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Abstract 

The paper reports the results of an experimental study of the three firm 

location problem. We compare the subjects’ behavior in the experiments with 

the symmetric mixed strategy Nash equilibrium calculated by Shaked (1982). 

Overall, the findings are consistent with the equilibrium prediction. However, 

the subjects’ locations were significantly more dispersed than predicted by the 

theory. Three alternative explanations of this phenomenon - inexperience, 

approximate equilibrium behavior and risk aversion - are suggested and 

evaluated for their predictive power. Special attention is paid to risk aversion.  
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1. Introduction 

This paper reports the results of an experimental study of the three agent location 

problem. Starting with the works of Hotelling (1929) and Downs (1957), models of spatial 

competition have been widely studied in the economics and voting literature. In economics, 

such models are used to study both horizontal, or geographic, competition between firms, 

and vertical competition, or product differentiation (for a review see Gabszewicz and Thisse, 

1992). In political science, spatia l voting models are used to determine equilibrium outcomes 

of electoral competitions (see, for example, Enelow and Hinich, 1990). 

The classical model of spatial competition (Hotelling, 1929) predicts that, when two 

firms (or two political parties) compete for customers (voters) by choosing locations on a 

linear market (policy space), the only stable outcome is for both firms to locate at the center 

of the market. Hotelling used this result to explain the tendency for products to be very 

similar and political parties to become the same. He further conjectured that the tendency to 

cluster near the center of the market would persist in the case of more than two competing 

agents. 

Contrary to Hotelling’s conjecture, the following literature showed that in multi-agent 

location models, the incentive for agents to disperse is strong (see, for example, Cox, 1990). 

In the case of three firms, no pure strategy location equilibrium exists, as was first noted by 

Lerner and Singer (1937) and formally shown by Eaton and Lipsey (1975). Shaked (1982) 

characterizes the symmetric mixed strategy Nash equilibrium for the case of three firms and 

uniform distribution of buyers. He finds that the only symmetric Nash equilibrium is for each 

firm to locate randomly with equal probability at each point in the middle two quartiles of the 

market.1 Osborne (1993) shows that if there are more than two political parties who choose 

                                                 

1 Osborne and Pitchik (1986) find other (asymmetric) mixed strategy equilibria for this case, and further 
characterize symmetric location equilibria for arbitrary distributions of consumers along the market spectrum and 
arbitrary numbers of firms. De Palma, Ginsburgh and Thisse (1987) show that when there is uncertainty about 
consumers’ tastes, equilibrium locations in the three firm problem may be both concentrated and dispersed. In the 
political theory literature, Palfrey (1984) shows that in a two-candidate election, the threat of entry by a third 
candidate causes the positions of the two established competitors to diverge. Cox (1987) finds that elections with 
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their positions simultaneously, then pure strategy location equilibria fail to exist in a wide 

range of situations. He further notes that, in the case of mixed strategy equilibria, one aspect 

that may be essential for characterization of outcomes is uncertainty.  

The purpose of this study is to test experimentally the theoretical breakdown of 

centrist tendencies in a multi-agent spatial competition model. Further, we are interested in 

considering the effects of uncertainty on the behavior of agents when no pure strategy 

location equilibrium exists. As argued by Osborne and Pitchik (1986), a mixed strategy 

equilibrium can, under certain circumstances, be viewed as a pure strategy equilibrium in a 

game of incomplete information. Consideration of location models where no pure strategy 

equilibrium exists is therefore useful for understanding firms’ or political parties’ behavior in 

an uncertain world. 

The majority of existing experimental literature on spatial competition is based on 

voting models and considers the behavior of both candidates and voters in a spatial context. 

Studies of two-candidate elections indicate that, even with limited information of candidates 

and voters, candidates converge to the median voter ideal point (McKelvey and 

Ordeshook, 1985; Collier, McKelvey, Ordeshook and Williams, 1987). McKelvey and 

Ordeshook (1982) also find evidence that subjects use mixed strategies in two-candidate 

elections set in two-issue voting space when a majority rule equilibrium does not exist. They 

note, however, that the theoretical properties of mixed strategy equilibria of such games are 

only imprecisely known. Experimental studies of spatial competition among more than two 

candidates are less numerous. Plott (1990) compares two- and three-candidate elections 

under majority rule in two-dimensional voting space. Forsythe, Myerson, Rietz and Weber 

(1996) consider voters’ behavior in three-candidate elections in non-spatial context.  

Our study is most closely related to the one by Brown-Kruse, Cronshaw and 

Schenk (1993), who test Hotelling’s duopoly model in an experimental economic setting. 

                                                                                                                                            

more than two candidates under plurality rule (or vote maximization for each candidate) necessarily result in non-
centrist equilibria. 
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They consider a repeated version of the spatial duopoly game with and without 

communication. Their findings support the theoretical predictions: With no communication, 

the subjects overwhelmingly chose to locate at the center of the market. When 

communication was allowed, there was a strong tendency to locate at the quartiles of the 

market, which corresponded to a collusive equilibrium of the repeated game. 

We report the results of an experimental test of the three-agent location model 

analyzed by Shaked (1982). Our findings are also consistent, overall, with the theory: the 

subjects in the experiments did not cluster at the very center, and chose, most frequently, to 

locate in the central quartiles of the market. However, the location choices were more 

dispersed than predicted by the theory; the agents often located in the out-of-equilibrium 

range. Further, some players “stayed away from the center” as well as the edges; that is, 

they located at the very center of the market less often than around it. 

We suggest three alternative hypotheses to explain the above phenomena: subjects’ 

inexperience with the game, approximate equilibrium behavior, and risk aversion. Special 

attention is paid to risk aversion. It is well known that one of the reasons for the non-

existence of equilibrium with three firms is that a firm that locates close to the center may find 

itself trapped between the other two firms, and therefore has an incentive to move just past 

one of its competitors. In other words, there is a higher risk in locating near the center. A 

number of subjects in our experiments commented after the sessions that they chose to stay 

away from the center to avoid being “squeezed out” by their competitors. 

We theoretically investigate effects of risk aversion on agents’ location strategies.2 

First, we evaluate the risk as a function of location assuming the agents adopt Shaked’s 

equilibrium strategy, and show that this strategy profile is not an equilibrium for risk averse 

agents. We then numerically estimate symmetric mixed strategy location equilibria for risk 

averse agents. Finally, we compare these risk averse predictions with the risk neutral 

                                                 

2 The effects of risk aversion on agents’ equilibrium behavior are well acknowledged by both theorists and 
experimentalists in many areas of economics, such as auction theory (see Kagel, 1995). 
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(approximate) equilibrium predictions and evaluate whether the risk averse hypothesis has 

better explanatory power for the data than the risk neutral hypothesis. 

In section 2, we review the theory behind the experiments and describe the 

experimental design. Experimental results are given in section 3. In section 4, we consider 

alternative explanations for differences between the theoretical prediction and experimental 

results. We conclude our findings in section 5. 

 

2. Theoretical predictions and experimental design 

2.1 Symmetric equilibrium prediction 

Shaked (1982) considers a model of non-price spatial competition among three 

agents on the market represented by the line interval [0,1]. Under the assumptions of 

continuous uniform distribution of consumers along the market, unit demand by each 

consumer, and each consumer buying from the closest firm, Shaked shows that the unique 

symmetric mixed strategy Nash equilibrium is for each firm to randomize uniformly over the 

interval [¼,¾]. The corresponding equilibrium probability density function of location, f x( ) , 

is defined in equation 1 and illustrated in figure 1. 

