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ADAPTIVE CHARGING ALGORITHMS FOR
A NETWORK OF ELECTRIC VEHICLES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present invention claims priority to U.S. Pro-
visional Patent Application Ser. No. 62/242,410 entitled
“Adaptive Charging Algorithm for a Network of Electric
Vehicles” to Zhi H. Low et al., filed Oct. 16, 2015. The
disclosure of U.S. Provisional Patent Application Ser. No.
62/242,410 is herein incorporated by reference in its
entirety.

FIELD OF THE INVENTION

[0002] The present invention generally relates to electric
vehicles and more specifically relates to adaptive charging
processes for electric vehicles.

BACKGROUND

[0003] An incredible amount of infrastructure is relied
upon to transport electricity from power stations, where the
majority of electricity is currently generated, to where it is
consumed by individuals. Power stations can generate elec-
tricity in a number of ways including using fossil fuels or
using renewable sources of energy such as solar, wind, and
hydroelectric sources. Substations typically do not generate
electricity, but can change the voltage level of the electricity
as well as provide protection to other grid infrastructure
during faults and outages. From here, the electricity travels
over distribution lines to bring electricity to homes, busi-
nesses, schools, etc.

[0004] Electric vehicles (EVs) use an electric motor for
propulsion. EV adoption has been spurred by federal, state,
and local government policies providing various incentives
(e.g. rebates, fast lanes, parking, etc.). The term “smart grid”
describes a new approach to power distribution which
leverages advanced technology to track and manage the
distribution of electricity. A smart grid applies upgrades to
existing power grid infrastructure including the addition of
more renewable enemy sources, advanced smart meters that
digitally record power usage in real time, and bidirectional
energy flow that enables the generation and storage of
energy in additional places along the electric grid. Continued
EV adoption will have a big impact on the future smart grid
from the huge load EVs add to the stress of the grid (an EV’s
power demand can be many times that of an average
residential house).

SUMMARY OF THE INVENTION

[0005] The growth of EVs depends on, and will drive, the
growth of charging stations. More and more parking garages
at shopping malls, retailers, theaters, airports, cities centers,
and corporate campuses will equip their parking spaces with
EV chargers. As the price of EV chargers continues to drop,
more and more garages will install them. Indeed the number
of public charging stations has increased by 7x between
2011-2013. One conclusion is that charger hardware will not
be a bottleneck in the future. Retrofitting existing parking
spaces with Level (L.2) EV chargers can be a significant cost;
the installation cost when building (or renovating) a new
garage, however, will be minimal. Therefore a tremendous
drive can be expected in the near future to equip a significant
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fraction of a large number of garages, parking lots, even
street parkings with EV chargers, especially when building
new structures.

[0006] This will create an emerging painpoint: the bottle-
neck to large-scale charging infrastructure is not the cost of
chargers, but the limited capacity of electricity distribution
system, as well as, in city centers, the real estate. Specifi-
cally, existing electrical infrastructure in parking garages
and office parks are often inadequate for installing a mean-
ingful number of EV charging stations. The transformers
and available breaker spaces are usually limiting factors
because they were originally designed to handle only air
circulation and lighting loads. The current solutions are: (i)
install only a few chargers in order to stay within the power
capacity of the parking structure; or (ii) increase the power
capacity of the parking structure. The first solution will not
be acceptable as EV adoption accelerates, and the second
solution will be extremely expensive, if possible at all.
[0007] A better solution is to install a large number of
chargers and then exploit the inherent flexibility of EV
charging to adaptively control the charging rates of EVs in
a way that achieves several objectives: (1) Stays within the
power capacity of the parking infrastructure; (2) Meets the
charging requirements of all EVs within their deadlines
whenever possible; (3) Fairly allocates charging capacity
among competing EVs otherwise; (4) Optimizes certain
performance metrics such (but not limited to) as asset
utilization, electricity cost or revenue to the garage, or
charging delay and/or, system robustness.

[0008] Electric vehicle node controllers in accordance
with embodiments of the invention enable adaptive charg-
ing. One embodiment includes one or more centralized
computing systems; a communications network; a plurality
of electric vehicle node controllers, where each electric
vehicle node controller in the plurality of node controllers
contains: a network interface; a processor; a memory con-
taining: an adaptive charging application; a plurality of
electric vehicle node parameters describing charging param-
eters of an electric vehicle node in the electric vehicle
charging network; where the processor is configured by the
adaptive charging application to: send electric vehicle node
parameters to the one or more centralized computing sys-
tems; and charge the electric vehicle node using a charging
rate received from the one or more centralized computing
systems; where the one or more centralized computing
systems is configured to: receive the electric vehicle node
parameters from the plurality of electric vehicle node con-
trollers; calculate a plurality of charging rates for the plu-
rality of electric vehicle node controllers using the electric
vehicle node parameters, a plurality of adaptive charging
parameters, and a cost function; and send the charging rates
to the plurality of electric vehicle node controllers.

[0009] In a further embodiment, the charging rates meet
the energy demand of the plurality of electric vehicle nodes
by a plurality of departure times.

[0010] In another embodiment, the charging rates for the
plurality of electric vehicle nodes are a time series of timing
rates provided to each electric vehicle node controller.
[0011] In a still further embodiment, the time series of
timing rates is calculated using an online linear program
process.

