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Abstract 

This paper investigates the use of standard econometric models for quantal 
choice to study equilibria of extensive form games. Players make choices based 
on a quantal choice model, and assume other players do so as well. We define 
an Agent Quantal Response Equilibrium (AQRE), which applies QRE to 
the agent normal form of an extensive form game and imposes a statistical 
version of sequential rationality. We also define a parametric specification, 
called logit-AQRE, in which quantal choice probabilities are given by logit 
response functions. 

AQRE makes predictions that contradict the invariance principle in sys­
tematic ways. We show that these predictions match up with some exper­
imental findings by Schotter, Weigelt and Wilson (1993) about the play of 
games that differ only with lcspect to inessential transformations of the ex­
tensive form. The logit-AQRE also implies a unique selection from the set of 
subgame perfect equilibria in generic extensive form games. We examine data 
from signalling game experiments by Banks, Camerer, and Porter (1994) and 
Brandts and Holt (1993) . We find that the logit-AQRE selection applied to 
these games succeeds in predicting patterns of behavior observed in these ex­
periments, even when our prediction conflicts with more standard equilibrium 
refinements, such as the intuitive criterion. We also reexamine data from the 
McKelvey and Palfrey (1992) centipede experiment . 
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1 Introduction

In a companion paper (McKelvey and Palfrey, 1995) we introduced the idea of Quan­
ta! Response Equilibrium (QRE), and applied this concept to noncooperative games in 
normal form. Quanta! responses are smoothed-out best responses, in the sense that 
players are more likely to choose better strategies than worse strategies, but do not 
play a best response with probability one. The idea has its origins in statistical limited 
dependent variable models such as discrete choice (in economics and psychology) and 
stimulus/dosage response and bioassay (in biology and medical research), and is an es­
sential ingredient of the work on bcunded rationality in games by Rosenthal (1991) and 
control cost models of equilibrium selection by van Damme (1987) . The added complica­
tion in applying the concept to game theory, in contrast to individual choice, is that the 
choice probabilities of the players have an important interactive component, since they 
are simultaneously determined in equilibrium. 

QRE is an internally consistent equilibrium model, in the sense that the quantal 
response functions are based on the equilibrium probability distribution of the opponents' 
strategy choices, rather than simply arbitrary beliefs the players could have about those 
probabilities.1

An interesting property of QRE is that systematic deviations from Nash equilibrium 
may be predicted even without introducing systematic features to the error structure. 
The systematic effects of the statistical disturbances are (indirect) equilibrium phenom-

*This paper has benefited from comments by participants at the Conference on Learning in Games
(Texas A&M University, February 1994) and the European Meetings of the Econometric Society (Maas­
tricht, September 1994). We thank the participants for their comments and also thank Peter Coughlan, 
Mark Fey, Eugene Grayver, and Rob Weber for their research assistance. The financial support of the 
National Science Foundation (Grant #SBR-9223701) is gratefully acknowledged. 

1See also Chen, Friedman and Thisse (1995) who study learning dynamics in the context of a similar 
quanta! response equilibria model, which they call "boundedly rational Nash equilibria". 



ena that arise because of the strategic response of the players to the noisy environment. 
This leads to what can be viewed as a statistical generalization of Nash equilibrium. 

In the earlier paper we show that for normal form games there is a correspondence 
between QRE and Bayesian equilibria of what Harsanyi (1973) calls randomly disturbed 
games. Specifically, we show that a particular parametrization of quantal response equi­
librium, which we call the logit equilibrium, corresponds to the Bayesian equilibria of 
the game with a vector of independent log Weibull-distributed disturbances added to 
the payoffs of the players, with each individual's disturbances being private information 
to that player. That paper then establishes some properties of QRE in finite n -person 
games, and re-examines a diverse collection of experimental bimatrix games that have 
unique logit (and Nash) equilibria. Statistical analysis of that data was carried out using 
standard maximum likelihood techniques in a structural model that is directly implied 
by the quantal response model. We estimate the variance of the Weibull disturbances 
for that data and compare the predicted frequencies of strategy choices with the actual 
frequencies. We find that the theory tracks the data fairly well, and can account for some 
of the observed systematic deviations from the predictions of the exact Nash equilibrium 
model. 

This paper reconsiders Nash equilibrium in extensive form games from the statistical 
point of view, and extends the concept of logit equilibrium to the extensive form rep­
resentation. A number of interesting theoretical and empirical findings emerge. On the 
theoretical side, the new formulation predicts systematic violations of what is known in 
the foundational game theory literature as invariance. It has been argued vigorously by 
some (e.g. Kohl berg and Mertens 1986) that "the reduced normal form captures all the 
relevant information for decision purposes," leading to the traditional game theory view 
that any good theoretical equilibrium concept for noncooperative games must satisfy in­
variance. In our statistical theory of decisionmaking in games the compelling arguments 
for invariance fall apart . In fact, it is easy to construct examples where we predict sys­
tematic differences in the predicted patterns of play depending on which "equivalent" 
version of a game is played. Moreover, the intuition behind these differences is very 
sensible. 

Besides discriminating between different versions of a game that have equivalent 
strategic form representations, our model also makes different predictions depending upon 
whether the game is played in its "agent" normal form or its more traditional normal 
form, and makes different predictions between the expected patterns of play in the normal 
form of the game and the reduced normal form of the same game. Loosely speaking, the 
intuitive reason our model predicts "representation dependence" is that the error struc­
ture introduces private information in particular ways that depend on the exact details 
of how the game is actually played. Because of the specific statistical predictions that 
are implied by the dependence, many aspects of the quantal response equilibrium the­
ory can be tested directly by applying standard maximum likelihood techniques to data 
generated in controlled laboratory experiments. For computational reasons, we focus on 
a version of QRE which is similar in spirit to the agent model of how an extensive form 
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game is played, and so we call this the Agent Quantal Response Equilibrium (AQRE) . 
In addition to predicting systematic violations of the invariance principle, the logit­

AQRE model implies a unique selection from the set of Nash equilibria. This selection 
is defined by the connected component of the logit-AQRE correspondence, as explained 
in McKelvey and Palfrey (1995) . This selection thus generates a unique prediction of 
a strictly positive probability distribution over play paths for every value of the logit 
response parameter, for almost any finite extensive form game. As demonstrated in our 
earlier paper, this selection may be inconsistent with trembling had perfection as applied 
to the reduced normal form of the game, as well as all other refinements of which we are 
aware. 

