—1|—1)]\(l+1))_l

until convergence is reached with the joint posterior modal (maximum a

posteriori) estimator (C, F, ¥).
4 Example

In this section the Gibbs Sampling and ICM procedures for estimating
the parameters of the aforementioned Bayesian factor analysis model are
used and the resulting estimators are presented. The data is extracted
from an example in Kendall 1980, p.53. The problem (Press & Shigemasu,
1989) is the following.

There are 48 applicants for a certain job, and they have been

scored on 15 variables regarding their acceptability. They are:

(1) Form of letter application  (9) Experience

(2) Appearance (10) Drive

(3) Academic ability (11) Ambition

(4) Likeabiliy (12) Grasp

(5) Self-confidence (13) Potential

(6) Lucidity (14) Keenness to join
(7) Honesty (15)  Suitability

(8) Salesmanship



Table 1: Raw scores of 48 applicants scaled on 15 variables.
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Person

The raw scores of the applicants on these 15 variables, measured on the

same scale, are presented in Table 1. The question is, Is there an underlying

subset of factors that explain the variation observed in the scores? If so,



then the applicants could be compared more easily.

The underlying structure which is postulated (Press & Shigemasu, 1989)
is a model with 4 factors. This choice is based upon a principal components
analysis which found that 4 factors accounted for 81.5% of the variance.
Based upon underlying theory (Press & Shigemasu, 1989) the prior factor

loading matrix

A =

oo o
coc oo
co~No
No oo
oo o
coc o
No oo
coc o
o~No o
oo o
oo o N
coc o
oo o N
coc oo
o ~No o

1s assessed.

The hyperparameter M is assessed as M = %15, Q is assessed as () =
0.2115, and v is assessed as v = 33. The prior population mean is assessed
as po = 7.5e15 where the 15 dimensional unit vector has been denoted by
e15- The population mean, factor loadings, factor scores, and disturbance
covariance matrix may now be estimated. The rows of X along with the
columns of py were scaled by the variances of the columns X for estimation
and the estimated means were rescaled. It was found that a burn in period
of 5,000 samples worked well, so then the next 25, 000 samples were taken

for the Gibbs estimates.
Table 2 displays the Gibbs sampling and ICM estimates of the population
mean along with the prior and sample means.

Table 3 displays the Gibbs sampling and ICM estimates of the factor
loadings. For enhanced interpretability, the rows of the factor loading

matrices have been rearranged. It is seen that factor 1 loads heavilly for
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Table 2: Gibbs Sampling and ICM estimates of the mean.

p | Gibbs Mean | ICM Mean | Sample Mean | Prior Mean
1 7.0536 7.3959 6.0000 7.5000
2 7.4084 7.5305 7.0833 7.5000
3 7.2871 7.3538 7.0833 7.5000
4 6.6636 6.8584 6.1458 7.5000
5 7.6118 7.6941 6.9375 7.5000
6 7.4313 7.6225 6.3333 7.5000
7 7.9234 7.9147 8.0417 7.5000
8 6.3472 6.6418 4.7917 7.5000
9 5.8173 6.3038 4.2292 7.5000
10 6.6362 6.9201 5.3125 7.5000
11 7.0960 7.3092 5.9792 7.5000
12 7.4049 7.6515 6.2500 7.5000
13 6.9856 7.2853 5.6875 7.5000
14 6.3746 6.5979 5.5625 7.5000
15 7.3620 7.8412 5.9583 7.5000

Table 3: Gibbs (left) and ICM (right) Estimates of Factor Loadings.

p 1 2 3 1 1 2 3 1
5| .7916 -.0419 -.1200 .0077 || .7828 -.0472 -.1676 -.0111
6 | .7563 -.0342 0280 .0981 || .7315 -.0212 -.0087 .0742
8 |.7982 -.0722 0624 -.0623 || .7869 -.0664 .0645 -.0738
10 | .7078 -.0507 .1737 .0320 || .6839 -.0439 .1716 .0120
11 | 7946 -0711 0053 -.0756 | .7885 -.0630 .0004 -.0844
12 | 7114  .0090 .1404 .1245 || 6792 .0356 .1070 .1103
13 | 6612 .0561 .1824 2038 || .6247 .0887 .1609  .1898
31.0224 7251 0891 .0249 || .0277 .7191 .0638 .0270
1|.0666 -.1008 .7739 .0622 | .0049 -.0942 .7606 .0622
9 |.0430 .0094 8079 .0126 | -.0090 .0423 .8184 -.0002
5| .2411 -.0863 .7242 0463 || .1817 -.0526 .7233  .0453
4| .1198 -.0815 .1523 7177 || .0557 -.0544 .1834  .7227
7|.1043 -.0169 -.1260 7332 || .0499 -.0016 -.1483 .7339
2
4

2951 -.0292 0657 1054 || .2822 .0111 .0836  .1548
3279 -.2928 1739 2971 2903 -.2993 2279 3115
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variables 5, 6, 8, 10, 11, 12, and 13; factor 2 on variable 3; factor 3 heavily
on variables 1, 9, and 15; while factor 4 loads heavily on variables 4 and 7.