[0012] In still another embodiment, the electric vehicle
node parameters include an electric vehicle departure time,
a remaining enemy demand, and a peak charging rate.
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[0013] In a yet further embodiment, the time series of
timing rates can be evaluated by the one or more centralized
computing systems using the following expression:

OLP(1):

min C(r)

r(T), 1=t

subjectto r(7)=0 i=1,... ,N,t=2g

ri(t) <=7, i=1,... , Nyt=1,...T-1

7-1
Zri(‘r):ei([) i=1,....N

7=t

Zr;(T)SP, T=1 ...

i

[0014] where OLP(t) are the adaptive charging param-
eters, t and T are times, r; a peak charging rate of electric
vehicle 1, T is a departure time, r,(7) is a calculated charging
rate for an electric vehicle node at time t, C(r) is the linear
cost function, N is a total number of electric vehicles, P is
a station power limit, and t, is a deadline.

[0015] In yet another embodiment, the cost function can
be evaluated by the one or more centralized computing
systems using the following expression: r*(t):=(r*,(t), 1=, .
o= =L L NQY)

where t is a time, r* (T) is the optimal charging rate at time
T, r*(t) is a vector of charging rates for current and future
times, T is a departure time, i is an electric vehicle, and N(t)
is a number of electric vehicles at time t.

[0016] In a further embodiment again, the cost function is
a linear function.

[0017] In a further additional embodiment, the cost func-
tion comprises a cost function selected from the group
consisting of electricity cost, revenue to a garage, maximum
charging delay, asset utilization, and system robustness.

[0018] In another additional embodiment, the charging
rates for a first set of electric vehicle node controllers are a
maximum charging rate; the charging rates for a second set
of electric vehicle node controllers are zero charge; and the
charging rate for one electric vehicle node controller is less
than the maximum charging rate.

[0019] In a still yet further embodiment, distributing
charging rates into the first set of electric vehicle node
controllers, the second set electric vehicle node controllers,
and one electric vehicle node controller is a least laxity first
first process.

[0020] Instill yet another embodiment, the least laxity first
process further includes calculating a plurality of laxity of
parameters corresponding to the plurality of electric vehicle
nodes, where the electric vehicle with the smallest laxity
parameter value is charged first.

[0021] In a still further embodiment again, a laxity param-
eter in the plurality of laxity parameters is a slack time the
corresponding electric vehicle node has before it must
charge at its peak rate in order to meet a deadline.

[0022] In still another embodiment again, a laxity param-
eter in the plurality of laxity parameters can be evaluated by
the one or more centralized computing systems using the
following expression:
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e;(1)

hin=1- Fi(t; = 1)

where 1,(1) is the laxity parameter, t is a time, t; is a deadline,
e, is a remaining energy demand, and t, is a peak rate.
[0023] Another further embodiment of the method of the
invention includes: calculating exit parameter is a distrib-
uted process.

[0024] Still another further embodiment of the method of
the invention includes: calculating a laxity parameter is a
centralized process.

[0025] In yet another embodiment, an electric vehicle
charging network, comprising: one or more centralized
computing systems; a communications network; a plurality
of electric vehicle node controllers, where each electric
vehicle node controller in the plurality of node controllers
contains: a network interface; a processor; a memory con-
taining: an adaptive charging application; a plurality of
electric vehicle node parameters describing charging param-
eters of an electric vehicle node in the electric vehicle
charging network; where the processor is configured by the
adaptive charging application to: send electric vehicle node
parameters to the one or more centralized computing sys-
tems; and charge the electric vehicle node using a charging
rate received from the one or more centralized computing
systems; where the one or more centralized computing
systems is configured to: calculate a feasibility of a plurality
of adaptive charging parameters and a cost function param-
eter, where the adaptive charging parameters describe the
electric vehicle charging network; wherein where the plu-
rality of adaptive charging parameters and the cost function
parameter are feasible, calculate charging rates for the
plurality of electric vehicle node controllers where the
charging rates are a time series of timing rates; wherein
where the plurality of adaptive charging parameters and the
cost function parameter are not feasible, calculate charging
rates for the plurality of electric vehicle node controllers
where: the charging rates for a first set of electric vehicle de
controllers are a maximum charging rate; the charging rates
for a second set of electric vehicle node controllers are zero
charge; and the charging rate for one electric vehicle node
controller is less than the maximum charging rate; and send
the charging rates to the plurality of electric vehicle node
controllers.

[0026] In a further embodiment the plurality of adaptive
charging parameters can be evaluated by the one or more
centralized computing systems using the following expres-
sions:

OPT-cm:

minC(r) + 3 eildh)

subject to #;(1) =0 i=1,...,Nyi<s;orr=g

ri(t) <=Tj, i=1,...,Nr=1,...T-1

11‘71
d; = — 0=d, i=1,... ,N
OIS L

t=s;

Zr;(t)sP, r=1,...,T-1

i
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where OPT-cm are the adaptive charging parameters, i is an
electric vehicle, N is a total number of electric vehicles, C(r)
is the linear cost function, c,(d,) are cost parameters, r; is
orate, 1,(t) is a calculated charging rate for an electric vehicle
node at time T, s, is an arrival time, t, is a deadline, t and T
are times, and P is a station power limit

[0027] In another embodiment again, the cost function
parameter is a linear function.

[0028] In a further additional embodiment, the cost func-
tion parameter is selected from the group consisting of
electricity cost, revenue to a garage, maximum charging
delay, asset utilization, and system robustness.

[0029] In another additional embodiment, wherein where
the plurality of adaptive charging parameters and the cost
function parameter are feasible, calculate charging rates
using an online linear program process.

[0030] In a still yet further embodiment, wherein where
the plurality of adaptive charging parameters and the cost
function parameter are not feasible, calculate charging rates
using a least laxity first process.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] FIG. 1 is a diagram conceptually illustrating a
power distribution network in accordance with an embodi-
ment of the invention.

[0032] FIG. 2 is a diagram conceptually illustrating elec-
tric vehicle nodes connected to a communications network
in accordance with an embodiment of the invention.
[0033] FIG. 3 is a block diagram of an electric vehicle
node controller in accordance with an embodiment of the
invention.