  


 ≤≤

=
otherwise0

2
)( 4

3
4
1 x

xf                                                      (1) 

Figure 1. Distribution of locations – the Nash Equilibrium  
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2.2 Experimental design 

The experiments were designed to test the actual behavior of subjects in the three-

agent spatial competition game against the above theoretical benchmark. The design closely 

follows the theoretical model of Shaked, with a number of minor modifications that simplify 

the experimental procedures. As in Brown-Kruse, et al. (1993), (i) the market interval was 

extended from [0,1] to [0,100], where distance was expressed to the subjects in kilometers, 

and (ii) the distribution of the computer simulated customers was restricted to a single 

customer at every integer location between 0 and 100; the subjects (firms) were restricted 

to choosing integer locations between 0 and 100 (inclusive).3 Each simulated customer had 

an inelastic demand of 10 units per period, and chose to buy from the closest firm. If firms 

were the same distance from a customer, the customer purchased 5 units from each. If two 

or more firms located at the same position, the firms shared equally the total quantity 

demanded by all the customers that bought from the group of firms. Firm’s payoffs were 

proportional to the number of units sold. 

2.3 Experimental procedures 

Subjects for this experiment were recruited by advertisement from the student 

population of the University of Melbourne. Four experimental sessions were conducted, 

each containing between 9 and 18 subjects. Each session lasted for 35 periods, plus three 

practice period at the beginning of the session. Subjects knew that the number of periods 

was fixed, but were not informed of the actual last period. 

At the beginning of each period, the subjects were randomly assigned to markets in 

groups of three. Thus, each subject’s opponents changed from period to period. This 

randomization, the consumer demands and the payoff functions for the firms, were common 

knowledge. Subjects were not informed of the identity of other agents in their market at any 

time during the experiment. 

                                                 

3 Numerical simulations showed that such modification of the game to a discrete market do not significantly disturb 
the Nash equilibrium. 
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All experimental sessions were conducted on computer, using software developed 

by the authors. In each period, the subjects were asked to choose their location from the set 

{0,1,2,..,100}. The next period commenced as soon as all the participants had entered their 

location. At the start of a new period, each subject’s computer screen showed the subject’s 

last period location, the number of units that the subject had sold (and hence profit) and the 

locations of and quantity sold by the competitors in the subject’s market. Subjects also 

could see their cumulative payoff which showed the total number of units of the product they 

had sold during the entire session. Additionally, a color illustration showing the location of 

each firm along the market in the previous period, and the associated market shares, was 

displayed at the start of each new period.4 At the end of the session, subjects were paid 

their earnings at the rate of $0.01 per 10 units sold, plus $3 show-up fee (Australian 

dollars). 

3. Experimental results 

In this section the results from the experiment are qualitatively described and 

statistically analyzed. We first consider whether the aggregate results from the experiment 

are consistent with the Nash equilibrium prediction. Further, we test for statistical differences 

in behavior among sessions and among individuals. 

A total of 1785 observations of locations and profits were recorded during the 

experiment (from 51 subjects in four separate sessions with 35 choices of location for each 

subject). Descriptive statistics for the data pooled by sessions and across sessions are given 

in table 1. (Table 2A in Appendix 2 reports descriptive statistics by individual.) 

                                                 

4 See Appendix 1 for experimental instructio ns and an illustration of subject computer screen. 
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Table 1 Summary Statistics –  Pooled Data 

 Number of 
subjects 

Number of 
obser-
vations 

Mean Median Mode First 
quartile 

Third 
quartile 

Standard 
Deviation 

% obs. 
Outside 
[25,75] 

Skewness 

Nash Eq. - - 50 50 [25,75] 37.5 62.5 14.43 0 0 
Pooled 51 1785 50.55 50 60 37 66 19.08 18.3 -0.01 
Session 1 12 420 50.31 50 70 33 70 20.91 25.5 -0.09 
Session 2 9 315 52.31 51 75 33 70 21.07 23.5 -0.11 
Session 3 18 630 50.63 49 60 40 63 16.16 11.1 0.04 
Session 4 12 420 49.36 48.5 35 35 65 19.60 18.1 0.11 

 

Figure 2 illustrates the frequency with which locations were chosen for the data 

pooled across all experimental sessions. (The corresponding distributions for each session 

are given in figure 2A, Appendix 2.) The subjects chose most frequently the ‘focal point’ 

locations that were a multiple of five (for example, 30, 35, 40, 45 etc.).5 To reduce the 

impact of the focal points on the histogram, the location choices are grouped into 21 

categories (with 3 locations in the first and the last category, and 5 locations in every other 

category) so each category includes exactly one focal point. From figures 2 and 2A and 

tables 1 and 2A, we conclude: 

Result 1: The symmetric mixed strategy equilibrium has some explanatory power for 

the data. In particular, (i) no stable location choices emerged in any of the 

experimental sessions; and (ii) subjects chose to locate away from the edges and most 

frequently located in the two central quartiles of the market. 

Support: Table 1 and figure 2. Figure 2 illustrates that the subjects’ location choices 

followed a non-degenerate distribution, with the most of the probability mass falling into the 

central quartiles of the market.6 For the pooled data, more than 80 percent of observations 

                                                 

5 The locations that were a multiple of five were chosen in 32.4 percent of all observations. Other locations, such as 
24, which accounted for 8.6 percent of choices, were also chosen frequently by the subjects. 
6 This could be the case for the pooled data even if individual subjects did not randomize their choices, but each 
subject chose a different location. In our experiments, however, 50 out of total of 51 subjects changed their location 
at least 15 times in the sequence of 35 trials; 45 subjects changed their location at least 20 times each. Hence, the 
subjects did not follow deterministic location rules. 
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were within the predicted range of [25,75] (see table 1). On the individual level, 40 out of 

51 subjects chose locations within the central quartiles of the market 25 times or more out of 

35 trials. Also, in accordance with the theoretical prediction, the mean and the median 

locations for all four sessions were very close to 50. The distribution of location choices was 

only slightly asymmetric, as indicated by a skewness very close to zero.7♦ 

Figure 2 Distribution of Locations - Pooled Data 
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Further consideration of figure 2 indicates, however, that in contrast to the 

theoretical prediction, the distribution of locations in the range [25,75] was not uniform. The 

distribution appears to be bimodal with one peak at around 40 and the other near 70. (See 

also the distributions from each session in figure 2A in Appendix 2.) At least to a certain 

degree, the subjects avoided locations near the center of the market, as well as the edges. 

Statistical tests of the similarity between the data and Shaked’s Nash equilibrium prediction 

motivate the following result. 

                                                 

7 The skewness for the pooled data was –0.012 with a standard error of 0.058. The null hypothesis that the 
skewness is zero cannot be rejected at the 5% level with a test statistic of –0.17 compared to the critical value of –
1.96. Similarly, the null hypothesis cannot be rejected for each session (the standard errors of skewness by session 
are 0.119, 0.137, 0.097 and 0.119).  
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Result 2: The distribution of location choices was not entirely consistent with Shaked’s 

mixed strategy equilibrium in that (i) the location choices were, overall, more 

dispersed than the theory predicted; and (ii) in all sessions, the distribution of location 

choices over the central quartiles of the market was not uniform. 

Support: Tables 1 and 2. For the pooled data, the interquartile range and the standard 

deviation were above the theoretically predicted values (29 and 19.08, respectively, 

compared to the predicted values of 25 and 14.43, respectively), indicating a larger spread 

of locations than the equilibrium prediction. These characteristics were similar across 

sessions except for session 3, where the distribution was less dispersed. The differences 

between the observed and the theoretically predicted variances of locations are highly 

significant overall and for each session (the test statistics are 35.04 and 25.17, 22.44, 7.10, 

19.34 for the pooled data and each session respectively, and a 5% critical value of 1.96). 