In signaling games, there is a well-known multiple equilibrium problem to which 
a great deal of effort has been directed by modern game theorists, generating a vast 
literature on the general problem of deductively-based refinements. Several experiments 
have been conducted to test whether the refinements developed to distinguish these 
equilibria are useful in helping to predict which equilibria (if any) are more likely to be 
played. This is a natural setting in which to apply AQRE, since this equilibrium concept 
does not have the problem of trying to define behavior off the equilibrium path. This 
equilibrium concept also makes multiple equilibrium predictions, but the logit-AQRE has 
a natural refinement that generically selects a unique equilibrium in a way that is much 
different from traditional (deductive) refinement arguments. In addition to predicting the 
patterns of play "on the Nash equilibrium path," this equilibrium concept also predicts 
patterns of play off the Nash equilibrium path as well. Some of the anomalies (vis-a-vis 
more standard theories) uncovered in these experiments have to do with behavior off the 
equilibrium path, and our model successfully accounts for these. 

In past centipede game experiments conducted by us (McKelvey and Palfrey [1992]) 
frequent violations of Nash predicted play were observed. This fact and the fact that the 
observed outcomes were substantial Pareto improvements over Nash play, were rational­
ized by a model in which some of the players have altruistic preferences. Using arguments 
based on reputation building (Kreps and Wilson [1982]) it is shown that frequent vio­
lations of Nash behavior (similar to what was observed) can be accounted for even if 
altruistic players are "rare." While this explanation of the data does account pretty well 
for most of the salient features of that particular dataset, it is clearly ad hoc. The ex­
planation involves the invention, or assumption, of a "deviant type" who systematically 
violates Nash behavior in exactly the direction observed in the data. A preferable expla­
nation would be able to account for this data without resorting to such "adhocery." The 
AQRE provides a framework for doing exactly that, and also has the desirable feature of 
being applicable to arbitrary games without necessitating the invention of systematically 
deviant types, tailored to the peculiarities of specific games. 

Accordingly, we also reexamine the centipede data2 in the context of the logit-AQRE. 
We find that a two-parameter specification of AQRE can account for the same qualitative 

2Zauner (1993) has independently conducted a reexamination of the centipede data using a similar 
model, but with different distributional assumptions about the error structure. 
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violations of Nash behavior as the five-parameter altruism model, although the exact fit 
to the data is not as tight. In another paper, we have presented some new data ( contradic­
tory to the altruism explanation) from much different centipede-type experiments where 
all outcomes are Pareto optimal (Fey, McKelvey, and Palfrey 1994). The logit-AQRE 
model also fits that data better than other competing models. 

The remainder of the paper is divided into four sections. The first section sets out 
the formal structure of the AQRE model for extensive form games. We also introduce 
a parametric version based on the logit model, that we later use for estimation. The 
second section presents some examples, based on the chain-store paradox stage game, 
demonstrating one kind of violations of the invariance principle that are implied by our 
model, and looks at some recent· experimental data reported in Schotter, Weigelt and 
Wilson (1994) that are consistent with our predictions. The third section explains the 
refinement for signaling games based on logit-AQRE, and examines data from experi­
mental signaling games conducted by Brandts and Holt (1993) and by Banks, Camerer 
and Porter (1993). The fourth section reexamines the data from the centipede game, and 
discusses similar findings by Zauner (1993), and Fey, McKelvey, and Palfrey (1994). We 
conclude with a few brief remarks about possible extensions of the QRE model. 

2 Definitions and Notation

Let N be a finite set of n + 1 players, one of whom (player "O") is designated chance,
X be a finite set of outcomes, and let A be a finite set of actions. Let r= (r, Q) be a
topological tree with r the set of nodes, and Q<;;. r x r a binary relation on r representing
branches, and let Q* be the transitive closure of Q. If vQv' we say v immediately follows 
v' (or v' immediately precedes v). If vQ*v' we say v follows v' (or v' precedes v). Write
Q(v) and Q*(v) for the set of immediate followers and the set of followers of v E r, 
respectively. We assume that Q is an asymmetric, acyclic binary relation on r such that
every node v E r follows at most one node, and such that there is exactly one node,
v* E r which follows no node. The element v* is called the root node. A node v E r is
terminal if Q( v) = 0, otherwise it is non terminal. Let rt and r0 represent the set of
terminal and non terminal nodes of r, respectively.

We define an extensive form game Q(N, X, A, r) by defining: an outcome function
'ljJ : rt --t X, a partition function P : r0 --t N x I (here I is the integers), an index function
¢: r --t A which is 1 - 1 on Q(v) for each v E r0, and which satisfies ¢(Q(v)) = ¢(Q(v'))
whenever P(v) = P(v'), and a probability function >. : r0 --t n which is a probability
function on Q( v) for each v E r0 with P1 ( v) = 0.

For any v E r0, define A(v) = ¢(Q(v)) to be the set of actions available at v. For
each v E r0 define h( v) = { v' E r0 : P( v) = P( v')} to be the information set containing
v. Let H = { h : h = h( v) for some v E r0} be the set of all information sets . If h = h( v)
write P(h) = P(v) and A(h) = A(v). Write Hi= {h EH: P1(h) = i} to be the set of
information sets for player i. If P(v) = (i,j), write h1 = h(v). An action a E A(h) is said
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to precede a node v Er if there is an x Eh and y E Q(x) with v E Q*(y ) and ef>(y ) = a . 
An extensive form game g is said to have perfec t recall if for every player i E N, all 

information sets h, h '  E Hi, every action a E A (h ), and all nodes x, y E h ', a precedes x
iff a precedes y .  In a game of perfect recall, a player remembers what he previously knew
and what he previously did. We assume throughout that (] has perfect recall. 

A behav ior s tra tegy for player i E N is a function b i  : Hi -+ M (A ) satisfying b i  ( h )  E 
M(A (h )) for all h E Hi. Here M(C ) indicates the set of all probability measures over
the set C .  Again, for h E Hi we use the shorthand b ih = b i(h ), and b i j = b i(hi ).
For each a E A (h ), b iha = b ih(a )  denotes the probability of action a .  Let Bi denote
the set of all behavior strategies for player i, and B = TiiEN Bi be the set of behavior
strategy n -tuples. If v E h E H0 is a chance node, and v '  E Q(v ), then we define b by
b h(v ') = Av(v '). We use the notation B_i = TI#i Bj, and write elements of Bin the form
b = (b i, b _i) E Bi x B_i = B when we want to focus on a particular player i EN. A pure
strategy is a behavior strategy that assigns a degenerate probability distribution to each 
information set assigned to a player. 