[0034] FIG. 4 is a flow chart illustrating a process to solve
for optimal charging rates using adaptive charging processes
in accordance with an embodiment of the invention.
[0035] FIG. 5 is a flow chart illustrating a process to
charge for optimal charging rates using a least laxity first
process in accordance with an embodiment of the invention.
[0036] FIG. 6 is a flow chart illustrating a process to solve
for optimal charging rates using an online linear program
process in accordance with an embodiment of the invention.
[0037] FIG. 7 is a graph illustrating the success rates for
least laxity first processes, online linear program processes,
and optimal charging problem accordance with an embodi-
ment of the invention.

[0038] FIG. 8 is a graph illustrating the success rates for
least laxity first, online linear program processes normalized
by the optimal charging problem in accordance with an
embodiment of the invention.

[0039] FIG. 9 is a flow chart illustrating a process to solve
for optimal charging rates using a liner program incorporat-
ing a congestion management process in accordance with an
embodiment of the invention.

[0040] FIG. 10 is a graph illustrating the smallest percent-
age of energy delivered for infeasible problem instances in
accordance with an embodiment of the invention.

[0041] FIG. 11 is a graph illustrating EV cost functions in
accordance with an embodiment of the invention.

DETAILED DESCRIPTION

[0042] Turning now to the drawings, systems and methods
for adaptive charging of electric vehicles (EVs) at an electric
charging station in accordance with embodiments of the
invention are illustrated. Many charging stations can support
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the simultaneous charging of multiple EVs. Power can be
distributed between the chargers at the charging station in a
variety of manners.

[0043] An optimization problem can be utilized to
increase the performance of the distribution of power
between chargers to EVs at a charging station with respect
to particular goals. The optimal charging (OPT) problem
typically seeks to minimize one or more constraints includ-
ing (but not limited to) an electricity cost, a revenue cost, a
maximum charging delay, an asset utilization, a system
robustness, and/or other operational constraints. The OPT
problem can be solved when equilibrium points are found.
In various embodiments, adaptive charging processes can be
utilized to solve for these equilibrium points including (but
not limited to) least laxity first processes, online linear
program processes, and linear program processes that incor-
porate congestion management.

[0044] A least laxity first (LLF) process calculates a laxity
for each EV in a network. In many embodiments of the
invention, laxity is the time an EV has before it must charge
at its peak rate in order to meet a deadline. Specifically, LLF
processes schedule EV charging such that the EV with the
smallest laxity begins charging first.

[0045] In many embodiments, the cost function of the
OPT problem can be a linear function, which enables the
OPT problem to be formulated as a linear program. Linear
programs optimize a linear function such as (but not limited
to) a cost function subject linear constraints. These linear
constraints produce a convex feasible region of possible
values for those constraints. An on-line process communi-
cates with EV nodes when performing calculations (com-
pared to an offline process which can use stored EV param-
eters and does not need to be connected to EV nodes to
perform calculations). Online linear programs are linear
programs which communicate with EV nodes during calcu-
lations.

[0046] Online linear program (OLP) processes can be
utilized to solve OPT problems, which are linear programs.
In many embodiments of the invention, OLP processes
calculate optimal charging rate for all EVs at the charging
station at any given time t. This entire calculation is repeated
for a (t+1) to recalculate optimal charging rate for all EVs
since new EVs may have arrived and EVs may have left the
charging station.

[0047] Congestion can occur at times of heavy demand for
charging station resources. Linear programs with congestion
management (LP-CM) processes can alleviate congestion by
combining a variety of adaptive charging processes. Gener-
ally, the combination of processes can better allocate energy
resources than an individual adaptive charging process in a
congested charging network. In various embodiments of the
invention, LP-CM processes can be a combination of OLP
and LLF processes. LP-CM processes in accordance with
many embodiments of the invention, can behave similarly to
a OLP process until an unfeasible state is reached. When
unfeasibility is encountered, the L.P-CM behaves in a man-
ner similar to a LLF process. Once feasibility is reached
once again in the charging station, the LP-CM process once
again behaves in a manner similar to an OLP process.
Charging stations and processes utilized to perform adaptive
charging of EVs in accordance with embodiments of the
invention are discussed further below.
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Electric Vehicle Power Distribution Networks

[0048] A power distribution network in accordance with
an embodiment of the invention is shown in FIG. 1. Elec-
tricity is generated at power generator 102. Power transmis-
sion lines 104 can transmit electricity between the power
generator and power substation 106. Power substation 106
additionally can connect to large storage battery 108 which
temporarily stores electricity, as well as power distribution
lines 110. The power distribution lines 110 can transmit
electricity from the power substation to electric charging
stations 112. Electric charging stations 112 can include a
battery 114, solar panels 116, and EV chargers 120. Electric
vehicles 118 can connect to the electric charging network
(and therefore to the power distribution network) at the
chargers. Some charging stations can only charge a small
number of electric vehicles, while others can have the
necessary infrastructure to charge dozens or even hundreds
of electric vehicles simultaneously.

[0049] The power generator 102 can represent a power
source including (but not limited to) those using fossil fuels,
nuclear, solar, wind, or hydroelectric power. Substation 106
changes the voltage of the electricity for more efficient
power distribution. Solar panels 116 are distributed power
generation sources, and can generate power to supply elec-
tric charging stations as well as generate additional power
for the power grid.

[0050] Although many different systems are described
above with reference to FIG. 1, any of a variety of power
distribution networks including EV node controllers may be
utilized to perform adaptive charging processes as appro-
priate to the requirements of specific applications in accor-
dance with embodiments of the invention. EV nodes con-
nected to a communication network in accordance with
various embodiments of the invention are discussed below.