The results of the Kolmogorov-Smirnov test for goodness-of-fit of the data with the Nash 

equilibrium prediction are shown in table 2. For each of the sessions and for the pooled 

data, the null hypothesis of the sample being drawn from the Nash equilibrium density 

function is rejected at 5% significance level.8 Additionally, the location choices of each 

individual were tested for goodness-of-fit with the Nash equilibrium. The null hypothesis 

above was rejected for 36 out of 51 subjects at the 5% level. Thus only 15 of the subjects 

were using strategies consistent with the Nash equilibrium.♦ 

                                                 

8The significance of the Kolmogorov-Smirnov test depends on independent draws. Since, in our case, each subject 
is responsible for 35 observations, one may question whether this is a reasonable assumption. To allow the reader 
to judge whether the significance levels are reasonable, we report the minimal N that would lead to significance in 
each case. Also note that under the hypothesis that the subjects are using the equilibrium mixed strategies, all draws 
should be independent for each subject and across subjects. The Kolmogorov-Smirnov test was also used to test 
the data for the uniform distribution in the equilibrium range [25,75]. The null hypothesis of uniform distribution 
was rejected at 5% level for the pooled data and all sessions except session 3. 
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Table 2 Kolmogorov -Smirnov Test for Goodness-of-fit of Experimental Data with the 

Nash Equilibrium Prediction 

 N Test statistica Critical value (5%)b Min. N for significance c 

Session 1 420 0.159 0.066 73 
Session 2 315 0.194 0.077 49 
Session 3 630 0.123 0.054 122 
Session 4 420 0.117 0.066 135 
Pooled 1785 0.113 0.032 144 
Notes: a If the sample cumulative density function is S(x) and the theoretical cumulative density function is F(x), the test statistic is 

 given by max|F(x) – S(x)|. 
b The 5% critical value for a large sample is given by D=1.36/√N 
c Minimal number of observations that would lead to significance of the test  

 

Were observed location choices consistent across sessions and individuals? In figure 

3 we illustrate the locations chosen by four individuals over the 35 periods. The figure 

indicates possible heterogeneity in individual location strategies (see also table 2A in 

Appendix 2). Formal statistical tests prompt the following: 

Result 3: There was significant heterogeneity in location choices across sessions and 

individuals. However, in each session overall and for the majority of subjects, 

locations were symmetric around the center of the market. 

Support: The null hypothesis of no differences across the four sessions cannot be rejected 

at the 5% level using the Kruskal-Wallis test (with a test statistic of 4.622 and a critical value 

of 7.815). This indicates that all sessions had the same median at the center of the market. 

However, the null is rejected at the 5% level according to the chi-squared test (with a test 

statistic of 249.69 and a critical value of 51.00) which detects differences in any distribution 

characteristics.9 On the individual level, the Kruskal-Wallis test strongly rejects the null 

hypothesis of no differences in individual distributions among all 51 individuals (with a test 

statistic of 209.75, and a 5% critical value of 67.50). This null hypothesis cannot be rejected 

at the 1% significance level for a smaller sub-sample of 34 individuals (with a p-value of 
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0.038), and cannot be rejected at a much higher significance level for yet a smaller sub-

sample of 27 individuals (with a p-value of 0.971). Table 2A in Appendix 2 shows that for 

37 out of 51 subjects, skewness was insignificantly different from zero at the 5% level 

indicating the symmetry of their location choices.♦ 

Figure 3 Four Examples of Strategies Employed 
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Let us summarize our findings at this stage. Although the behavior of the subjects 

was fairly heterogeneous on the individual level, we find that, overall, Shaked’s Nash 

equilibrium prediction has some explanatory power over the data. In each experimental 

session, location choices were symmetric around the center of the market and the subjects 

chose, most frequently, to locate in the central quartiles. Yet we reject the hypothesis that 

the data is consistent with the Nash equilibrium prediction, both for the majority of the 

subjects and on the aggregate level. In the next section, we investigate possible reasons for 

differences between the theoretical predictions and the experimental results. 

                                                                                                                                            

9 For the chi-square test, the locations were pooled into categories 0-22, 23-27, 28-32,…,73-77, 78-100, i.e., two 
categories for out-of-equilibrium locations, and 11 categories in the central quartiles of the market, each containing 
one focal point. 
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4. What can explain the differences? 

Here we explore three possible explanations for the data’s inconsistency with the 

equilibrium prediction: subjects’ inexperience with the game, approximate equilibrium 

behavior and risk aversion. We first present the alternative hypotheses, and then compare 

and evaluate them in terms of their predictive power for the data.10 

4.1 Inexperience 

Out of equilibrium play could have been caused simply by subjects’ inexperience 

with the game. In this case, if the subjects were learning to play the Nash equilibrium as the 

game progressed, the number of out of equilibrium locations should fall with time. Table 3 

displays proportions of such out of equilibrium locations in the first and last fifteen periods of 

the experiments. 

Table 3. Proportion of Observations outside the Equilibrium Range 

 Locations <25  Locations >75 

 Observations Proportion  Observations Proportion 

All periods 171 0.096 156 0.087 
First 15 periods 73 0.095 66 0.086 
Last 15 periods 78 0.102 70 0.092 
First 15 and last 15 periods 151 0.099 136 0.089 

 

It is evident from the table that the number of locations in the extreme quartiles of the market 

did not decrease towards the end of the experiment. According to the two-tailed test for 

differences in two proportions (see, for example, Hamburg and Young, 1994, pp. 339-

340), the null hypothesis that the proportion of locations outside the equilibrium range was 

                                                 

10 The list of explanations we offer is by no means exhaustive. Other phenomena, such as asymmetric equilibrium 
play, or agents’ bounded rationality, may be important. Given results 1 and 3, asymmetric equilibria are not 
considered. We tested a simple model of boundedly rational behavior in which an agent’s decision to change his or 
her location depended on the profit earned in the last period. However, the model possessed little explanatory 
power and was dismissed.  
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the same in the first 15 periods and the last 15 periods cannot be rejected at the 5% 

confidence level.11 Hence, we conclude the following: 

Result 4: The differences between the behavior observed and the equilibrium 

prediction cannot be explained solely by subjects’ lack of experience with the game. 

The number of out-of-equilibrium locations did not decrease with time. 

4.2 Approximate equilibrium behavior 

If difference in expected payoffs between playing the equilibrium strategy and some 

other strategy were relatively small, and individuals did not fully optimize, they may have 

played any such “almost-optimal” strategy. 12 Then the notion of approximate (epsilon) 

equilibrium may be more appropriate to explain the observed behavior than the exact 

equilibrium. Formally, a player’s location strategy is a probability distribution over locations, 

represented by ),..,( 1000 ppp = . Let ),;( kjii pppU  denote the expected utility of player i 

from playing strategy ip  given that the opponents j and k  play strategies jp  and kp  

respectively. We will say that a strategy profile ),,( *** ppp , where ),..,( *
100

*
0

* ppp = , 

constitutes a symmetric ε-equilibrium if ),;()1(),;( ***** pppUppqU ii ε+≤  for any other 

strategy q, and any player i. That is, no other strategy gives i an increase of utility higher than 

ε  percent relative to the ε-equilibrium strategy.13 

We evaluate the approximate equilibrium behavior hypothesis by comparing the 

experimental data with numerically evaluated symmetric ε-equilibria (approximate equilibria) 

                                                 

11 There were no significant decreases in the number of out of equilibrium locations in any of the four sessions. In 
fact, in session 1, the number of out of equilibrium locations increased from 16.1% in the first 15 periods to 34.9% 
in the last 15 periods of the experiment. Similarly, on individual level, most subjects who chose the locations in out 
of equilibrium range in the first 15 periods of experiments, continued to do so in the later periods. 
12 Many researchers note that flat payoffs around the equilibrium often lead to convergence only in an approximate 
sense. Subjects may not change their strategy if the expected gain is negligible. See, for example, Olson and Porter 
(1994). 
13 It is more conventional to define ε-equilibria in terms of absolute, rather than relative, utility gains from 
deviations. However, defining the notion in terms of percentage gains is more convenient for our purposes since it 
is invariant in linear transformations of utility functions.  
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of the game. The results are given in section 4.4 below. Before considering these results, we 

present the final alternative explanation of subject behavior. 