Let B0 denote the interior of B. Each behavior strategy n-tuple b E B0 determines a
strictly positive re al ization prob ab il ity p( v lb ) for each node v E r, as follows: If v = v*
is the root node, then define p(vlb ) = 1. Otherwise, find v' with v E Q(v'). Since
v '  E r0, v '  E h E Hi for some i E N, and define p(vlb ) = p(v ')b h(v'). For any h E H,
define p(h jb ) = 2=vEH p(v lb ). Also, for any h EH, define Q*(h ) = U{Q*(v ): v Eh }. Then
we can define a conditional real ization probab il ity, p(v lh, b )  on Q*(h ) by p(v lh, b )p(h jb ) = 
p(v lb ). Note that for any b E B0, that p(v lb ) defines a strictly positive probability 
measure over the terminal nodes. Similarly, p( v lh, b )  defines a probability measure over 
rt n Q*(h ).

For any i E N and b E B0, define the payoff function Ui : B0 -+ R by

For any h EH, i EN and b E B0, define the conditional payoff function u i: B0 -+ R by

L p(v jh, b )u i(v ).
vEftnQ*(h) 

For any interior behavior strategy b E B0, any i and any information set hi E Hi,
we denote u i(a, b lh{ ) the conditional payoff to i of playing action a E A (hi ) at h{ with
probability one, and playing b i  elsewhere. 

Define a valua tion func tion x : H-+ RK, where for each h EH, x(h ) E nlA(h)I. We 
write Xha = x(h )(a ).

Write Xi j = nlA(h{)I to represent the space of possible expected payoffs for actions
that player i might adopt at information set hi E Hi, and xi = nj Xij, and x = TiiEN x.
We define the function il : B0 -+ X by 

u(b )  = (ili(b ), . .. 'iln(b)), 
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where 
Uija(b) = Ui(a , bjhi). 

Thus u(b) is a vector whose components are the conditional expected payoff to each 
available action a of each information set j of each player i. 

3 Extensive Form Quanta! Response Equilibrium

For each i, hf, a E A(hf ), let Eija be a random variable, which represents i's payoff 
disturbance from choosing a at information set hf. For any b E B0, let 

Uija = Uija (b) + Eija· 

We assume that€ is private information to the players. So player i observes Eija but the 
other players (or the econometrician) do not. 

Let Eij be the vector of i's errors at hf, let Ei be the entire error vector across i's
information sets, and let € = (ci, ... , En) be the vector of errors for all players. We
assume€ is an absolutely continuous random vector (with respect to Lebesgue measure), 
distributed according to a joint distribution with density function f(c). We also assume 
that the Eij are statistically independent and that &(Eija) exists for all i, j, a E A(h�). Any 
probability density function, f ,  satisfying the above assumptions is called admissible. 

We assume that at each information set , h�, player i selects an action that maximizes 
Uija· For any action a E A(h�) and any u EX define 

and 

�ja(u) = { E: Ui'a + Eija � Uija + Eija 'if a E A(h�)} 

O"ija(u) = j f(c)dc 

R;ja ( il) 
Definition 1 For any extensive form game g and error structure f ( €), a behavioral 
strategy b* E B is an agent quanta! response equilibrium (AQRE) if it is a fixed 
point in B of aou. It is a vector b* E B0 such that for all i EN, 1 :'S j :'S Ji, a E A(hi),
bija = O"ija(u(b*))

That is, b* is a quantal response equilibrium if, when all players are choosing their 
best response at every information set h), taking b:_ij as given, this generates a behavior
strategy that is exactly the same as b*. 

This definition assumes the "agent model" of play in an extensive form game, where 
different information sets of a given player are assumed to be played out by different 
agents, all of whom share the same payoff function. In our model, each agent ij simply 
chooses the maximum of Uija at information set h) and acts independently of the other 
agents of the same player. For this reason we refer to the equilibrium defined above as 
the agent quantal response equilibrium (AQRE) . 
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Theorem 1 For any admissible f, an AQRE exists. 

Proof: Define¢>= (j o u: B H B. Note that¢ is continuous. Extend¢ to have domain 
B by 

cPij(b) = co{ lim cPij(bt): {bt} � B0and lim bt = b}. 
t-+oo t-+oo 

Then B is compact, convex, and ¢ : B H-+ B is convex valued and upper hemi­
continuous. Hence, by the Kakutani fixed point theorem, ¢ has a fixed point, b* E B. 
It is easy to show that there can be no fixed point on the boundary. Hence, there is a 
b* E B0 with (j o u(b*) = b*. I 

The above theorem guarantees existence for AQRE, and the definition guarantees 
that the equilibrium behavioral strategies place positive probability on every available 
action in every information set of every player. The equilibrium correspondence has the 
same "nice" topological properties as the Nash equilibrium correspondence. 

The above model can be generalized by dropping the independence assumption, or by 
specifying an observation function O(hj), where for each i, h�, O(h�) specifies a signal
i receives about c at information set hj, rather than just assuming i observes only Uij 
at hij. While these changes would require some additional notation, the basic ideas and 
properties of the quantal response model would not change. Some models of O(h�) other
than the one we explore here might be interesting in their own right . We leave these 
issues as a subject of future work. 

4 The Logistic AQRE

In the remainder of the paper, we focus mainly on a specialized version of the model, 
where each €ija is independently and identically distributed according to the type I ex­
treme value, (or log Weibull) distribution with cumulative density F(cija) = e-e->-"ija

This distribution has mean of X' where/ is the Euler constant ( 0.577) and variance of

6�22• So >. is proportional to the precision of F. This distribution of the disturbances
leads to choice probabilities following a multinomial logit distribution (see eg. ,  McFadden, 
1975) . In particular, at h�, b� (in the AQRE) is given by 

e>-ilija(b) 
b1i.( a) = ----­:L e>-uija' (b) . 

a'EA(h}) 

A logit-AQRE is any solution to this set of k equations (one equation for each action 
in each information set of each agent) .  

For each >. E [O, oo) , define the logit-AQRE correspondence b* : R+ H-+ B0 as the
set of logit-AQRE behavioral strategies when the precision of F equals >.: 
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e)<Uija(b) 
b*(>i) = {b E B0 : b�(a) = } .E e>-uija' (b) . 

a'EA(h}) 

We establish several properties of the logit-AQRE correspondence as a function of A. We 
already established from Theorem 1 of the previous section that b*(>i) =/:. (/J, V>i. That
is, at least one logit-AQRE exists for every value of A. A second property is that limit 
points of b* (-) as A goes to 0 are behavioral strategy Nash equilibria of the game. Both 
of these properties follow from the same arguments as in McKelvey and Palfrey (1993) . 