Electric Vehicle Node Controller Architectures

[0051] EV nodes connected to a communications network
in accordance with an embodiment of the invention are
shown in FIG. 2. EV nodes 202 can connect to EV chargers
204 using a wired and/or wireless charging connection. EV
chargers can connect to communication network 208 using
wired and/or wireless connections 210. In some embodi-
ments, the power distribution network can act in place of the
communication network. The communications network may
also be connected to one or more centralized computers 212
to monitor calculations made by or send instructions to
multiple EV nodes. Additionally, in many embodiments, a
database management system 214 can be connected to the
network to track EV node data which, for example, may be
used to historically track power usage at various locations or
at times of day over time. In many embodiments, EV nodes
can use distributed node controllers, where each node can
independently perform calculations to achieve optimal
charging rates in the EV network. In several other embodi-
ments, EV nodes can use centralized node controllers, where
a centralized computer can perform calculations using infor-
mation from one or more EV nodes to achieve optimal
charging rates in the EV network. Although many systems
are described above with reference to FIG. 2, any of a
variety of systems can be utilized to implement an array of
network EV nodes connected at a charging station as appro-
priate to the requirements of specific applications in accor-
dance with embodiments of the invention. EV node control-
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lers in accordance with various embodiments of the
invention are discussed below.

[0052] An EV node controller in accordance with an
embodiment e invention is shown in FIG. 3. In various
embodiments, EV node controller 300 can perform calcu-
lations to determine optimal charging rates for EVs at an
electric charging station. In many embodiments, EV node
controllers can perform distributed processes, where calcu-
lations are performed at each node in the charging station to
determine optimal charging rates for EVs. In several other
embodiments, EV node controllers transmit data to a cen-
tralized computer similar to a centralized computer
described above with respect to FIG. 2, and the centralized
computer calculates optimal charging rates for EVs at the
electric charging station that are connected to the EV node
controller for use in the charging of EVs.

[0053] The EV node controller includes at least one pro-
cessor 302, an /O interface 304, and memory 306. The at
least one processor 302, when configured by software stored
in memory, can perform calculations on and makes changes
to data passing though the I/O interface as well as data stored
in memory. In many embodiments, the memory 306 includes
software including adaptive charging application 308 as well
as electric vehicle parameters 310, adaptive charging param-
eters 312, and/or optimal charging parameters 314. An EV
node can calculate optimal charging parameters by using a
combination of its own electric vehicle parameters, adaptive
charging parameters, and/or adaptive charging parameters
received through the /O interface. Adaptive charging
parameters can include parameters specific to a variety of
adaptive charging processes including (but not limited to)
least laxity first processes, online linear program processes,
and/or linear program with congestion management pro-
cesses. Adaptive charging processes are discussed below.

[0054] Although a number of different EV node controller
implementations are described above with reference to FIG.
3, any of a variety of computing systems can be utilized to
control an EV node within a charging station as appropriate
to the requirements of specific applications in accordance
with various embodiments of the invention. An optimal
charging problem that can be solved by the coordinated
action of EV node controllers in accordance with many
embodiments of the invention is discussed below.

Optimal Charging Problem Model

[0055] In various embodiments of the invention, an opti-
mal charging problem (OPT) model can be used to solve for
an optimal charging rate. A time horizon T:={1,2, . . ., T}
can be fixed. The charging needs of EV i can be described
by a vector (s, t,, €, r,) where s,tET with the following
interpretation. EV i arrives at time s, with an energy demand
e,>0. It can be charged at any rate exceeding its peak rate
;>0 during the period {s,s,+1, . . ., t—1} with the goal of
satisfying its energy demand e, by its deadline t,. In its
simplest form the power network is abstracted as a single
power limit P>0 with the interpretation that the total charg-
ing rate at any time does not exceed the station power limit
P. A problem instance is a collection of EVs and a power
limit P :=(s.t,.e.1,, i=1, . . ., N; P). A control r:=(r,(t), t=1,
..., T-1,i=1, ..., N) is a nonnegative vector of charging
rates with r,(t):=0 for t<s, or t=t,.
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[0056] When formulated in the manner outlined above, the
optimal charging problem can be expressed as follows:

OPT:

miglcm (3a)

subject to r(0)=0 i=1,... ,Ni<s;ortzg (3b)

ri(t) <=7, i=1,..., Nyt=1,...T-1 (3c)

Zr;(r):e; i=1,...,N (3d)

t

Zr;(t)sP, t=1,...,T-1 (3e)
[0057] Here C(r) is a cost function that can represent

optimization constraints including (but not limited to) elec-
tricity cost or revenue to the garage, maximum charging
delay (makespan), or asset utilization, and/or system robust-
ness. When C(r) is a linear function, OPT is a linear
program. Constraints (36) say that EV i is available for
charging only after its arrival time s, and before its departure
time t,. Constraints (3d) say that the energy demands e, of all
EVs i are met before its deadline. In several embodiments,
the energy demand e, can be met or exceeded before the
deadline. In a number of embodiments, the energy demand
is determined by translating a distance to an energy demand
based upon a user identifying a type of EV and the known
characteristics of the EV. In several embodiments, the
energy demand can be based upon a user specifying a dollar
amount of electricity that the user decides to purchase.

[0058] Constraints (3e) say that the station power limit P

is respected at all times.

[0059] Definition 1. Fix a problem instance P :=(s,t.e.r,,
i=1, ..., N; P). A control r:'=(r,(t), =1, . . ., T-1, i=1, .
.. ,N) is called feasible (with respect to P ) if r satisfies
(35)(3e). A feasible control r* that is a minimizer of (3) is
called offline optimal. The problem instance P is called
feasible if there exists a feasible control r.