4.3 Risk aversion 

Due to the absence of pure strategy Nash equilibrium and the resulting uncertainty 

about other players’ locations, individuals’ location choices could be affected by risk 

aversion. Was this the case in our experiments? To answer this question, we first consider 

the risk of choosing each location in Shaked’s model and in actual experiments. We then 

numerically evaluate symmetric location equilibria under risk aversion, and finally, compare 

the data with these numerical predictions. 

Consider the risk associated with choosing each location in the market in Shaked’s 

model by calculating the mean and variance of the players’ payoffs under the Nash 

equilibrium. Suppose that two agents (firms) locate with equal probability at any point in the 

central quartiles of the market interval [0,1]. The average payoff, A(z), and the standard 

deviation of payoff, S(z), of the third firm as functions of its location, z, are given by 
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(Equations 2 and 3 are derived in Appendix 3.) These two functions are plotted on the same 

axis in figure 4. From the figure, we can clearly see that the average payoff is maximized 

over the whole equilibrium range, but the standard deviation of the payoff is greatest at the 

center of the market. Intuitively, locating at the center is a high-risk strategy because the 

payoff may be very high if both opponents locate on one side of the firm, but it may be very 

low if one opponent locates on each side of the firm. The variability of payoffs diminishes 

towards the edges of the equilibrium mixing range and is minimized in the extreme quartiles 
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of the market. This is because if the other two firms are playing the Nash equilibrium 

strategy, the only variability in the payoff of the firm in the out-of-equilibrium range is caused 

by the variability in the location of the closest opponent, not in the locations of both 

opponents. 

Figure 4 Equilibrium Mean and Standard Deviation of Payoff  
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Figure 5 Mean and Standard Deviation of Profit by Location – Pooled Data 
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The above reasoning demonstrates that if other firms in the market are playing 

according to Shaked’s (risk neutral) equilibrium strategy, a risk averse agent will have an 

incentive to locate away from the center to reduce the variance in his or her payoffs. In other 

words, 

Proposition 1: The symmetric risk neutral location equilibrium calculated by Shaked is 

not an equilibrium for risk averse agents. 

Let us consider the risk (in terms of payoff variance) of choosing locations in the actual 

experiments. Figure 5 presents the mean and the standard deviation of payoffs for each 

location calculated using the experimental data. From the figure it is evident that, as in the 

theoretical case, both the mean payoff and the standard deviation of payoff increased 

towards the center of the market. Moreover, the graph of average payoff appears hill-

shaped rather than flat in the central quartiles. This is consistent with the risk aversion 

hypothesis: only higher expected profits could induce risk averse agents to locate near the 

center of the market, where the risk was at maximum. 
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It is therefore of immediate interest to evaluate location equilibria under risk aversion 

and consider whether these explain the data better than the risk neutral equilibrium or 

approximate equilibrium predictions. Intuitively, we may expect the risk-averse equilibrium 

strategies to put less probability weight on locating at the center to balance off the expected 

payoff and variance considerations. This would be consistent with the experimentally 

observed “dip” in the center location frequencies. Similarly, risk-aversion may cause the 

agents to move, with some probability, outside the central quartiles of the market, resulting in 

a higher degree of dispersion.  

Finding an exact equilibrium of a location game requires one to solve a complicated 

differential equation, a problem that, in general, has not been resolved (see Osborne and 

Pitchik, 1986, p. 227, on the difficulty of the problem). For this reason, we use numerical 

methods to consider the risk-averse equilibria. This is the subject of section 4.4 below. We 

conclude this section by establishing that risk-averse equilibria do exist in multi-agent spatial 

competition games. The equilibrium existence issue is non-trivial in location games because 

the agents’ profits (and, therefore, their utilities) are discontinuous in their locations. 

Fortunately, adopting the approach of Dasgupta and Maskin (1986a, 1998b), we can show 

the following:14 

Proposition 2. Consider a spatial competition game with N>2 agents, where the 

market is represented by a non-empty compact subset RA ⊂ , and there is a 

continuum of consumers in the market distributed over A according to a non-atomic 

distribution. Suppose all agents have identical preferences given by a concave utility-

of-profit function )(⋅u . Then for any number of agents N>2, the location game has a 

symmetric mixed strategy equilibrium (p*, .., p*), where p* is non-atomic on A. 

                                                 

14 The proof of proposition 2 is given in Appendix 4. We note that the assumption of risk aversion is crucial in 
establishing the equilibrium existence. 
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4.4 Evaluating the alternative hypotheses 

The preceding analysis shows that there may be at least two explanations of the 

data’s inconsistency with Shaked’s equilibrium prediction: risk neutral approximate 

equilibrium behavior and risk averse behavior. Below, we compare these explanations in 

terms of their predictive power for the data. 

4.4.1 The approach 

We used numerical simulations to evaluate symmetric 1% and 5%-equilibria for the 

three person location games with risk neutral and risk averse agents. For the risk neutral 

case, the agents’ utilities were identified with their market shares. For the risk averse case, 

the agent’s utility functions were assumed to be of the form  

baexU Rx +−= −)( , 

where x is the market share, x∈[0,1], a and b are constants normalized so that U(0)=0, and 

U(1)=1, and R is the risk aversion parameter, taking the values }.10;5;4;3;2;1;5.0{∈R 15 

Due to computational constraints, locations were pooled into 15 intervals, and only 

discrete probability values with an increment of 1/28 were considered for each location. 16 

Since the probability values were discrete, in the risk averse case the exact equilibrium was 

not always found, and the closest to the equilibrium solution in each case was sensitive to the 

fineness of the search grid (that is, the size of the probability increment). To avoid this 

problem, we evaluated, for the risk-neutral case and for each value of the risk-aversion 

parameter R, the whole sets of 1% and 5%-approximate equilibria. Since there were 

                                                 

15 The choice of utility function and the range of risk-aversion parameters considered may seem rather arbitrary. 
Previous experimental studies that analyze (or control for)  subjects’ risk attitudes employ both constant absolute 
risk aversion (CARA; for example, Berg, Daley, Dickhaut and O’Brien, 1986) and constant relative risk aversion 
(CRRA; for example, Cox, Smith and Walker, 1988) functional forms. Our emphasis is on qualitative distinctions 
between risk-neutral and risk-averse cases, the distinctions that should be picked up using any class of concave 
utility functions. For the adopted CARA utility defined on the range of market shares (from 0 to 1), the given set 
of risk-aversion parameter covers the range from very moderate (R=0.5) to rather extreme (R=10) degrees of risk-
aversion. We also conducted a limited number of numerical evaluations using CRRA functions; the results were 
qualitatively similar to the CARA case.  
16 The probability increments and the number of locations were chosen to guarantee the existence of the exact risk 
neutral equilibrium consistent with Shaked. For 15 locations, the risk neutral symmetric equilibrium is given by the 
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typically many strategies that yielded utility levels close to the maximum, these sets contained 

many elements; see table 4 in the next section. Details on the numerical procedures are given 

in Appendix 5. 