A third property is that limit points of b*(>i) are not only Nash equilibrium behavior 
strategy profiles, but are sequential equilibrium strategy profiles: 

Theorem 2 For every finite extensive form game, every limit point of a sequence of logit­
A QREs with A going to infinity corresponds to the strategy of a sequential equilibrium 
assessment of the game. 

Proof: Let b� be a limit point of b* (A). Then there exists consistent beliefs µ� (assign­
ments of a probability distribution over the nodes at each information set that satisfy the 
Kreps-Wilson (1982) consistency condition) such that, under those beliefs, b� specifies
optimal behavior for every continuation game. That is b� is sequentially rational given

µ� and µ� is consistent with b�. This is proved below. 
Take any sequence { Ak}�1 and {bk}k0== 1 such that limk-.oo Ak = oo and limk-.oo bk = 

b� and bk is a logit equilibrium for Ak for each k. First note that for all k and for all 
information sets h, b*(a) > 0 V a E A(h). Consequently every node is reached with
positive probability. Therefore, by Bayes rule, for each k, bk uniquely defines a set of 
beliefs, µk, over the nodes of every information set. Moreover, sinceµ varies continuously 
with b, there is a unique limit µ�. Therefore µ� are consistent beliefs with respect to
b�. What remains to be shown is that b�(h) is optimal given µ�(h) for all h. (If so,
then (b�, µ�) is a sequential equilibrium, so that b� is a sequential equilibrium strategy.) 
Suppose not, then there exists c > 0 such that for some h� there is some pair of actions
{a, a'} E A(h�) such that bj�(a) > 0 but ilija'(b�) - Uija(b�) > E. But then there must
exist K > 0 such that 

So, 

E 
ilija'(b�) - ilija(bk) � 2 V k � K.

Therefore, for all k � K, 

b*i (a) - 11·m b*i (a ) < 11"m b�ki (a')e->.k �J·oo = 1·k J k-->oo k-->oo 
0, 
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which contradicts bj�(a) > 0. I 

The next result establishes uniqueness of the AQRE for games of perfect information. 

Theorem 3 For every finite extensive form game of perfect information, and all 0 :::; 
A :::; oo, b*(.X) is unique. 

Proof: This is proved by construction of b*(-X). Since the game has perfect information 
the predecessors of each terminal node all lie in different (singleton) information sets. 
Consider one such information set, h, i(h) = i, A(h) = { a 1, . . .  , aK} and for each a E 
A(h), :3 unique outcome Va E rt such that p(valh, ba) = 1, where ba is the behavior
strategy profile b, with bi(h) replaced by a, so ui(ajh) = ui(va)· This uniquely determines
the action probabilities of logit-AQRE at any node immediately preceding a terminal 
node by 

e>.u;(va;) 
b; ( aj h) = -�-=K,.,--e...,. >.-u,....,.·(v_a..,...·) 

L,.,k=l I 

Then the expected utility to an agent who has reached h but has not chosen an action 
at h is Lak bi(ak, h)ui(v(ak, h)) = ui(bjh). Notice that ui(bjh) is therefore uniquely
determined. Next consider the immediate predecessors of the immediate predecessors 
of rt. Repeating the above argument yields a unique b* ( h') for all such h' such that
Qj(Q(V)) � rt V v Eh'. Since the game is finite, we can iterate this argument until b* 
is defined (uniquely) at each information set. I 

A fifth property we currently offer only as a conjecture: that for generic games there 
exists a unique connected path in the graph of this logit-AQRE correspondence which 
includes b0 (i .e . ,  the equilibrium when A = 0) . This unique connected path defines
a solution b� for all values of A 2.: 0, and furthermore there is a unique limit point 
b* = lim>.__,00 b�. We call b* the logit-AQRE solution of the game.

Conjecture 1 Almost all finite extensive form games have a unique connected path se­
lection from the logit-AQRE correspondence. 

Note that example 1 in McKelvey and Palfrey (1994) demonstrates that the converse 
of Theorem 2 is not true. That is, there are sequential equilibria that are not approachable 
by a sequence of logit-AQREs. Thus, the set of limit points logit-AQRE provides a 
refinement of sequential equilibrium. Whenever there is a unique connected path selection 
of the logit-AQRE correspondence, this gives a refinement of the AQRE-approachable 
sequential equilibria which is an even stronger refinement of sequential equilibrium. As we 
will see below, it offers a quite different refinement from standard deductive refinements 

9 



(such as the intuitive criterion)3, and predicts much better than the intuitive refinement 
in signalling games that have been conducted as laboratory experiments. 

Another nice feature of AQRE is that it makes predictions about the relative likelihood 
of all different play paths. In contrast, other refinements tend to predict that only a subset 
of the play paths can occur. Because all play paths can occur with positive probability 
in AQRE, we don't have to worry about the arbitrary specification of player beliefs "off 
the equilibrium path ." 

In the next section we demonstrate how this model of equilibrium behavior in ex­
tensive form games contradicts the invariance principle, that all strategically relevant 
information in an extensive form game is captured in the normal form. We illustrate this 
in the context of a particular game, the one-shot chain-store paradox. The way the game 
is actually played (i.e., as a game where both players simultaneously choose strategies vs. 

a two-stage game in which the incumbent first observes whether an entrant has entered 
before choosing his strategy) will systematically affect the predicted pattern of play using 
the logit-AQRE. Furthermore the differences implied theoretically by logit-AQRE mirror 
experimental findings reported recently by Schotter, Weigelt, and Wilson [1994]. 

5 Invariance 

Consider the well-known chainstore paradox stage game,4 with the extensive form illus­
trated in Figure l(a) . The normal form representation of this game is given in Table 1. 

N 
1 

E 

2 
F A 

2,2 2,2 

0,0 3,1 

Table 1. 
Normal form of Chains.tore stage game. 

3That is, there exists games in which there is a unique intuitive equilibrium which is different from 
the unique logit-AQRE selection. 

4This game can also be interpreted as a discrete (binary) version of an ultimatum game in which 
the offerer may offer either a 50/50 split or a 75/25 split of the pie. The unfair split (75/25) may be 
either accepted or rejected by the other player. The fair split is automatically accepted. Gale, Binmore, 
and Samuelson [1993] call it the "ultimatum minigame," and study the dynamic stability of its Nash 
equilibria under the replicator dynamic. 
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I 1 

N E N E 
p (1-p) p 2 
2,2 

I 
F A F A F 

q (1-q q (1-q) 
0,0 3,1 2 0 3 

2 2 0 1 

(a) (b) 
Sequential Version "Strategic" Version 

Figure 1: Chainstore paradox: Player 1 is the entrant, player 2 is the incumbent (E = 
Enter, N =Not enter, F =Fight, A= Acquiesce) 

The logit equilibrium (McKelvey and Palfrey (1994)) for the normal form of Table 1 
is equivalent to the logit AQRE of the extensive form game of Figure l(b), which is a 
strategically invariant transformation of the Figure l(a) game. 