[0060] Clearly, a feasible problem instance ¥ always has

an offline optimal control r*. Such a control, however, is

generally not implementable (non-causal) because the solu-
tion of OPT requires information on all future EV arrivals.

OPT however serves as a lower bound on the cost achievable

by any online (causal) charging processes.

Adaptive Charging Processes

[0061] An overview of an adaptive charging process to
solve for OPT is illustrated in FIG. 4. The overview process
400 includes EV parameters being received (402) from EVs
assigned by the system when not provided based upon
behavior patterns at a charging station (e.g. people tend to
park in the same space) and/or charging or communications
characteristics of and EV connected to a charger. Parameters
can include (but are not limited to) arrival time, energy
demand, peak rate, and/or station power limit. An optimal
charging rate for the EVs is calculated (404) using an
adaptive charging process. A variety of adaptive charging
processes can be used including (but not limited to) least
laxity first processes, online leaner program processes, and/
or linear program processes that incorporate congestion
management. A least laxity first process will be discussed
below with respect to FIG. 5. Additionally, an online linear
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program process will be discussed below with respect to
FIG. 6. Furthermore, a linear program process incorporating
congestion management with be discussed below with
respect to FIG. 9. EVs can be charged (406) using an optimal
charging rate. Although many different adaptive charging
processes are described above with reference to FIG. 4, any
of a variety of processes may be utilized to calculate
charging rate for electric vehicles as appropriate to the
requirements of specific applications in accordance with
embodiments of the invention. Least laxity first processes in
accordance with many embodiments of the invention are
discussed below.

Least Laxity First Processes

[0062] A least laxity first (LLF) process to solve the OPT
problem is illustrated in FIG. 5. The LLF process includes
laxity for all EVs being calculated (502). In several embodi-
ments of the invention, laxity can be the time an EV has
before it must charge at its peak rate in order to meet a
deadline. If the power capacity for the charging station has
not been reached (504), a new EV with the smallest laxity
value begins charging (506). In several embodiments, once
an EV obtains its energy demand, the EV with the smallest
laxity value can begin charging at or below its peak rate. The
power capacity of the charging station continues to be
allocated based upon laxity until all EVs are charging at their
peak or the combined rates reaches the power capacity limit
of the charging station. The determination involves calcu-
lating (502) laxity for all EVs. It should be readily apparent
to one having ordinary skill in the art that the process can
repeat as needed depending on when new EVs arrive at
and/or depart from the charging station.

[0063] In many embodiments of the invention, LLF pro-
cesses can be distributed processes where laxity calculations
can be performed at each EV node. In various other embodi-
ments of the invention, LLF processes can be centralized
processes, where each EV node sends EV parameters to a
centralized computer system which calculates laxity for
nodes. Furthermore, hybrid approaches can use a combina-
tion of distributed and centralized calculations in accordance
with many embodiments of the invention. Although many
different LLF processes are described above with reference
to FIG. 5, any of a variety of processes may be utilized to
schedule EVs based on laxity as appropriate to the require-
ments of specific applications in accordance with many
embodiments of the invention. Implementations of LLF
processes in accordance with various embodiments of the
invention will be discussed below.

[0064] At each time t, e,(t) can denote the remaining
energy demand of EV i at time t which satisfies

ei(t+ 1) = e;(0) —ri(0), ei(s;) = e, 1= s, .., ;=1
Define

e @)

ho:=1- Fi(ti = 1)

1,(t) can be called the laxity of EV i at time t. In several
embodiments of the invention, laxity is the slack time i has
before it must charge at its peak rate r, in order to meet its
deadline and depends on its remaining energy demand e,(t),
the remaining charging time t-t;, and its peak charging rate
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r;. Note that in several embodiments of the invention, 1,(t)
can be computed by individual EVs using only local infor-
mation. However, in many other embodiments of the inven-
tion 1,(t) can be computed by a centralized computer.

[0065] In some embodiments of the invention, the LLF
policy gives priority to EVs with the least laxity: at any time
t, it charges EV’s with the smallest 1,(t) at their peak rates r,
until the power capacity P is reached.

[0066] Formally, suppose without loss of generality that
the laxity values 1,(t) at time t are ordered such that
L(Dsh(D= . . . shy?)
and y(t)&{1, . . ., N} can be an EV index such that
¥ Y+l (5a)

D min(, i) < P< ' min, e;(n)
i=1 i=1

The charging rates r under LLF are given by: at each time
={s;, ..., =1}

min(F;, (1) i= 1D (5b)
7@ =1 P- 2 minG, &) i=y@0)+1

0 i>y@D+1

[0067] LLF is computationally very simple to implement,
either centrally or in a distributed manner. The distributed
approach is as follows. Each charger computes its own laxity
based only on local information. They send their own laxity
values to the server, which ranks them and acknowledges
those EVs that should charge at their peak rates in that
control interval. EVs that do not receive an acknowledgment
do not charge in that control interval. LLF is therefore highly
scalable, both in number of EVs and control frequency. THe
effectiveness of LLF with contrast with other charging
processes is discussed below with reference to FIGS. 7 and
8. FIG. 7 illustrates the success rates of LLF, OLP, and OPT.
FIG. 8 illustrates the success rates of LLF and OLP normal-
ized by OPTs.

[0068]

Theorem 1. For any control r(feasible or not) have:

The laxity 1,(t) possesses some simple properties.