We then used the Euclidean distance squared (EDS) measure to evaluate the 

similarity of the experimental data with each prediction in each approximate equilibrium set 

parameterized by R. Formally, the EDS measure between an empirical distribution of 

locations and a theoretically (or numerically) predicted one is given by  

∑
=

−=
K

l

N
l

E
l ppD

1

2)( , 

where Kl ,,1 K=  indicates the location interval (K=15 in our case), and N
l

E
l pp ,  

correspond to the empirical and the numerically predicted frequencies respectively.  

The empirical frequencies for the pooled data and the data for each session were 

compared with each element of each of the numerically evaluated 1% and 5% approximate 

equilibrium sets for the risk neutral and each of the risk averse cases. Then, for each 

empirical frequency, the best numerical prediction (i.e., the one that minimized the EDS 

between the predicted and the empirical frequency) was chosen.17  

4.4.2 Results 

For each R, the set of approximate equilibria was quite large and included a large 

variety of mixed strategies (probability distributions). Table 4 summarizes the numbers of 

symmetric mixed strategy 1% and 5% equilibria under risk neutrality and risk aversion, out 

of the total of 11628 symmetric mixed strategies considered.  

                                                                                                                                            

probability distribution p=(0, 0, 0, 0, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 0, 0, 0, 0). Thus, the feasible probability 
increments are of the form (1/7k), k=1,2,… . 
17 More elaborate measures of closeness between the predicted probability distributions and the observed 
outcomes, such as the quadratic scoring rule (Selten, 1998), may be used to discriminate among alternative 
behavioral models. Such measures are particularly useful if individual strategies are considered and learning is 
incorporated in the model. In our case, learning is not considered beyond the scope of section 4.1. Further, since 
not all agents used symmetric strategies, all equilibria, not just symmetric ones, would have to be studied for the 
analysis of individual strategies. For the purpose of tractability, we rest rict our analysis to symmetric equilibrium 
predictions, and compare them with the data pooled by sessions, and overall. It then suffices to use the Euclidean 
distance measure. 
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Table 4. The number of approximate equilibria in the 1% and 5% equilibrium range. 

Total number of symmetric mixed strategies considered: 11628. 

 Risk averse 
ε 

Risk 
Neutral R=0.5 R=1 R=2 R=3 R=4 R=5 R=10 

1% 11 24 50 118 212 306 461 2213 
5% 937 1421 1998 3220 4564 5894 7095 11138 

 

The table indicates that the number of approximate equilibria increases dramatically 

with the degree of risk aversion. This can be explained as follows. As an individual becomes 

more risk averse, strategies with lower expected payoff and lower risk become as attractive 

as strategies with higher expected payoff and higher risk. The number of such low payoff 

strategies is large; in the limit, a very risk averse individual attains a high utility from any 

strategy which yields positive payoffs, and is therefore indifferent among almost all strategies. 

The above implies that almost any behavior can be explained by a large enough 

degree of risk aversion (thus, the set of 5%-equilibria included 1421 strategies for the risk 

neutral case, and 11138 strategies for the case R=10; see table 4). This creates a potential 

bias in favor of the risk-averse hypothesis. We address this problem by evaluating the data 

against two level sets of approximate equilibria (1% and 5% equilibrium sets), and by 

checking whether the qualitative evaluations of risk attitudes are consistent across the two 

sets.  

The results of evaluating the experimental data against the risk neutral and risk averse 

approximate equilibrium predictions are given in table 5. The table lists, for each 

approximate equilibrium set, the EDS values between the best (EDS-minimizing) predictions 

within the set, and the empirical distributions for each session and for the pooled data.18 

Consideration of table 5 prompts result 5. 

                                                 

18 Observe that, at least for the sets of 1% equilibria, the numerical predictions that minimize EDS globally (across 
the sets parameterized by degrees of risk-aversion) are not always the element of the largest (R=10) set. This 
shows that the above-mentioned bias in favor of risk aversion is not too large to prevent us from discriminating 
among different risk attitudes.  
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Result 5: The risk -averse approximate equilibrium hypothesis explains the data better 

than the risk neutral hypothesis for all but one experimental session, and for the 

pooled data. 

Support: Table 5. Within the 1% equilibrium set, for the pooled data and for all sessions 

except for session 3, the best risk averse predictions have the higher explanatory power for 

the data, in terms of EDS, than the best risk neutral predictions. For session 3, the EDS is 

the lowest for the 1%-equilibrium risk neutral prediction. Within the 5% equilibrium set, the 

best risk averse predictions explain the data at least as well as the best risk neutral 

predictions in all cases. For session 3, the risk neutral and risk averse hypotheses have the 

same explanatory power for the data within the 5% equilibrium set.♦ 
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Table 5. EDS values for the best 1% and 5% equilibrium predictions under risk 

neutrality and risk aversion. Asterisks indicate minimal values. 

 Pooled data Session 1 Session 2 Session 3 Session 4 

1% equilibrium 
Risk neutral 0.0088 0.0273 0.0294 0.0140* 0.0106 

R=0.5 0.0088 0.0273 0.0294 0.0140* 0.0106 
R=1 0.0121 0.0267 0.0223 0.0211 0.0104 
R=2 0.0062* 0.0147 0.0196 0.0226 0.0067 
R=3 0.0079 0.0137 0.0125 0.0246 0.0104 
R=4 0.0078 0.0074 0.0120 0.0289 0.0118 
R=5 0.0078 0.0067 0.0077 0.0289 0.0118 
R=10 0.0064 0.0032* 0.0073* 0.0254 0.0065* 

5% equilibrium 
Risk neutral 0.0052 0.0134 0.0125 0.0098* 0.0065 

R=0.5 0.0052 0.0078 0.0125 0.0098* 0.0055* 
R=1 0.0047* 0.0078 0.0121 0.0098* 0.0055* 
R=2 0.0047* 0.0055 0.0077 0.0098* 0.0055* 
R=3 0.0047* 0.0032* 0.0073* 0.0098* 0.0055* 
R=4 0.0047* 0.0032* 0.0073* 0.0098* 0.0055* 
R=5 0.0047* 0.0032* 0.0073* 0.0098* 0.0055* 
R=10 0.0047* 0.0032* 0.0073* 0.0098* 0.0055* 

 

The best (EDS-minimizing) numerical predictions from the 5% equilibrium set are 

plotted next to the empirical distributions in figure 7 (for the pooled data) and figure 8 (by 

session). The figures demonstrate that the sets of symmetric approximate equilibria contain a 

large variety of mixed strategies, including probability distributions with both “peaks” and 

“dips” at the center of the market.19 However, it appears that the risk-averse approximate 

equilibrium strategies differ from the risk neutral ones in the dispersion of location choices. 

The risk neutral prediction has a higher explanatory power for session 3, in which the 

location choices fell almost entirely into the central quartiles of the market. In all other 

                                                 

19 However, it is interesting to note that numerical simulations revealed that different strategies within the same risk 
averse approximate equilibrium set result in similarly shaped expected profit and standard-deviation-of-profit 
functions. As anticipated (see discussion in section 4.3.2), the distributions of profit means and variances were hill-
shaped with the maximum at the center of the market. Approximate equilibria that had a “dip” at the center of the 
market were not always successful in explaining the data for two reasons: (i) Due to numerical constraints, location 
choices were aggregated into 15 groups, which significantly decreased the observed “dip” in the location 
frequencies; compare figures 2 and 7. (ii) Only symmetric equilibria were considered, whereas the “dip” in the 
empirical frequency was slightly asymmetric. 



 24

sessions, subjects’ location choices were more dispersed, and the risk neutral hypothesis 

was rejected (on the basis of EDS) in favor of risk aversion. 

