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TO DISTANT POINT 

I 

is then found at  %io, i = O ,  1, . - . , 71 
with a<zlo'<ulO< . . . <zrno<b by  setting 
d/dweo(u) =O. The values of eO(z4) a t  these 
extrema  are, of course,  not  equal  since this 
is only an initial  arbitrary  interpolation.  The 
next  step is to  assume  that 

E'(n4) = uO' + 2 G' COS bit4 (9) 

with ai1 as  the new coefficients to be deter- 
mined by equalizing 

n- 1 

1=1 

d ( u )  = j(u) - E1(x) (10) 

at ?GO, i = O ,  1, . . . , ?z such that  the follow- 
ing will be true: 

el(zci0) = ( - l ) ieL,  i = 0, 1, . . . , n. (11) 

Equation (11) consists of a  system of (n+l) 
equations  which  are  just  enough to solve  for 

and €1. The  set of coefficients ai1 so ob- 
tained, though  satisfying (ll),  does  not nec- 
essarily  assure that el(u) vary  with  equal 
ripples  since el@) now has  a new set of ex- 
trema  points 

zkye < 2401 < ze11 < . . . < ?L,1 5 b). 

From  these  points, me shall  again  try  to 
equalize the deviation  function  until  a final 
set of extrema  points, u i P ,  i = O ,  1, . . . , n 
are  obtained such that  the values of 
eP(zr) =f(u) -Ek(.) a t  these  points  are  equal 
in  magnitude to a certain  accuracy  but  with 
signs alternately plus and minus. The  super- 
script k signifies the kth iteration  after an  
initial  starting.  The  iterative process  is 
proved to he  convergent so long  as the con- 
ditions  for  a  Cheb>-shev  system  have  been 
satisfied  [15],  [16]. 

If a  broadside  Gaussian pattern 

j ( z )  = exp (- Ax?) 

is  chosen as  the desired pattern  and since i t  
practically  vanishes after a point B (see 
Fig. 2), all the sidelobes of the synthesized 
pattern E"(zr) will be  approximately at  the 
same level represented by 20 log l e J z / .  It  is 
noted that  the technique  discussed  here 
can  also  be  generalized  for arrays of non- 

represented by I,Y(u) provided TT-(zc)>O. The 
isotropic  elements  with the element pattern 

result will then  have  minimized: 
mas W ( U )  i ~ ( z L )  - E ( U )  I 
= max I W ( u ) j ( z c )  - W(ze)E(u) 1 , 0 < 'zc 5 
which  may be considered as a  maximum 
weighted  deviation. Sow, T17(zr)E(u) repre- 

isotropic  elements, and IT'(u)f(u) can he 
sents  the synthesized pattern with non- 

considered as  a new desired pattern. 

-u 

Fig. 2. X possible desired pattern. 

The serious  limitations of this  proposed 
method of synthesizing  nonuniformly  spaced 
arra>-s lies on the  question how the choice of 
IZ and ba should  be  made  such that a  Cheby- 
she\-  system is formed. -4 systematic way of 
trying to answer it bL- numerical  examples 
is being  investigated. I t  is hoped that useful 
results-will be published  in  detail  soon. 

hI. T. hIa 
Central  Radio  Propagation  Lab. 

Sational Bureau of Standards 
Boulder,  Colo. 
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Radiation  Resistance  and  Irrever- 
sible  Power of Antennas in Gyro- 
electric Media 

In recent  years,  many  investigators have 
been  working  on the problem of calculating 
the radiation  resistance of a  dipole antenna 
immersed  in an  anisotropic medium [I 1. The 
central  difficulty of their method of calcula- 
tion is that  it yields an infinite  value  for the 
radiation  resistance. They  hare  attributed 
this  infinity to  the infinitesimal  size of the 
source, and have  suggested that if the source 
were of finite spatial  extent  the difficulty 
would not arise. I t  is our  contention that  the 
difficulty is of a  more  basic nature  and is not 
due  to  the size of the source but to the 
method  of  calculation.  The  purpose of this 
letter is to  show that if the  radiation  re- 
sistance is calculated  with  proper  conformity 
to  the thermodynamical  laws of reversibilih- 
and irreversibilit)., the value  of the  radiation 
resistance will turn  out  to be finite. Clearly, 
radiation  resistance is on the same  footing  as 
ordinary  circuit  resistance  in  the  sense that 
they  both are measures of irreversible  power, 
and hence  in  calculating  radiation  resistance 
it is necessary that only the irreversible part 
of the power be used.  Accordingly, we shall 
construct an expression  for the irreversible 
part of the power emitted  by  a  source, and 
show that  the expression so constructed is 
finite and hence  leads to  a finite value  for 
the  radiation  resistance.  To  construct the 
required  expression, me recall that in the 
case of an accelerating  point  electron  in 
vacuum, the combination of half the re- 
tarded  minus half the  advanced field  is free 
from  singularity [2] and corresponds to  the 
irreversible power radiated  by  the electron 
[3]. iVe shall  extend  this  idea of taking a 
combination field to  the case  of  a  monochro- 
matic  source Re(JciWt) radiating  into  a loss- 
less anisotropic  medium. 