We wish to compare the quantal response equilibrium as it applies to the game in 
Figure 1 (a) to the quantal response equilibrium as it applies to the game in Figure 1 (b) . 
To do this, we compare the logit-AQRE as a function of >. in the first case to the logit 
equilibrium [McKelvey and Palfrey, 1993] in the second case. 

The equilibrium conditions for the logit-AQRE of the extensive form game in Fig­
ure l(a) are: 

1 
p = 

1 + e(l-3q).>.
1 

q = 
1 + e>-

where p =prob {1 moves N} and

q = prob {2 moves F}

The equilibrium conditions for the extensive form game in Figure l(b) are: 

p'
e2>- + e3(1-q').>.

2p'>. 
I 

e 
q = 

e(2p'+( I-p')).>. + e2p'>.
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1 
1 + e(l-3q').>.

1 
1 + e(I-p')>.

(1) 

(2) 

(3) 

(4) 



The solutions for (p, q) as a function of A in (1) and (2) are shown in Figure 2. The 
solutions to (p', q') as a function of A in (3) and ( 4) are shown in Figure 3.

Several points may be illustrated from this example. First , in the sequentially played 
game there is a unique AQRE for every value of A, since q does not depend on p. This 
is generally the case in games of perfect information. 

This is not true in the game where player 2 chooses a strategy without having observed 
player l's move. In this case there is an additional QRE component for large values of 
A,  which converges to the subgame imperfect equilibrium p = 1, _q = .5 (Figure 4). Thus,
in a sense, the subgame imperfect entry deterrence equilibrium component (which is 
also trembling hand imperfect) is more plausible in the simultaneous play version of the 
chainstore game since it is approachable by a sequence of AQRE's. 

There is another reason why the subgame imperfect outcome (no entry) is more likely 
to be observed in the second version of the game. In the AQRE that converges to the 
perfect equilibrium, p' and q' are both higher then p and q, respectively for all values
of A. It is easy to see why this is true directly from equations (1)-(4) For any value of 
p E (0, 1) and for any value of A> 0 q < q', since (1 - p') < 1 .  Since q < q', it follows
that p < p'. This gives the following proposition.

Proposition 1 For all A> 0, q < q' and p < p'. 

This can be generalized somewhat to any 2 x 2 game of perfect information. Such 
games are illustrated in Figure 2. 

1 

N E N E 

F A A 
A,B 

2 

0,0 C,D A,B A,B 0, 0 C,D 

Sequential Version "Strategy" Version 

Figure 2: 
A 2 x 2 game of perfect information and its strategy version 

Suppose that D > 0. In the strategy version of the game, player 2's (dominated) 
choice of F is less costly than in the sequential version of the game. Therefore q < q' < � 
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when D > 0. Similarly, q > q' > � if D < 0. In general, jq - �I > jq' - �I, which implies
that deviations from the subgame perfect Nash equilibrium prediction should always be 
greater when the game is played in the strategy version. How this affects the moves by 
player 1 is more subtle, and depends on whether C and D have the same or different 
signs. E is a relatively more attractive option in the strategy version if and only if C > 0
and q' > q or C < 0 and q' < q. This requires DC < 0. Similarly E is a relatively less
attractive option if and only if DC > 0. Therefore p > p' �CD< 0.

The qualitative predictions of AQRE match up with some experimental findings pre­
sented by Schotter, Weigelt ,  and Wilson [1994] (SWW) . They conducted an experiment 
with A = 4, B = 3, C = 6, and D = 2, where some subjects played the Figure 1 game
and other subjects played the Figure 2 game,  and still other subjects played the Table 1 
game. Pooling the results for the Figure 2 games and the Table 1 games, they found 
that entry was deterred more often with the strategy version of the game than with the 
sequential version of the game. Furthermore, the second mover chose Fight more often 
in the strategy version of the game. 5 

Sequential 
Version 

Strategic 
Version 

p 
1 - p
q 
1 - fj 
A 
A10 
Ahi 
-.C* 

A/ p 
1 A/ -p 

A
/ q 

1 
A/ 

- q 
A 
A10 
Ahi 
-.C* 

n 
7 

79 
2 

77 

46 
34 
16 
64 

Perfect 
Ii Rand Nash 

.089 .500 0.000 
.911 .500 1.000 
.025 .500 0.000 
.975 .500 1.000 

0 00 

0 
0 

00 

. 575 .500 0.000 

.425 .500 1.000 

. 200 .500 0.000 

.800 .500 1.000 
0 00 

110.9 00 

Table 2 
SWW experimental results (36 subjects) 

QRE 
.066 
. 934 
.045 
.955 

1.531
1.36 
1.86 

34.16 
. 472 
.528 
.309 
. 691 
.762 
. 514 
.932 

98 .69 

The logit-AQRE correspondence for both the sequential and strategy versions of the 
game are given in Figure 4. Superimposed on those graphs are the observed data points 

5The authors also found that these differences were magnified by presenting the strategy version to 
the subjects in its matrix form. We are not proposing an explanation for this. 
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Figure 3: sww (1994) Sequential version 

1.00 

0.93 

0.87 

0.80 

0.73 

0.67 

0.60 

0.53 

0.47 

0.40 

0.33 

0.27 

0.20 

0.13 

0.07 

0.02 0.05 0.10 0.21 2.05 4.37 9.35 20.00 

Q 
1.00 
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Figure 4: SWW (1994) Strategy version 
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plotted at the maximum likelihood values of the logit response parameter. Table 2 gives 
the predicted and actual data aggregated across all of their experiments. In this table 
(as well as subsequent tables), A represents the maximum likelihood estimate of .A, and
(..\10, Ahi) is a 95% confidence interval for ..\, The estimation here, as well as the estimations
presented later in this paper are performed under the restriction that all subjects (both 
row and column players) have the same A. 6 There are multiple points on each graph, with
each point representing a different experience level of the subjects. As is evident from 
the graphs, experience seems to have little effect in their data. 7 One can readily see that 
the logit-AQRE fits quite well in both versions of the game, although it underpredicts 
the frequency of (N,A) outcomes somewhat in the strategy version of the game. This 
underprediction partly results from our having included data from their matrix version 
of the game as well as the extensive form version. 