Figure 7: The 5% Equilibrium Prediction and Actual Distribution of Location Choices 

for the Pooled Data 
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Figure 8: The Best 5% Equilibrium Predictions and Empirical Distributions of Locations by Session 
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We now have sufficient evidence to conclude that the increased dispersion in 

subjects’ location choices was caused by subjects’ risk aversion together with approximate 

equilibrium behavior. Yet, two interesting issues remain unresolved. First, was risk aversion 

responsible for the subjects staying away from the very center of the market? Second, was 

the observed higher dispersion of choices a feature of the exact risk-averse equilibrium, or 

was it the result of approximate equilibrium behavior under risk aversion? A simple test 

allows us to answer both questions.20 For the exponential utility function with the risk-

aversion coefficient R=2 (as estimated for the pooled data; see table 5), we calculated, given 

the pooled empirical frequency, the expected utility of choosing each location (with the 

locations pooled into 21 groups around the focal points, as described in section 3). If the 

observed behavior constituted the exact risk-averse equilibrium, then the expected utility 

would be the same and at a maximum at every location in the support of the empirical 

frequency (probability) distribution. The results are plotted in figure 9. The figure 

demonstrates that the expected utility was indeed at a maximum and fairly flat in the central 

quartiles of the market; but it decreased outside the [25,75] range. We conclude that the 

agents’ risk-aversion does explain why the agents located less frequently around the very 

center of the market. However, the higher dispersion of locations is not explained by the 

exact equilibrium hypothesis, and should be attributed to risk-averse approximate 

equilibrium behavior.21 

                                                 

20 We are grateful to Peter Bossaerts and Matthew Jackson for suggesting this approach.  
21 Expected utilities given the empirical frequency were also calculated for the given utility functions (CARA) with 
other values of R in the range, and for a number of CRRA utility functions. In all cases, the expected utility was 
decreasing outside the central quartiles of the market. Thus, the exact equilibrium hypothesis does not explain 
higher dispersion in the data for a variety of concave utility functions.  
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Figure 9. Estimated expected utility with R=2 for the empirical frequency 
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5. Conclusions 

Our study reveals that, overall the theory has some predictive power for the analysis 

of multi-agent spatial competition games even if no pure strategy location equilibrium exists. 

In accordance with the theory, the subjects in the three-agent location experiments 

randomized their locations and stayed away from the edges of the market. However, we 

found that the subjects’ behavior did not exactly correspond to Shaked’s symmetric 

equilibrium prediction: the subjects often chose to avoid the center of the market, and the 

location choices were more dispersed than the theory predicted. Since such behavior 

persisted as the experiments progressed, it could not be attributed to subjects’ inexperience 

with the game. 

In analyzing possible causes of the observed deviations of the experimental 

outcomes from the theoretical predictions, we reached two important conclusions. First, the 

subjects’ behavior in the experiments is explained better by approximate equilibria than the 

exact equilibrium; this is due to the presence of a large number of strategies that yield 

expected payoffs close to the equilibrium level. Second, risk aversion was an important 
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factor that affected the subjects’ behavior. Risk averse approximate equilibrium behavior 

induced the subjects to move away from the center of the market and to choose, with some 

probability, low-risk locations outside the risk neutral equilibrium range. Consequently, the 

location choices were more dispersed than under the risk neutral equilibrium prediction. 

To the best of our knowledge, the effects of risk aversion on equilibrium outcomes 

have been largely ignored in the existing literature on spatial competition. This study indicates 

that incorporating assumptions on agents’ risk attitudes into the analysis of location games 

may be a fruitful direction for further research. While the main body of the current literature 

analyzes the robustness of the centrist location tendencies in spatial competition models 

under risk neutrality, we find that risk aversion may be an additional factor that contributes 

to the breakdown of these tendencies. This conclusion has important implications both for 

the analysis of multi-candidate elections, and for spatial competition among firms. 
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Appendix 1 Instructions to Subjects 

Experimental Instructions 
This research is about the economics of decision making.  The instructions are simple, and if 
you follow them carefully and make good decisions you may earn a considerable amount of 
money which will be paid to you in cash at the end of the experiment. 
 
Your payoff (or earnings) will be determined by your choices and by the choices of the 
other participants.  All earnings will be in terms of francs.  Each franc is worth ____ dollars 
to you.  Feel free to earn as much money as you can. 
 
The information on your screen is private.  Please do not talk to your fellow participants 
while the experiment is in progress. 

Description of the market 
You are a seller of a product who must choose a locatio n along a road 100 kilometers in 
length.  However, you must share this road with two other firms selling exactly the same 
product.  Each of the three firms along this road must choose to locate at a kilometer post 
between 0 and 100 (including 0 and 100). 
 
Each firm sells the product for a fixed price of 1 franc per unit.  You cannot change this 
price.  Your cost of production is zero so that the quantity you sell is directly proportional to 
the profit of your firm.  For example, if you sell 50 units, your profit from the sale is 50 
francs. 
 
There is a single customer for the product at every kilometer post along the road (therefore 
there are 101 customers).  Each customer will buy 10 units of the product.  As each firm’s 
product is identical and the prices the same, each customer will purchase the product from 
the closest firm. 
 
If two firms are the same distance from the customer, then the customer will buy 5 units from 
each firm. 
 
If two firms locate at the same position, then each customer buys half from one firm and half 
from the other (the two firms each sell half the total quantity demanded).  If three firms 
locate at the same position, then each customer buys a third from each of the firms (the three 
firms each sell one third of the total quantity demanded). 

Your instructions 
This experiment will be repeated for a fixed number of periods.  In each period you must 
choose a single location for your firm.  In each period the other two firms in your market will 
be selected at random from the rest of the participants. 
You and the two other participants in your market will submit your chosen locations for each 
period using a computer.  At the start of each new period the computer will show 
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information about the outcomes from the last period.  All that is required from you is to 
choose carefully the location for your firm for each period. 
 
It is assumed that relocation is costless so you can move your firm as far as you like without 
penalty between periods. 
 
At the end of each period your computer screen will show 
• the location chosen by each firm in your market; 
• how many units of the product your firm sold; 
• the profit you earned from the sales of the product; 
• how many units of the product each the other firms sold; 
• the percentage of sales that each of the firms captured; 
• your cumulative profit (how much you have earned during the experiment so far); 
• an illustration of the market showing the location of each firm along the line and coloured 

bars showing the customers captured by each firm. 
You may wish to record this information on the record sheet provided. 
 
There will be a practice session of about three rounds so that you can familiarise yourself 
with the procedures. 

The computer screen 

The ‘Submit’ button is used to
register your choice of location.
After all the participants in the
experiment have pressed
‘Submit’ the next period begins.

The location of each firm is shown
by a coloured vertical line.

The customers that buy from a
particular firm are indicated by
the coloured horizontal
rectangle.

This box shows:
• the locations that each firm

chose in the last period
• the quantities that each firm

sold in the last period
• market share of each firm
• the total quantity your firm

has sold during the
experiment

Note that if more than one firm choses the same
location, the horizontal bars will overlap.  Some of the
lines indicating the firms positions will be obscured as
only the top line can be seen.

The market is illustrated by this
dark grey rectangle.

You enter your choice of
location in this box.  When you
click ‘Submit’  your choice is
recorded and this box is
disabled until the next period.

 
In the each round, you must enter a location and press the ‘Submit’ button next to the 
location box.  The computer will ask you to confirm your choice.  After you (and all other 
participants) have pressed the ‘Submit’ button, the next period will begin. 
 
When the computer records your choice, there will be a delay while all the participants’ 
choices are collated.  You will not be able to change your location during this time.  When 
the market shares have been calculated, a yellow screen will inform you that a new period 
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has commenced.  You and the other two randomly selected participants in your market are 
now ready to choose locations for the next period. 