L+1)=20=2L(n=0

7D

L+ <040 < oy

[0069] There are several interesting implications of the
theorem. First it means that a feasible control r must
maintain a nonnegative laxity ry(t) for all EV’s i at all times
t. Once the laxity 1,(t) of an EV i drops to zero then it must
be charged at its peak rate T, for its remaining time before
departure. Second it implies a necessary condition going
backward in time on an infeasible control that leads to a
proof that LLF does not always compute a feasible control
r even when the problem instance ¥ is feasible. This is
confirmed by extensive simulations of LLF which are
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described below. Intuitively, the problem is that LLF gives
priority to EV’s with the smallest 1,(t) and can starve other
EV’s with higher L(t). When EVs with the smallest laxity
finish, the remaining EV’s can be capped by their peak rates,
leading to wasted station capacity P and failure to meet some
of the deadlines. As discussed below, formulating the OPT
problem as a linear program enables the use of solvers that
can provide EVs at a charging station with their energy
demand in circumstances in which a LLF process will no
provide all EVs with their energy demand.

Online Linear Program Processes

[0070] An Online Linear Program (OLP) Process that can
be used to solve the OPT problem is illustrated in FIG. 6.
When a cost function in the OPT problem is a linear
function, OPT can become a linear program. Cost functions
can include (but are not limited to) electricity costs, revenue
to a garage, maximum charge delay, asset utilization, and/or
system robustness. In many embodiments of the invention,
OLP is an online process compared to OPT which is an
offline process. An online process is one that involves
communication with EV nodes while an offline process can
use stored EV parameters and is not required to be connected
to EV nodes to perform calculations. In many embodiments
of the invention, OLP processes can use an EV departure
time parameter (i.e. time when the EV leaves the charging
station) in addition to a deadline parameter used by OPT
processes.

[0071] The OLP process 600 includes receiving (602) EV
parameters. In many embodiments of the invention, EV
parameters can include (but are not limited to) time, adaptive
charging parameters, peak charging rate, departure time,
charging station power limit, charging deadline, and/or total
number of EVs at the charging station. A linear function is
optimized (604) subject to the EV parameters to solve for a
time series of charging rates. In several embodiments of the
invention, this linear function is a cost function. Current EVs
at the charging station are charged (606) using a time series
of charging rates. The process completes. In many embodi-
ments, the OLP process repeats itself and EV parameters are
received (602) at time (t+1) for any EV at the charging
station. In a number of embodiments, a cost function is
utilized that promotes maximizing overall charging rate. Use
of such or cost functions typically results in the system
handling new EV arrivals in a close to optimal manner (i.e.
having a high likelihood that EV energy demand can be met
when new EVs arrive). Although many different OLP pro-
cesses are described above with reference to FIG. 6, any of
a variety of processes may be utilized to solve an OPT
problem with a linear program cost function as appropriate
to the requirements of specific applications in accordance
with many embodiments of the invention. Implementations
of OLP processes in accordance with various embodiments
of the invention will be discussed below.

[0072] At any time t, V(1):=(t,e,(t), ri=1, . . ., N(1)) can
denote the set of EVs currently in the charging infrastructure
and P can be the power limit. Here t, is i’s departure time and
e,(1) is its remaining energy demand at time t. Consider the
online optimal charging problem at each time
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OLP(t):
min C(r) (62)
r(T), 1=t

subjectto r(r)=0 i=1,...,N, 721 (6b)
ri(t) <=7, i=1,...,N,7=1,... T-1 (6¢)
T-1

Zri(‘l’)=€;(t) i=1,...,N (6d)
=t

PIGES t=1..,T-1 (6e)

i

In some embodiments of the invention, at any time t,
adaptive charging processes construct the online linear pro-
gram OLP(t) (6) and solve for the optimal charging rate
vector r* ():=(r*,(t), T=t, . . ., 1,-1,1=1, ..., N(1)). Note that
the optimal result is a time series of charging rates for each
EV nodes that results in each EV obtaining at least its energy
demands prior to its departure time. It then charges EV i at
rate r*,(t). At time t+1, with a possibly different set of EVs
due to new arrivals and departures, it constructs a new
OLP(t+1) and the cycle repeats.

[0073] FIG. 7 and FIG. 8 show the simulations of LLF
processes and OLP processes in comparison with the offline
OPT process (for benchmarking). The 2010-2012 EV data-
set can be used that provides 4,000 problem instances
(arrival and departure times). The number of these problem
instances that are feasible under OPT, LLF; and OLP are
shown in FIG. 7. As the problem becomes more and more
difficult (as measured by the average value of 1-1(s,)), the
percent of feasible problem instances decreases signifi-
cantly. An OPT process as a benchmark is successful only on
50% of the problem instances when problem difficulty
reaches 75%. Interestingly OLP’s success rate is almost the
same as OPT’s which is maximum possible. In contrast,
while LLF is simple, simulations computationally fail to
meet all demands significantly more often than OLP. This is
shown clearly in FIG. 8 which compares the success rates of
LLF and OLP only on instances that are feasible (for OPT).