There are several other games examined by SWW, but none of these others were games 
of perfect information, and all have multiple AQREs, even in the sequential versions. We 
do not analyze them here. 

6 Equilibrium Selection

As a second application of AQRE, we look at simple sender-receiver signaling games. 
Several experimental studies have been conducted using sender-receiver games, notably 
by Banks, Camerer and Porter (1994), Brandts and Holt (1992, 1993), and Partow and 
Schotter (1993). In many ways this is an ideal class of games to study with AQRE. 

First, the games typically have multiple sequential equilibria, and logit-AQRE gener­
ically selects a unique one as the limit of the unique connected path in the logit-AQRE 
graph. The earlier figures showing the logit-AQRE correspondence for the SWW exper­
iments illustrates this selection. Notice that in the strategy version of their game there 
are multiple logit-AQRE for high values A. However, there is a unique connected path
starting at the unique equilibrium at A = 0. The unique connected path selection is the
darker curve in that figure. The proof is similar for extensive form games. For reasons 
of space, we do not reexamine the results of all the experimental signaling games that 
have been conducted to date. We focus on a subset of the experimental games reported 
by Banks, Camerer and Porter (1994) (BCP)and Brandts and Holt (1993) (BH). 

Banks, Camerer, Porter, [1994] 
The BCP experiment consisted of a series of two person signaling games, with two 

sender types, three messages, and three responses. Each game was designed to have two 
Nash equilibria, one of which was always further up the chain of deductive refinements 

60bviously, the fit to the data will improve dramatically if we allow for differences in ,\ across the
different players. We briefly discuss some alternative ways to incorporate heterogeneity later in the 
paper. 

7This may be partly due to the fact that subjects played the games at most six times, so none of the 
experience levels are very high. 
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than the other. The experiments were intended to give data on the conditions under 
which subjects play the more refined equilibrium. We analyze games 2, 3, and 4 of 
BCP. These games are given in Table 3 .  Each of these games has two Nash equilibrium 
outcomes, with one being a more refined equilibrium than the other.8 

The logit-AQRE graphs are displayed in figures 9-11 for these three games. The 
estimation of A is reported in Table 4 for each game. We see that in each of the three
cases, the QRE selects the more refined equilibrium, which corresponds to what was 
observed in the data. 

Moreover, the QRE predictions pick up quite well which strategies are relatively more 
overplayed (or underplayed) compared to the refined equilibrium predictions. In BCP #2, 
the predicted equilibrium has both types sending message 3, with the receiver choosing 
action 1 in response to message 3, and choosing action 2 in response to messages 1 
and 2. For both types of senders, AQRE predicts that nearly all message errors should 
involve sending message 1. Indeed in all 18 deviations from this equilibrium, senders 
use message 1, and never use message 2.9 Response errors to the equilibrium message 
are predicted by AQRE to be more than 10 times as likely to be action 3 than to be 
action 2, and indeed action 3 errors are observed in all 10 of the responders' deviations
from equilibrium. Also, QRE predicts that type 1 senders are less likely to deviate from 
the sequential equilibrium than type 2 senders, which was also observed in the data. 

In BCP #3 the predicted (i.e . ,  unique intuitive) equilibrium has both types sending 
message 1, with the receiver choosing action 2 in response to message 1, and choosing 
action 1 in response to both nonequilibrium messages. Of the 33 deviations from the 
intuitive equilibrium predicted strategies, most were deviations by type 1 senders, who 
are predicted by the AQRE model to send the intuitive message approximately half the 
time. (Indeed , type 1 senders were observed to send the intuitive message exactly half 
the time!) 

In BCP #4, the predicted (i .e . , divine) equilibrium has both agents sending message 3, 
with the receiver choosing action 1 in response to the equilibrium message 3, and action 2 
otherwise. In the quantal response equilibrium, both sender types are predicted to send 
the divine equilibrium message only about half the time. Aggregating both types of 
senders, this is what we observe in the data, where message 3 is sent 28 times out of 60 
chances; message 1 is predicted to be sent slightly more than a third of the time, and we 
observe it sent 23 out of 60 times. The frequency of actions in response to each message 
is predicted even more accurately (see Table 4). 

8In game 2, one equilibrium is sequential and the other is not. In game 3, both are sequential, but 
only one is intuitive. In game 4, both are intuitive, but only one is divine. 

9Neither m1 nor m2 are dominated strategies. 
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mi ai 
ti 1, 2 
t2 2, 2 

mi ai 
ti 0, 3 
t2 1, 0 

mi ai 
ti 4, 0 
t2 3, 4 

BCP # 2 (Nash vs. Sequential) 

an 
2 a3 m2 ai a2 a3 m3 as i 

2, 2 0, 3 ti 1, 2 1, 1 2, 1 ti 3, 1

1, 4 3, 2 t2 2, 2 0, 4 3, 1 t2 2, 2 

Nash: (mi, a2, a2, a2) Seq: (m3, a2, a2, ai) 

BCP # 3 (Sequential vs. Intuitive) 

a� a3 m2 ai a2 rs 3 m3 af 
2, 2 2, 1 ti 1, 2 2, 1 3, 0 ti 1, 6 

3, 2 2, 1 t2 0, 1 3, 1 2, 6 t2 0, 0 

Sequential: (m3, ai, a3, ai) Intuitive: (mi, a2, ai, ai) 

BCP # 4 (Intuitive vs. Divine) 

a2 a3 m2 ai a2 al 3 m3 af 
0, 3 0, 4 t1 2, 0 0, 3 3, 2 ti 2, 3 

3, 3 1, 0 t2 0, 3 0, 0 2, 2 t2 4, 3

Intuitive: (m2, a3, a3, a2) Divine: (m3, a2, a2, ai) 

Table 3 
BCP (1994) Signaling Games 
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a2 a3 
0, 0 2, 1 
0, 0 2, 1 

a2 a3 
4, 1 2, 0 
4 ,  1 0, 6 

a2 a3 
1, 0 1, 2 
0, 4 3, 0 



3 

3 

Sender 

2 3 

Type 1 Type2 

Receiver 

2 3 

Message 1 Message 2 & 3 

Figure 5: BCP (1994) Game 2. Sequential vs. Nash 
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Sender 

3 2 3 2 
Type 1 Type2 

Receiver 

3 2 3 2 
Message 1 & 2 Message 3 

Figure 6: BCP (1994) Game 3. Intuitive vs. Sequential 
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Sender 