Exercises 

Firm 1 locates at 5 km, firm 2 locates at 12 km and firm 3 locates at 59 km as in the diagram below. 
 

0 5

8.5

12 35.5 59 100

Firm 1 Firm 3Firm 2

Midpoint between 1 and 2 -
customer 8 buys from 1,
customer 9 buys from 2.

Midpoint between 2 and 3 -
customer 35 buys from 2,
customer 36 buys from 3.

These customers
buy from firm 1.

These customers
buy from firm 2.

These customers
buy from firm 3.  

In this case firm 1 sells to all the customers between 0 and 8 and therefore sells to 9 customers.  
Each customer demands 10 units, so the quantity sold by firm 1 is 10×9=90 units.  The selling price 
is 1 franc, so the profit for firm 1 is 90 francs. 
 
Question 1  How many customers buy from firm 2? 
   (a) 23  (b) 45 
   (c) 27  (d) 22 
 
Question 2  Firm 3 sells to 65 customers.  What is the profit for firm 3? 
   (a) 65 francs (b) 550 francs  
   (c) 330 francs  (d) 650 francs  

 

Both firm 1 and firm 2 locate at 55 km and firm 3 locates at 70 km as in the diagram below. 

0 55 7062.5 100

Firms 1 & 2 Firm 3

Midpoint between 1 & 2 and 3 - customer 62 buys
from both 1 & 2, customer 63 buys from 3.

These customers buy 5 units from
firm 1 and 5 units from firm 2.

These customers
buy from firm 3.

 
 
In this case firms 1 and 2 equally share the customers between 0 and 62.  Firm 3 sells to all the 
customers between 63 and 100. 
 
Question 3  How many customers buy from both  firm 1 and firm 2? 
   (a) 63  (b) 70 
   (c) 19  (d) 33 
 
Question 4  What is the profit for firm 1? 
   (a) 630 francs  (b) 315 francs  
   (c) 230 francs  (d) 63 francs 
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Are there any questions?  Please raise your hand for a supervisor to 
check your answers and give you a consent form for you to sign. 
Answers: 1.(c) 2.(d) 3.(a) 4.(b) 
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Appendix 2 

Table 2A Descriptive statistics of locations by individual 

 Subject 
I.D. 

Number of 
obs. 

Mean Median Mode First 
quartile 

Third 
quartile 

Std. Dev. %outside 
[25,75] 

Skewness 

1 35 45.7 42 66 25.5 67.5 24.1 37.1 0.25 
2 35 50.5 50 30 30 73.5 21.9 25.7 0.03 
3 35 49.4 50 55 45 55 6.9 0.0 0.06 
4 35 56.2 70 74 32.5 72.5 19.3 2.9 -0.47 
5 35 47.7 39 34 28 71 22.6 45.7 0.30 
6 35 43.7 36 3 14 76.5 33.1 65.7 0.41 
7 35 42.7 33 30 23.5 67.5 23.1 42.9 0.60 
8 35 42.9 48 19 19 65 23.2 62.9 0.25 
9 35 58.0 70 70 37 74.5 18.7 5.7 -0.53 
10 35 57.4 56 75 47 70 13.0 5.7 0.18 
11 35 54.4 54 63 40 66.5 15.2 11.4 0.16 

Se
ss

io
n 

1 

12 35 55.2 60 65 42.5 63 10.2 0.0 -0.63 
13 35 56.8 64 69 46 69 22.7 25.7 -0.91* 
14 35 58.7 71 70 33 75.5 24.5 37.1 -0.86* 
15 35 47.9 50 51 47 53 10.5 5.7 -1.34* 
16 35 42.1 39 37 37 43 9.9 0.0 1.63* 
17 35 38.6 31 31 31 32 15.3 0.0 1.56* 
18 35 50.4 46 33 33 68 22.1 25.7 0.03 
19 35 48.1 60 78 22.5 73.5 27.9 57.1 -0.03 
20 35 52.9 54 50 44.5 58.5 13.8 11.4 0.57 

Se
ss

io
n 

2 

21 35 75.3 75 75 74 80 11.7 48.6 -2.47* 
22 35 47.0 48 40 39 59.5 14.6 8.6 -0.34 
23 35 53.7 56 45 45 63 10.3 0.0 -0.21 
24 35 49.8 43 43 37 64.5 15.3 5.7 0.40 
25 35 50.0 60 60 59 67 8.7 0.0 -0.82* 
26 35 49.1 50 22 24.5 66 22.3 37.1 0.24 
27 35 59.6 68 69 47 69 14.3 0.0 -0.90* 
28 35 50.1 50 50 43.5 59 10.0 0.0 0.10 
29 35 39.5 24 24 24 54.5 28.2 77.1 1.26* 
30 35 56.8 65 67 43 67 16.8 5.7 -1.20* 
31 35 54.5 57 64 40 67.5 19.4 28.6 -0.34 
32 35 54.0 60 63 40 63 14.1 0.0 -0.09 
33 35 49.8 48 48 41 62.5 13.8 0.0 0.15 
34 35 45.7 46 47 43 47 12.5 8.6 0.63 
35 35 51.4 48 46 41 62 17.2 14.3 0.74 
36 35 45.7 44 39 39 49 7.4 0.0 1.11* 
37 35 50.0 49 41 41 61 13.5 2.9 -1.11* 
38 35 46.5 44 44 40 47 8.3 0.0 1.50* 

Se
ss

io
n 

3 

39 35 48.5 45 40 40 59.5 18.2 11.4 -0.24 
40 35 49.5 52 58 38.5 64.5 21.8 25.7 -0.22 
41 35 44.1 35 35 32 50 17.6 2.9 0.30 
42 35 54.5 51 66 45 66 11.1 0.0 -0.40 
43 35 46.8 38 37 36.5 62.5 15.1 2.9 0.48 
44 35 40.6 32 32 22.5 63 23.4 42.9 0.81* 
45 35 51.8 46 30 25.5 79.5 29.7 62.9 0.16 
46 35 50.7 49 43 43 55 8.6 0.0 0.69 
47 35 48.4 45 60 36 60 21.3 17.1 -0.10 
48 35 51.0 53 45 43.5 63.5 20.5 25.7 -0.41 
49 35 53.8 53 61 40.5 66.5 15.8 14.3 0.12 
50 35 52.5 50 50 36 66.5 21.1 20.0 0.37 

Se
ss

io
n 

4 

51 35 48.6 39 33 33 70 18.8 2.9 0.25 
Note:  * indicates skewness significantly different from zero at the 5% level (standard error of skewness is 0.398 in each case). 
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Figure 2A:  Distribution of Location by Session 
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Appendix 3 Derivation of expected payoff and variance of payoff as a 

functions of location  

Within the framework of Shaked’s (1982) model, assume that firms 1 and 2 choose their 

locations on the linear market [0,1] according to the Nash equilibrium density function given 

by equation (1). Let x and y denote locations of firms 1 and 2, respectively. We will 

calculate the average payoff A(z) and the variance of payoff V(z) of the third firm as a 

function of its location z. Let  min
~x   and max

~x  denote locations of the competitor nearest to 0 

and 1, respectively, and )(~ zπ  denote the payoff from locating at z, where a tilde indicates a 

random variable. Further, let 

)(1)()(

)()(

4/3

4/1

xQdttfxR

dttfxQ

x

x

−=≡

≡

∫
∫

 

The profit of the third firm when z < 1
4  depends only on the location of the firm 

closest to 0 and is given by 

 
2

~
)(~ minxz

z
+

=π  (4) 