These factors in terms of the original

Table 4: Gibbs (left) and ICM (right) Estimates of the Factor Scores.

Person 1 2 3 4 1 2 3 4
0.2960 -3.2654 -0.1959 -0.5257 0.1606 -3.5584 -0.3575 -0.5349
0.7632 -1.5504 0.2340 0.1894 0.7575 -1.6808 0.2195 0.3713
0.4924 -2.6609 0.0333 -0.1107 0.3921 -2.9206 -0.1091 -0.0416

-0.7529 0.4371 -0.1179 0.1661 -0.8869 0.5279  -0.4046 0.0312

-1.1055 0.0273  -0.1270 0.6511 -1.0895 0.2790 -0.1725 0.6625

-0.2011  -0.1394 0.4296 0.5563 -0.3319  -0.1462 0.1647 0.4682
0.3281 0.1819 0.7599 0.0752 0.3905 0.2531 0.8603 0.1704
0.5781 0.9024 0.7009 0.0136 0.6483 0.9351 0.8176 0.1400
9 0.0926  -0.4091 0.7961 0.1165 0.1116  -0.3768 0.8034 0.2049
10 1.6741 2.0134 -0.0900 -1.2662 1.4590 2.0559 -0.4261 -1.3752
11 1.2500 1.8020 -0.6335 -2.7076 1.0815 1.9658 -0.9212 -2.9114
12 1.3113 1.9370 -0.5688 -0.6862 1.0971 2.0434 -0.9648 -0.8000
13 | -1.2942 0.1815 -0.5897 0.9755 -1.2880 0.3323 -0.6155 1.0498
14 | -1.1869 0.2541 -0.0622 0.6158 -1.2535 0.4241 -0.2638 0.6192
15 | -1.2105 0.1900 -0.3958 0.8499 -1.2975 0.4498 -0.6034 0.7697
16 0.2014  -1.1197 0.1396 -0.1016 0.2113 -1.0312 0.1744  -0.0367
17 | -0.1031  -0.0094 0.2347 0.0640 -0.2017  -0.1779 0.0809 0.0221
18 | -0.5328 0.7953 -0.8235 -1.2201 -0.7106 0.6368 -1.1290 -1.2534
19 | -0.5331 0.6843 -0.5756 -1.3078 -0.7226 0.6290 -0.9075 -1.4296
20 0.1655 -0.1471  -0.8550 0.6893 0.0829 -0.1970 -1.0102 0.8057
21 0.1664 -0.9140 -0.8296 0.9003 0.0443 -0.8392 -1.0544 0.9045
22 0.8550 -0.0303 -0.2515 0.5729 0.8245 -0.2741 -0.3225 0.7138
23 0.7007 -0.3255 -0.9118 0.6038 0.7634 -0.4100 -0.8217 0.8613
24 0.5499 -0.1482 -0.4692 1.0635 0.5545 -0.3338  -0.4949 1.2228
25 | -1.4395 -0.2626 -1.0962 0.3713 -1.5303 -0.2132 -1.3128 0.3743
26 | -1.1870 -0.2669 -0.4081 0.4448 -1.2976  -0.2034 -0.6532 0.3946
27 | -0.1562 -0.3893 -1.5819 1.0424 -0.2345 -0.2079 -1.7420 1.0966
28 | -1.9049 -0.7866 -1.3147 -1.1532 -2.2280 -1.2265 -1.8600 -1.5166
29 | -2.4161 -1.9105 -2.1853 -2.5681 -2.5958 -2.1770 -2.4250 -2.9581
30 | -1.2047 -0.8843 -1.4650 0.4613 -1.4420 -1.2948 -1.8597 0.3869
31 | -0.9543 -1.6733 -1.2850 0.7778 -1.1459  -2.0788 -1.6079 0.6640
32 | -0.2949 -1.0632 -1.2234 1.2409 -0.5964 -1.2671 -1.7646 0.9369
33 | -0.5818 -0.9921 -1.4000 1.1941 -0.8973 -1.2243 -1.9410 0.9053
34 | -1.8264 -0.4977 -1.6063 -0.1801 -2.0689 -0.6754 -2.0180 -0.4497
35 | -2.3990 -1.8693 -0.8847 -0.4015 -2.6429 -2.0414 -1.3609 -0.5105
36 | -1.0635 -1.3135 -0.3380 -0.2968 -1.2520 -1.4339 -0.7874 -0.3159
37 0.5058 -0.5549 -1.5516 -0.6353 0.2833 -0.6483 -1.9382 -0.6854
38 0.3374 -0.6981 -1.9067 -0.5610 0.2040 -0.7895 -2.1215 -0.5485
39 0.8581 1.1046 1.0410 1.2921 0.8801 1.0039 1.0739 1.3098
40 1.0071 1.1324 1.0180 1.2752 1.0284 1.0084 1.0633 1.2868
41 | -2.4526 0.3591 2.1495  -2.7291 -2.6775 0.6079 1.7383  -3.0415
42 | -2.7562 0.6324 2.3316  -2.9559 -3.0521 0.7185 1.8513  -3.4691
43 | -2.0919 0.9520 -0.4439 0.0251 -2.2026 1.1547 -0.5726 -0.2761
44 0.5611 -0.1663 -0.0036 -0.0265 0.4625 -0.1958 -0.1921 -0.1354