3 2 3 2 

Type 1 Type2 

Receiver 

3 2 3 2 

Message 1 Message 2 & 3 

Figure 7: BCP (1994) Game 4. Divine vs. Intuitive 
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BCP #2 BCP #3 BCP #4 
n fi QRE n fi QRE n fi QRE

m1 7 .180 .103 20 .500 .497 2 .070 .274 
ti m2 0 .000 .021 14 .350 .339 9 .300 . 221 

m3 31 .820 .875 6 .150 .165 19 .630 .504 
m1 11 .380 .176 45 .900 .927 21 .700 .422 

t2 m2 0 .000 .026 4 .080 .057 0 .000 .032 
m3 23 . 620 .798 1 .020 .016 9 .300 .546 
ai 0 .000 .049 4 .062 .153 9 .391 . 298 

m1 a2 18 1.000 .837 61 .938 .704 13 .565 .593 
a3 0 .000 .113 0 .000 .142 1 .043 .109 
ai 0 .184 14 .778 .686 0 .000 .044 

m2 a2 0 .797 0 .000 .174 4 .444 .647 
a3 0 .019 4 .222 .140 5 .556 .308 
ai 53 .841 .726 7 1.000 .999 23 .821 .704 

m3 a2 0 .000 .026 0 .000 .001 5 .179 .235 
a3 10 .159 . 248 0 .000 .000 0 .000 .062 
>. (u2) 2.249 1.598 1.193
>.10 1.901 1.441 0.989 
>.hi 2.715 1.864 1.470 
-£* 83.39 101.05 95.65 

Table 4 
BCP experimental results 

Brandis and Holt, [1994] 
As a follow-up to the BCP experiment Brandts and Holt (1994) proposed two alter­

natives to Game 3 (which differentiated the intuitive equilibrium from a non-intuitive
sequential equilibrium), which they ran using similar10 procedures. The games, which
differ slightly from BCP because the sender has only two available messages, are given in 
Table 5. The two games each have a sequential and an intuitive equilibrium at the same 
strategies. The data along with the QRE estimates are given in Table 6 and Figures 8-9. 

The point of the experiment was to attempt to construct a game in which play 
might conceivably converge to the less refined equilibrium. Brandts and Holt proposed 
a descriptive story of how a particular dynamic of play in early rounds could potentially 
lead to the unintuitive equilibrium, if the payoffs in BCP #3 were changed slightly. This 
is an ideal setting for putting the logit AQRE selection to the test, since the rough idea 
behind our selection is that if subjects begin an experiment at a QRE with relatively 
high error rates (i .e . ,  low value of >.) and "follow" the equilibrium selection as >. increases

10There were some minor procedural differences that are probably inconsequential. BH successfully 
replicated the results of BCP Game 3. 
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with experience, then they should drift toward the sequential equilibrium implied by our 
selection. 

In fact, BH #4 provides exactly this kind of "critical test ," since the logit-AQRE 
selection in the nonintuitive equilibrium, (S,D,C) . This is exactly what was observed
in the data. Table 6 presents the results of the maximum likelihood estimation of ,\, 
and the observed frequencies, pooling all experience levels. In figures 8 and 9, we present 
graphically the results of estimation with a finer breakdown of experience levels. In those 
graphs, higher numbers correspond to higher levels of experience (in the same way as in 
BH (1993, Figure 5, p. 442)) .  The curves in the graphs represent the predicted move 
frequencies for the logit-AQRE selection, as a function of,\. While the estimated values 
of ,\ are not strictly increasing in experience levels, there is an overall trend in the right 
direction. 

BH # 3 (Sequential vs. Intuitive) 

m=I c nn E m=S c D E 
A 45,30 15,0 30,15 A 30,90 0,15 45,15 
B 30,30 0,45 30,15 B 45,0 15,30 30,15 

Sequential: (S,D,C) Intuitive: (J, C, D)

BH # 4 (Sequential vs. Intuitive) 

m=I c nn E m=S c D E 
A 30,30 0,0 50,35 A 45,90 15,15 100,30 
B 30,30 30,45 30,0 B 45,0 0,30 0,15 

Sequential: (S,D,C) Intuitive: (I, C, D) 

Table 5 
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0.80 

0.73 

0.67 

0.60 

0.53 

0.47 
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0.27 
2 

1 
0.20 3 

0.13 

0.07 4 
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Receiver 

3 2 3 2 

Message I Message S 

Figure 8: BH (1993) Game 3. Sequential vs. Intuitive 
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0.87 

0.60 

0.53 
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Figure 9: BH (1993) Game 4. Sequential vs. Intuitive 
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BH #3 BH #4 
n Ji QRE n Ji QRE 

m = I  32 .970 .950 0 .000 .026 
t = A  m = S  1 .030 .050 38 1.000 .974 

m = I 18 .462 .610 15 .441 .280 
t = B  m = S  21 .538 .390 19 .559 .720 

a = C  48 .960 .689 1 .067 .252 
m = I  a = D  2 .040 .178 13 .867 .729 

a = E 0 .000 .134 1 .067 .019 
a = C 4 .182 .101 52 .912 .888 

m = S  a = D  18 .818 .728 2 .035 .050 
a = E 0 .000 .171 3 .053 .062 
,,\ ( 0"2) .109 .095 
A10 .095 .076 
Ahi . 128 . 1 17 
-C* 69.53 56.27 

Table 6 
Data and estimates for BH experiments .  

7 Centipede Game Experiments

McKelvey and Palfrey (1992) studied experimentally two versions of the centipede game 
(Rosenthal 1982, Binmore 1990, K1�ps 1990), displayed in Figures 10 and 11, respectively. 
In that paper they proposed a theory of play based on incomplete information, altruism, 
and heterogeneous prior beliefs and fit a 5-parameter model to the data. The model 
captured the essential qualitative features of the data, and fit the exact move frequencies 
of the data fairly well. 

In this section we re-examine the centipede data using the logit EFQRE model. We 
describe the details of the model as it applies to the extensive form-model versions of 
Figure 10. The computations for the six-move version are similar. Denote player l 's 
behavior strategies as (p1 , p2) and player 2's behavior strategies as (qi , q2), where 

p1 = prob {1 chooses T at first move} 
p2 = prob {1 chooses T at third move (if reached) } 

q1 = prob {2 chooses T at second move (if reached) } 
q2 = prob {2 chooses T at forth move (if reached) } 

At the first move, player 1 estimates the payoff of T and P by: 

Un (T) 

Un (P) 
.4  + EIT 
.2q1 + (1 - Q1) [1.6p2 + (1 - P2)(.8q2 + 6.4(1 - Q2))] + E1p 
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.40 

. 10 

1 2 1 2 
6.40 

IT 
P r T 

P r T 
P r T 

p 1.60 

.40 .20 1.60 .80 

. 10 .80 .40 3.20 

Figure 10: The Four Move Centipede Game. 