The probability of the closest firm locating to the left of any point t is  

 Pr( ~ ) Pr( ) Pr( ) ( )minx t x t y t t< = − > > = − −1 1 23
2

2  (5) 

The expected location of the closest firm is given by 

 E x t
d
dt

x t dt( ~ ) Pr(~ )min min/

/
= < =∫

1 4

3 4 5
12  (6) 

Thus the average payoff is 

 A z
z E x z

z( )
(~ )min=

+
=

+
≤ <

2

12 5

24
0 1

4  (7) 

The variance of the payoff when z < 1
4  depends only on the variance of the location of the 

firm closest to 0, which is: 

 Var( ~ ) (~ ( ~ )) ( ) Pr( ~ )min min min min/

/
x E x E x t

d

dt
x t dt= − = − < =∫2 5

12
2

1 4

3 4
1
72  (8) 

And hence the variance of the payoff is 

 V z z x x z( ) Var( ( ~ )) Var( ~ )min min= + = = ≤ <1
2

1
4

1
288

1
40  (9) 
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By a similar argument, the payoff mean and variance of the third firm when 
4
3>z  are given 

by 

 A z
z E x z

z( )
(~ )max= −

+
=

−
< ≤1

2
17 12

24
13

4  (10) 

 V z z x x z( ) Var( ( ~ )) Var(~ )max max= − + = = < ≤1 11
2

1
4

1
288

3
4  (11) 

When 1
4

3
4≤ ≤z , the expected payoff is given by 
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The variance of the payoff when 1
4

3
4≤ ≤z  is  
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37

3
523

3
324

3
16

4/3 2
3
1

2
1

4/1

4/3 2
3
1

2
1

4/1

2
3
1

2
1

7))()(()(2

))()(()(2))(1)(()(2)(

+−+−=−++

+−−+−+−=

∫
∫ ∫∫

zzzzdxzxxRxf

dxdyxyyfxfdxxzxQxfzV

z

z

z

z

 (13) 

Combining (7), (10) and (12), we obtain the expected payoff from locating at z , as given in 

equation (2). Combining (9), (11) and (13) (and taking the square root of the variance), we 

obtain the standard deviation of the payoff at z , as given in (3). 

Appendix 4 Proof of Proposition 2 

Proof  Theorem 6 in Dasgupta and Maskin (1986a) provides general conditions for the 

existence of a symmetric mixed strategy equilibrium in discontinuous games. Dasgupta and 

Maskin (1986b) further show that these conditions are satisfied for an N-agent location 

game if agents  are payoff-maximizers. Suppose, instead, that the agents’ utilities are 

concave in their payoffs, i.e., the agents are risk averse. The only step in the existence proof 

that differs from the risk neutral case considered by Dasgupta and Maskin (1986b) is in 

showing that ∑ =

N

i

i aU
1

)( , where ),...,( 1 Naaa = is the vector of agents locations’, or pure 

strategies, and )(⋅iU ’s are individual utilities as functions of locations, is upper semi-

continuous in its arguments. Here we present the proof of this property for the case of 

uniform distribution of consumers on [0,1], and  N=3 agents. The proof easily extends to 

the general case. 
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Let x, y and z denote locations of agents 1, 2 and 3, correspondingly. By 

assumption, )),,,((),,( zyxuzyxU ii π= where iπ  is agent i’s payoff, i=1,2,3. 

Discontinuities in agents’ payoffs, and, therefore, in their utility functions, occur only when 

two or more agents locate at the same point in the market. Hence, to prove that 

∑ =

N

i

i zyxU
1

),,(  is upper semi-continuous in (x,y,z), it is necessary and sufficient to show 

that, for all ]1,0[,, ∈zyx , 

(14)                              ).,,(),,(lim
3

1

3

1

zyyUzyxU
i

i

i

i
yx ∑∑

==
→ ≤  

Consider the following cases. 

Case 1: zy ≠ , }.,min{ zyx < For simplicity, assume that y<z. Then, given the 

assumption of uniform distribution of consumers on [0,1], 
2

1),,(3 yz
zyx

+
−=π  for all 

yx ≤ , and hence )),,(),,(( 21 zyxzyx ππ +  is constant. Therefore, as ,yx →  all changes 

in the sum of utilities are due to redistribution of profits between agents 1 and 2. By 

concavity of ),(⋅u  the sum of the utilities is maximized when ),,,(),,( 21 zyxzyx ππ =  

which is the case when x=y. Thus,  
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The case when },max{ zyx > is analogous.  

Case 2: zy ≠ , }.,max{},min{ zyxzy << For simplicity, assume that y<x<z. 

(The case z<x<y is analogous.) As yx → , the payoffs of both agents 2 and 3 change, but 

there is no discontinuity in agent’s 3 payoff at x=y. Again, by concavity of ),(⋅u  the sum of 

the utilities of agents 1 and 2 is maximized when ),,,(),,( 21 zyxzyx ππ =  which is the 

case when x=y. Hence, 
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The case when  y<x<z, zx →  is analogous. 

Finally, concavity of )(⋅u implies that inequality (14) holds as yx →  when y=z 

(case 3). In fact, ∑ =

N

i

i zyxU
1

),,(  attains its global maximum at x=y=z. ♦ 

Appendix 5 Numerical evaluations of approximate equilibria  

Approximate symmetric equilibria for the 3-agent location game we evaluated as  

follows. Due to computational constraints, all locations were pooled into K intervals, and 

only discrete probability values with an increment of 1/N were considered. A mixed strategy 

was then represented by a K-dimensional probability vectors ),..,( 1 kppp = , where lp  

denotes the probability of locating in interval l. In a symmetric equilibrium, each player 

adopts the same strategy p=p*. To find such equilibria, for every feasible strategy p adopted 

by agents 1 and 2, the algorithm searched, over the feasible set determined by K and N, for 

best response strategies q(p) of player 3, i.e., the strategies that maximized his expected 

utility ),;( ppqU i . (Typically, the best responses were not unique, but they all yield ed the 

same utility). For each pair ))(;( pqp , the algorithm evaluated utility gains from using the 

best response strategy )( pq as compared to the strategy p adopted by other players: 

).,;(),);(()( pppUpppqUpG ii −=  

A symmetric Nash equilibrium is characterized by a strategy p* such that G(p*)=0. 

Because the problem of finding such p* is non-convex in ))(;( pqp , we were forced to use 

a grid search algorithm to search for the equilibria. Due to the discreteness of the probability 

space, the exact symmetric equilibrium was not always found, and the closest to the 

equilibrium solution (p at which the gains function G(p) was minimized) was very sensitive to 
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the choice of the number of locations K, probability increments N, and the risk aversion 

parameter R. To avoid this problem, we evaluated the whole set of ε-equilibria, i.e., the set 

of all probability distributions p for which ε≤),;(/)( pppUpG .22  

In the estimations reported in section 4.4, we set K=15 location intervals, N=28 

probability increments, and ε=1% or ε=5%. N and K were chosen to guarantee the 

existence of the exact mixed strategy risk neutral equilibrium consistent with Shaked (see 

footnote 16 in the main text.) Since the search was constrained to symmetric equilibria, only 

the probability distributions symmetric around the center of the market were considered. 

Further, the search was restricted to mixed strategies such that 0151421 ==== pppp . 

This was done for the sake of computational efficiency. In earlier trials, these constraints 

were not imposed, at the expense of choosing smaller N. The numerical predictions which 

best explained the empirical data (in terms of EDS; see section 4.4.1) always assigned zero 

probabilities to the first and last two location intervals. We conclude that these restrictions 

did not significantly affect the results. With all the above restrictions in place, the total of 

11628 probability distributions were considered. 
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