Our starting  point is the  conventional 
expression 

P = - - Re p ( r ) .  EoU'@, Bo)dV (1) 

for the time-average power P. Here Eout is 
the  electric field  of the  outgoing  wave  gen- 
erated  by  the source current J ,  and Bo is the 
externally  applied  magnetic field  which pro- 
duces the anisotrop)- of the  surrounding 
medium.  Clearly E O U t  can  be  written as  the 
following identity 

2 I s  

iPUt(BU) = $[PUt(B,)  + EoUf(-B~) 

- E'"(B0) - Eh(-BO)] 

+ t [ E""t(B0) - Eo"' (- B,) 

+ t [ E " W 3 0 )  + E O U ' ( - - B o )  

+ f[E""t(B,) - EO"'(-Bo) 

- Ein(B,) + Eh(--Bo)] 
(2) 

+ E'njB,) + E'"!-Bo)] 

+ E'"(&) - E'"(-B,)], 

where E i n  is the electric field of the incoming 
wave associated  with J. Substituting (2)  into 
( I ) ,  we see that  the first tn-o terms of ex- 
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pression (2)  yield the irreversible part Pirr 
of P,  and  the  last two terms yield the reversi- 
ble part P r e p  of P,  in  agreement  with  the 
requirement that  on  reversing the positive 
sense of time  and simultaneously the positive 
sense of Bo the irreversible part Pirr remain 
unchanged and  the reversible part Pre .  
change  its sign.  Since it is only Pirr that 
enters  the calculation  for the  radiation re- 
sistance, we discard the  last  two  terms of 
(2) .  \\-e note  that  the first two  terms reduce 
to  the combination +[EoUc(B~) -E in (B~)] .  
This  combination satisfies everywhere the 
homogeneous equation 

V X V X (E""' - E" 1 - W2POE(BO) 
. ( p u t  - Ein ) = 0, (3) 

where c(B0) is the hermitian  dvadic that 
characterizes the lossless anisotropic me- 
dium,  and hence  is free from  singularity. 
Thus we conclude that Pirr is finite  provided, 
of course, that  the volume  integral of I J I  it- 
self is bounded. 

From  the linearity of Maxwell's equations 
we can  write 

v x v x P ' ( k B 0 )  - w ~ p o e ( f B o ) . P t ( k B o )  

v X v X rin(k:Bo) - w~p,s(+Bo).r i"(+Bo) 

= u6(r - r') 

= u6(r - r') (5) 

where u = unit  dyadic. Since 

e(-&) = E*(&), 

(5) implies that 

rin(+Bo) = [rout(~~o)]*.  (6) 

\\:ith the  aid of (4) and ( 6 )  we thus  obtain 
from ( I ) ,  and  the first two  terms of (2), the 
required expression 

In  the special case of an oscillating dipole 
of moment p ,  we have J= -iwps(r), and 
hence (i) becomes 

which is clearly an even function of Bo as it 
should be. \Vhen Bo = O  (isotropic  media), 
or when BO= = (uniaxial crystals), (8) re- 
duces to  the conventional (1). 

If the  anisotropy is due  to  the uniform 
motion v of the medium  instead of an ex- 
ternally applied  magnetic field, Bo, (7) ,  with 
BO replaced by v, gives the irreversible 
power  when the dyadic  Green's functions 
are  appropriately calculated. In  the case of 
a n  oscillating  dipole in a moving  medium 
(8) yields a value  for Pi= that agrees with 
a previous result  obtained in a different 
manner [4]. 

K. S .  H. LEE 
C. H. PAPAS 

Calif. Inst. Tech. 
Pasadena, Calif. 
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