Linear Program with Congestion Management Processes

[0074] A linear program (LP) process that integrates con-
gestion management is illustrated in FIG. 9. At times of
heavy use, many EVs utilize the charging station network
and in some cases not all demands can be met. This potential
failure to meet demands is called congestion. In various
embodiments of the invention, congestion management can
be used with linear program based processes. The process
900 includes calculating (902) the feasibility of the linear
program. In many embodiments of the invention, an offline
linear program can be used to calculate the feasibility. In
several other embodiments invention, an OLP process can
be used to calculate feasibility. If the linear program is not
feasible (904), the EVs are charged (906) using LLF pro-
cesses. LLF processes similar to those described above with
respect to FIG. 5 can be used. Once the LLF process is
complete, the feasibility of the LP can be recalculated (902)
and the cycle begins again until the linear program is
feasible. If the linear program is feasible (904), the EVs can
be charged (908) using OLP processes. OLP processes
similar to those described above with respect to FIG. 6 can
be utilized.
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[0075] Once the OLP process completes, congestion has
been managed and the LP with congestion management
process completes. It should be readily apparent to one
having ordinary skill in the art that LPs with congestion
management processes can repeat necessary as new EVs
arrive at and leave from a charging station. It should be
readily apparent to one having ordinary skill in the art that
congestion management processes are not limited to LLF
and/or OLP processes, and a variety of other adaptive
charging processes can be utilized as appropriate for con-
gestion management in an EV charging network. Although
a variety of LPs with congestion management processes are
described above with respect to FIG. 9, any of a variety of
processes may be utilized for congestion management in a
charging station as appropriate to the requirements of spe-
cific applications in accordance with embodiments of the
invention. Implementations of L.Ps with congestion manage-
ment processes in accordance with several embodiments of
the invention are discussed below.

[0076] Congestion can impact the feasibility of processes.
FIG. 7 shows that fraction of realistic problem instances
(50% at a problem difficulty level of 75%) are infeasible.
This means that even the offline process, OPT cannot satisfy
all EV demands by their deadlines at times of congestion.
FIG. 10 further shows that during congested periods, EVs
can fall short of their energy demand by close to 20% in the
worst case (at a problem difficulty level of 75%). FIG. 10
further illustrates the smallest percent energy delivered for
infeasible problem instances.

[0077] In summary, times of congestion are common and
during those times the worst-case shortage can be unaccept-
able to EVs that have inelastic energy demands. This moti-
vates processes that explicitly manage charging shortfall
among competing EVs during times of congestion when not
all EV demands can be accommodated.

[0078] To illustrate congestion management processes,
d,£]0,1] can denote the minimum energy that must be
delivered to EV i, normalized by its energy demand e,. A
completely inelastic demand has d,=1 (i must receive full
charge) and a fully elastic demand has d,=0. ¢,(d,) can denote
the cost as a function of energy delivered d;:=%,_ “'r(t)e,
normalized by e,. FIG. 11 shows two example cost functions
c,(d,). FIG. 11 further illustrates EV cost functions: the
demand of EV 1 (with a lower minimum demand d,) is more
elastic than that of EV2 (with a higher minimum demand
d,). The offline optimal charging problem OPT (3) can be
modified by relaxing the constraint (3d4) into (7d) and
including the costs c,(d,) in the objective:

OPT-cm:
i (d: (7a)
minC(r)+ 3 ¢ildh)
subject to #;(1) =0 i=1,...,Nyi<s;orr=g (7b)
r(t) <=7, i=1,...,Nyt=1,...T-1 (7¢)
11‘71

di = — 0=d, i=1,...,N 7d
; e‘_;r‘mn‘, i=1,..., (7d)
Zr;(t)sP, t=1,...,T-1 (7e)

i
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The new constraint (74) enlarges the feasible set and
increases the chance for an (online or offline) process to
compute a feasible control r. Under this policy, adaptive
charging processes may not always fully meet the energy
demands e; of all EVs, but incurs a cost, measured by
2,c/(d,), when demands are not met by their deadlines.
[0079] Note again that the problem formulation OPT with
congestion management OPT-cm (7) is offline (noncausal)
and therefore not implementable, though it serves as a
performance benchmark for other processes. However just
as the offline OPT process can be converted into an online
LP process, OPT-cm can similarly be converted into an
online OLP-cm.

[0080] Although the present invention has been described
in certain specific aspects, many additional modifications
and variations would be apparent to those skilled in the art.
It is there to be understood that the present invention can be
practiced otherwise than specifically described without
departing from the scope and spirit of the present invention.
Thus, embodiments of the present invention should be
considered in all respects as illustrative and not restrictive.
Accordingly, the scope of the invention should be deter-
mined not by the embodiments illustrated, but by the
appended claims and their equivalents.

What is claimed is:

1. An electric vehicle charging network, comprising:

one or more centralized computing systems;

a communications network;

aplurality of electric vehicle node controllers, where each

electric vehicle node controller in the plurality of node
controllers contains:

a network interface;

a processor;

a memory containing:

an adaptive charging application;

a plurality of electric vehicle node parameters
describing charging parameters of an electric
vehicle node in the electric vehicle charging net-
work;

where the processor is configured by the adaptive
charging application to:

send electric vehicle node parameters to the one or
more centralized computing systems; and

charge the electric vehicle node using a charging rate
received from the one or more centralized com-
puting systems;

where the one or more centralized computing systems
is configured to:

receive the electric vehicle node parameters from the
plurality of electric vehicle node controllers;

calculate a plurality of charging rates for the plurality
of electric vehicle node controllers using the elec-
tric vehicle node parameters, a plurality of adap-
tive charging parameters, and a cost function; and

send the charging rates to the plurality electric
vehicle node controllers.

2. The electric vehicle charging network of claim 1,
wherein the charging rates meet the energy demand of the
plurality of electric vehicle nodes by a plurality of departure
times.

3. The electric vehicle charging network of claim 1,
wherein the charging rates for the plurality of electric
vehicle nodes are a time series of timing rates provided to
each electric vehicle node controller.
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4. The electric vehicle charging network of claim 1,
wherein the time series of timing rates is calculated using an
online linear program process.

5. The electric vehicle charging network of claim 3,
wherein the electric vehicle node parameters include an
electric vehicle departure time, a remaining energy demand,
and a peak charging rate.