45 | -0.2254 2.1088 0.1468 1.5599 -0.4851 2.0908 -0.4240 1.3945
46 0.1684 1.8709 -0.2032 1.6362 -0.0210 1.9787 -0.6763 1.5681
47 | -2.0743 2.1837  -2.2167 0.1476 -2.3946 2.2267 -2.7794  -0.1245
48 | -1.9674 2.3437 -2.0335 -0.2506 -2.3430 2.3154 -2.6884 -0.5719

0~ Uk WN
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variables are factor 1: Self-confidence, Lucidity, Salesmanship, Drive, Am-
bition, Grasp, Potential; factor 2: Academic ability; factor 3: Form of
letter application, Experience, Suitability; and factor 4: Likeabiliy, Hon-
esty. These factors may be loosely interpreted as factor 1 being personality,
factor 2 being academic ability, factor 3 being position match, and factor

4 being charisma.

In Table 4, the Gibbs sampling and ICM estimates of the factor scores
are presented. An employer may now decide on a criteria to select a person.
For example, if the employer wished to hire a person that is “very” hard
working with a “very good” academic record and a “fair” match for the

position, person 10 might be selected.

Table 5: Gibbs (top) and ICM (bottom) Estimates of the Disturbance
Covariance Matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 [0.2243 0.0681 -0.0045 0.0887 0.0087 0.0100 -0.0283 0.0312 -0.0363 0.0238 0.0596 0.0189 0.0291 0.1516 -0.0321

2 0.4832 0.0590 0.0779 0.0234 -0.0198 0.0698 0.0571 0.0317 -0.0182 0.1010 0.0591 0.0635 0.0251 0.1021

3 0.0515 0.0317 -0.0196 0.0015 -0.0126 0.0149 0.0425 0.0153 0.0160 0.0226 0.0393 0.0022 0.0266

4 0.1662 -0.0217 0.0361 -0.0654 0.0606 0.0572 0.0425 0.0607 0.0350 0.0665 0.1266 0.0640

5 0.0937 -0.0144 0.0345 0.0001 -0.0014 -0.0177 0.0144 -0.0353 -0.0383 0.0145 -0.0249

6 0.0991 -0.0305 0.0093 0.0047 -0.0349 -0.0278 0.0436 -0.0013 0.0214 -0.0001

7 0.1215 -0.0122 -0.0189 -0.0094 -0.0146 -0.0073 -0.0287 -0.0133 0.0036

8 0.1297 0.0622 0.0520 0.0336 -0.0089 0.0088 0.0836 0.0678

9 0.2493 0.0660 0.0491 0.0270 0.0516 0.0869 0.0411

10 0.1890 0.0308 -0.0226 0.0463 0.1142 0.0726
11 0.1170 0.0076 0.0326 0.0754 0.0219
12 0.1131 0.0464 0.0413 0.0139
13 0.1283 0.0487 0.0375
14 0.3312 0.0527
15 0.1848
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1731 .0287 .0009 .0359 .0097 .0028 -.0265 -.0017 -.0799 -.0100 .0315 .0043 .0040 .0808 -.0715

2 .4147 .0209 .0184 .0087 -.0425 .0318 .0275 -.0107 -.0481 .0718 .0214 .0166 -.0128 .0551

3 .0078 .0159 -.0093 -.0035 -.0101 .0085 .0123 .0091 .0086 .0029 .0098 .0185 .0054

4 .1006 -.0288 .0166 -.0830 .0271 .0104 .0100 .0306 .0042 .0263 .0643 .0090

5 .0817 -.0155 .0320 -.0088 .0002 -.0231 .0036 -.0352 -.0398 -.0033 -.0214

6 .0855 -.0250 -.0075 -.0081 -.0459 -.0404 .0312 -.0142 -.0035 -.0110

7 .0838 -.0087 -.0047 -.0029 -.0130 -.0086 -.0289 -.0300 .0048

8 .0882 .0186 .0162 .0047 -.0297 -.0198 .0384 .0271

9 .1531 .0186 .0147 .0000 .0099 .0300 -.0251

10 1397 .0006 -.0419 .0140 .0634 .0277
11 .0827 -.0127 .0046 .0366 -.0070
12 .0867 .0189 .0085 -.0087
13 .0839 .0107 .0005
14 .2327 -.0080
15 .1136
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Table 5 displays the Gibbs sampling and ICM estimates of the distur-

bance covariance matrix.

5 Conclusion

A Bayesian statistical model which allowed the poplation mean vector
and the factor loading matrix to be jointly distributed was detailed. Avail-
able prior information either from substantive experts or previous experi-
ments was incorporated. An added feature of the Bayesian factor analysis
model is that the there is no need to rotate the factor loading matrix.
The rotation is automatically found. Available prior information regard-
ing the population mean was incorporated along with the other parameters
through a prior distribution. By incorporating prior knowlege regarding

the mean, estimation of it and the other parameters may be improved.
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