.20 

.80 
1.60 

.40 
.80 

3.20 
6.40 
1 .60 

3.20 
12.80 

Figure 11: The Six Move Centipede Game. 

McKelvey-Palfrey (1992) centipede experiments 
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where c:1r and c:1p are independent random variables with a Weibull distribution with 
parameter >. .  The logit formula then implies 

1 

Similarly, we obtain expressions for p2 , qi, and q2, given below, 

P2 

1 
1 + e>-f.4p2+(l-p2) [3.2q2+1 .6( l-q2))-.8)

1 
1 + e>-f.8q2+6.4( l-q2)-1.6)

1 
1 + e>-f 1.6-3.2]

This system of four equations and four unknowns is solved recursively (q2 ,  then p2 , 
then q1,  then p1) and has a unique solution. Figure 12 graphs the solutions of (p1 , p2 ,  qi , q2) 
as a function of >.. 

There are several interesting features of the equilibrium graph. First, for most values 
of,\ we have p1 < q1 < p2 < q2. This is consistent with the experimental findings, where
PI = .07 ql = .38 P2 = . 65 q2 = . 75

Second, for very low values of >., p1 , q1 , and p2 are all decreasing in ,\. That is, the 
equilibrium does not converge monotonically toward the Nash equilibrium as a function 
of >. .  

We estimate the best fitting value of ,\ for this dataset, using standard maximum 
likelihood techniques1 1  The results are reported in Tables 7 and 8.

That table also reports the estimates based on the (reduced) normal form QRE model 
of play. Since the game was not played in this manner, we would expect a poorer fit than 
the AQRE model, which we find to be true in both the 4-move and 6-move games. The 
graph of the normal form QRE is given in figure 13. Notice that even though the normal 
form model does not fit as well, it admits much lower take probabilities for intermediate 
values of >., compared to the AQRE model. 

Our findings mirror results reported in Zauner (1993), using a related model. That pa­
per presents a structural model of the error process by adding independently distributed 
random payoff disturbances, as in Harsanyi (1973), and estimates that variance (see last 
column of Table 5 and 6.). That paper also adopts an "agent moder' approach in that a 
player does not observe all disturbances to payoffs at the start of the game, but instead 
only the disturbance to his own current "take" payoff is observed. This is different in 
spirit to the Harsanyi (1973) model which assumes each player observes all his own payoff 
disturbances at the beginning of play. Zauner's model fits better than ours, as measured 

11 A similar analysis is reported in Fey, McKelvey and Palfrey (1993) using an experiment based on
a constant sum version of the centipede game. The details of the maximum likelihood procedures are 
explained in that paper. 
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by the likelihood score, but both models share two similar properties: they capture the 
feature in the data that take probabilities increase as the end of the game is approached; 
and they overestimate the take probabilities on the first and last moves. But as Zauner 
(1993) points out, neither model includes a heterogeneity parameter, which produced a 
dramatic improvement in fit in the models estimated by McKelvey and Palfrey (1992) . 
One might hope that the inclusion of a heterogeneity parameter would also significantly 
improve the fits of these two models. 

8 Conclusions

There are other ways these models might be improved on. As discussed above, these 
models assume that a player cannot predict his own future play (the "agent" approach). 
Alternatively, one might assume that each player observes all his payoff disturbances at 
the beginning of the game. This "player" approach is more difficult to estimate because 
the equilibrium can no longer be solved recursively from the last move of the game. 
Another possible improvement would be to incorporate persistence in the error structure 
so that a player who passed at the beginning is also likely to pass later on. This would 
mimic the role of altruism. 

We consider here a third possibility, which is to incorporate a second source of error, 
consistent our previous analysis of this data. Namely, we assume that there is some 
small probability that players are "altruistic" (and hence choose P at every opportunity.)
This gives rise to a game of incomplete information (as described formally in McKelvey, 
Palfrey, page 827) where with probability q, a player is "rational" , and with probability 
(1 - q) , they are "altruistic" . We then apply the AQRE directly to this extensive form
game, obtaining a two parameter model in which we estimate both,\ and q. The results 
of this analysis appear in the last column of Tables 7 and 8. As one can see, there 
is a significant improvement in fit over the one parameter model, at any reasonable 
significance level. While the log likelihood is still several orders of magnitude worse that 
the 5-parameter model of McKelvey and Palfrey (1992), one must keep in mind that that 
model permitted hetereogeneity and time trends, in addition to altruism. 
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Figure 12:  logit-AQRE graph for 4-move centipede game. Curve P - i shows the condi­
tional take probability at mode i. 
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Figure 13: Normal form QRE graph for 4-move centipede game 
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Normal Agent Zauner 2 Param 
n Ji Form model model model 

T 20 .071 . 203 . 247 .214 .083 
PT 100 .356 . 210 . 235 .237 .293 

Outcomes PPT 104 .370 . 220 .351 .372 .488 
PPPT 43 .153 . 216 .156 .167 .127 
pp pp 14 .050 .150 .011 .010 .009 
T 281 .071 .203 . 247 .214 .083 

Take T/P 261 .383 . 264 .312 .301 .320 
Probs T/PP 161 . 644 .375 . 677 .677 .718 

T/PPP 57 .754 .595 .936 .939 .637 
,,\ . 211 1.677 - 1.655 
q - - - .96 

-£* 437.5 425.0 418.3 402.5 

Table 7 

Normal Agent Zauner 2 Param 
n fi Form model model model 

Outcomes T 2 .007 .136 . 237 .186 .029 
PT 18 .064 .137 .192 .173 .055 
PPT 56 .199 .135 .136 .138 .082 
PPPT 108 . 384 .146 .205 .219 .446 
PPP PT 71 . 253 .162 .192 . 231 .339 
PPPPPT 22 .078 .175 .036 .052 .047 
pp pp pp 4 .014 .109 .001 .001 .003 

Take T 281 .007 .136 . 237 .186 .029 
Probs T/P 279 .065 .159 .252 .213 .056 

T/PP 261 . 215 . 185 . 239 .215 .085 
T/PPP 205 .527 .246 .472 .436 . 504 
T/PPPP 97 .732 .363 .838 .814 .772 
T/PPPPP 26 .846 .615 .979 .980 . 409 

,,\ .08 .60 .666 
q 0 0 .97 
-£* 536.6 533.9 506.4 454.3 

Table 8 
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