6. The clectric vehicle charging network of claim 3,
wherein the time series of timing rates can be evaluated by
the one or more centralized computing systems using the
following expression:

OLP(1):

min C(r)

ri(T),T=t

subjectto r(n)=0 i=1,... ,N,t=g

ri(T) <=7, i=1,...,N,t=1,...T-1

T-1
Zri(T)ZEi(f) i=1,...,N

=t

Zr;(T)SP, T=1,...

i

where OLP(t) are the adaptive charging parameters, t and T
are times, r; a peak charging rate of electric vehicle i, T is a
departure time, r,(t) is a calculated charging rate for an
electric vehicle node at time T, C(r) is the linear cost
function, N is a total number of electric vehicles, P is a
station power limit, and t, is a deadline.

7. The electric vehicle charging network of claim 3,
wherein the cost function can be evaluated by the one or
more centralized computing systems using the following
expression:

PO, T t1,i=1, ..., ND)

where t is a time, r*(T) is the optimal charging rate at time
T, r*(t) is a vector of charging rates for current and future
times, T is a departure time, i is an electric vehicle, and N(t)
is a number of electric vehicles at time t.

8. The electric vehicle charging network of claim 1,
wherein the cost function is a linear function.

9. The electric vehicle charging network of claim 1,
wherein the cost function comprises a cost function selected
from the group consisting of electricity cost, revenue to a
garage, maximum charging delay, asset utilization, and
system robustness.

10. The electric vehicle charging network of claim 1,
wherein:

the charging rates for a first set of electric vehicle node

controllers are a maximum charging rate;

the charging rates for a second set of electric vehicle node

controllers are zero charge; and

the charging rate for one electric vehicle node controller

is less than the maximum charging rate.

11. The electric vehicle charging network of claim 10,
wherein distributing charging rates into the first set of
electric vehicle node controllers, the second set electric
vehicle node controllers, and one electric vehicle node
controller is a least laxity first first process.

12. The electric vehicle charging network of claim 11,
wherein the least laxity first process further includes calcu-
lating a plurality of laxity of parameters corresponding to the
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plurality of electric vehicle nodes, where the electric vehicle
with the smallest laxity parameter value is charged first.

13. The electric vehicle charging network of claim 12,
wherein a laxity parameter in the plurality of laxity param-
eters is a slack time the corresponding electric vehicle node
has before it must charge at its peak rate in order to meet a
deadline.

14. The electric vehicle charging network of claim 12,
wherein a laxity parameter in the plurality of laxity param-
eters can be evaluated by the one or more centralized
computing systems using the following expression:

(1)

Li):=1- m

where 1,(t) is the laxity parameter, t is a time, t, is a deadline,
e,(t) is a remaining energy demand, and T, is a peak rate.

15. The electric vehicle charging network of claim 12,
wherein calculating a laxity parameter is a distributed pro-
cess.

16. The electric vehicle charging network of claim 12,
wherein calculating a laxity parameter is a centralized
process.

17. An electric vehicle charging network, comprising:

one or more centralized computing systems;

a communications network;

aplurality of electric vehicle node controllers, where each

electric vehicle node controller in the plurality of node
controllers contains:

a network interface;

a processor;

a memory containing:

an adaptive charging application;

a plurality of electric vehicle node parameters
describing charging parameters of an electric
vehicle node in the electric vehicle charging net-
work;

where the processor is configured by the adaptive
charging application to:

send electric vehicle node parameters to the one or
more centralized computing systems; and

charge the electric vehicle node using a charging rate
received from the one or more centralized com-
puting systems;

where the one or more centralized computing systems
is configured to:

calculate a feasibility of a plurality of adaptive
charging parameters and a cost function param-
eter, where the adaptive charging parameters
describe the electric vehicle charging network;

wherein where the plurality of adaptive charging
parameters and the cost function parameter are
feasible, calculate charging rates for the plurality
of electric vehicle node controllers where the
charging rates are a time series of timing rates;
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wherein where the plurality of adaptive charging
parameters and the cost function parameter are not
feasible, calculate charging rates for the plurality
of electric vehicle node controllers where:
the charging rates for a first set of electric vehicle
node controllers controller are a maximum
charging rate;
the charging rates for a second set of electric
vehicle node controllers are zero charge; and
the charging rate for one electric vehicle node
controller is less than the maximum charging
rate; and
send the charging rates to the plurality of electric
vehicle node controllers.

18. The electric vehicle charging network of claim 17,
wherein the plurality of adaptive charging parameter can be
evaluated by the one or more centralized computing systems
using the following expressions:

OPT-cm:

minC(r)+ 3 ¢ildh)

subject to #;(z) =0 i=1,... , Nr<s;orrzg

ri(t) <=Tj, i=1,...,Nr=1,...T-1

11‘71 )
di = e—in;(t)zdi, i=1,...,N

1=s;

dirin=P, (=1, 71

i

where OPT-cm are the adaptive charging parameters, i is an
electric vehicle, N is a total number of electric vehicles, C(r)
is the linear cost function, c,(d,) are cost parameters, t, is a
rate, r,(T) is a calculated charging rate for an electric vehicle
node at time T, s, is an arrival time, t; is a deadline, t and T
are times, and P is a station power limit.

19. The electric vehicle charging network of claim 17,
wherein the cost function parameter is a linear function.

20. The electric vehicle charging network of claim 17,
wherein the cost function parameter is selected from the
group consisting of electricity cost, revenue to a garage,
maximum charging delay, asset utilization, and system
robustness.

21. The electric vehicle charging network of claim 17,
wherein where the plurality of adaptive charging parameters
and the cost function parameter are feasible, calculate charg-
ing rates using an online linear program process.

22. The electric vehicle charging network of claim 17,
wherein where the plurality of adaptive charging parameters
and the cost function parameter are not feasible, calculate
charging rates using a least laxity first process.
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