
DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA 91125

TWO MEASURES OF DIFFICULTY

Scott E. Page

Forthcoming in Economic Theory

SOCIAL SCIENCE WORKING PAPER 927

May 1995

TWO MEASURES OF DIFFICULTY

Scott E. Page*

Summary. This paper constructs two measures of difficulty for functions defined over
binary strings. The first of these measures, cove r size, captures the difficulty of solving
a problem in parallel. The second measure, a scen t size, captures the difficulty of solving
a problem sequential. We show how these measures can help us to better understand
the performance of genetic algorithms and simulated annealing, two widely used search
algorithms. We also show how disparities in these two measures may shed light on the
organizational structure of firms.

1 Introduction

This paper addresses the measurement of difficulty for functions defined over discrete
domains and demonstrates how formalizing notions of difficulty can improve our un­
derstanding of economic phenomena. The principal aims of this paper are fourfold: to
introduce two measures of difficulty for functions defined over several discrete variables,
to employ these measures to explain the performance of search algorithms, to contrast
these measures with existing measures of difficulty, and, finally, to (preliminarily) apply
these measures to an economic problem, the organizational structure of firms. We have
selected this application because of its inherent difficulty and because it has not proven
tractable using standard techniques. Though much of this work relies on the formal state­
ment and proof of claims, a significant portion consists of computational experiments,
particularly when we are explaining the performance of search algorithms and comparing
measures of difficulty.

Each of the two measures we construct characterizes the difficulty of optimizing a
nonlinear function using a class of search algorith:rn('l. ,The .first of th� .:measures, cove r
size, captures the difficulty of breaking a large problem into subproblems which can be

*Division of Humanities and Social Sciences 228-77, California Institute of Technology, Pasadena CA
91125. This paper has benefited from comments by seminar participants the NBER\CEME Decentral­
ization Conference, UC-Irvine, and UC-San Diego. The author would like to thank Stan Reiter for
his guidance and for his many suggestions in helping refine the concepts developed in this paper. Art
Devany, Gordon Green, Jim Jordan, Nick Vriend, and an anonymous referee made helpful comments on
earlier versions of this paper.

1

solved in parallel, while the second measure, a scen t size, captures the difficulty of solving
a problem using an ascent algorithm. We offer these measures hoping to complement,
rather than supplant, standard measures of difficulty such as NP hard and decomposition
size (Liepins and Vose 1990) as well as to encourage economists to study difficulty and
complexit theory. We construct our measures so that they satisfy several normative
criteria which we discuss at length in the next section. To mention just one criterion,
each of our measures is defined relative to the upper contour sets of the function. If, for
example, we are trying to maximize a function, then difficulty in the upper contour sets
is more relevant than difficulty in lower contour sets.

Before continuing with this introduction, several caveats are in order. To begin with,
the term difficulty is nonstandard. We use it, rather than the more common term com­
plexity, because a function with randomly assigned values would be difficult to optimize,
but not necessarily complex. In common usage, a complex problem possesses structure.
Often this structure results from the combination of many simple components (Langton
1990 and Gell-Mann 1994). Given that our concern here is the problem of maximizing a
function defined over several variables and not necessarily with characterizing a system
created by interacting parts, difficulty is the more appropriate term. Another issue we
should mention is that in the model that follows, we stress optimizing a function. In
many, if not most, practical applications, search algorithms fail to locate global optima.
The concepts that we develop, such as string dominance, can be relaxed so that instead
of being true for all elements of the domain, they are true with high probability. Appli­
cations of the measures developed within this paper to actual problems may require less
severe assumptions then those we present.

There are several reasons why economists should be interested in measures of difficulty.
In the remainder of this introduction, we focus on the importance of difficulty measure­
ments within the neoclassical paradigm. One criticism often leveled against neoclassical
models is that they oversimplify economic environments and overestimate the abilities
of human and organizational decision makers (Leijonhufvud 1 992). In response to this
criticism, economists have renewed their interest in bounded rationality, emphasizing
the works of Simon (1969) and Marshall (1961) . Recent attempts to include bounded
rationality have incorporated psychology, experimentation with human subjects, compu­
tational experiments, and the theory of finite state computing machines. This emphasis
on more realistic behavioral assumptions has led to a better understanding of the im­
portance of economic institutions as well as the limitations and strengths of economic
theory. Yet, many of these models, we might even say most, consider boundedly rational
agents confronting relatively simple problems, such as the repeated prisoners' dilemma.1
With many players,. games sucl1 as the prisoners' .dilemma ... may. create. a complex struc­
ture of interactions, but much of complexity results from coordinating on one of many
equilibria. 2

1 Notable exceptions include the work of Brewer and Plott (1994) and Ledyard, Porter and Rangel
(1994) in which the experimental environments are rather complex .

2We deliberately use the word "complexity" here because the interaction of simple decisions creates
a complex environment .

2

In this paper, we are interested in single period problem defined over many variables
which are complex, such as investing savings, choosing a career, buying a house, formu­
lating a business strategy, etc . . . We focus on characterizing measures of the difficulty of
such problems, This research intendly complements much of the aforementioned literature
on bounded rationality, for, although the study of bounded rationality has contributed
significantly to economics, it only partially addresses the criticism that neoclassical eco­
nomics considers hyper intelligent agents in simple decision making environments. In
order to formulate a complete response, we must also consider complex and difficult en­
vironments. To do so, we must have a theory of what constitutes a difficult or simple
environment.

To summarize, we want to advance the notion that difficulty is the flip side of bounded
rationality: each matters most in conjunction with the other. On the one hand, if
economic agents have unbounded capabilities then neither the difficulty of their decisions
nor the complexity of the economy of interacting agents is important. On the other hand,
if the decisions facing agents are not complicated, then bounded rationality will be less
relevant. Agents may still make optimal choices. The perspective of this paper is that
while Robinson Crusoe might optimally allocate his time between leisure and banana
production, economic agents in the modern economy, confronted with a vast array of
com1nodities, careers, and constraints, rarely choose optimally. Further, while two person
firms may be organized optimally, two hundred thousand person firms assuredly are not.3

The remainder of this paper consists of four parts followed by a brief discussion. In
the first part, we discuss normative criteria by which a measure of difficulty might be
judged, we reveal shortcomings of the NP or P classification scheme predominant in
computer science,4 and we mention a distinction between difficulty and randomness and
discuss how it applies to the economic problems we consider and economics in general. In
the second part, we construct two measures of difficulty for nonlinear functions defined
over several discrete variables. One of our measures, cove r size, captures the difficulty
of solving a problem in parallel. The other measure, a scen t size, computes the number
of decisions which must be coordinated if the problem is to be solved serially. In this
part, we also compare these measures of difficulty to existing measures. In the third
part, we demonstrate how cover size and ascent size contribute to our understanding
of the performance of genetic algorithms and simulated annealing on nonlinear search
problems. In the fourth part, we apply our measures to an economic problem: optimal
organizational design. Though, we do not come to any definitive conclusions, our analysis
provides possible intuition about how firms should be divisionalized and about differences
in the depth of hierarchies. Finally, in the discussion at the end of this paper, we discuss
other economic application.s. ,

3We make no claims to the originality of this idea. Many economists have called into question the knee
jerk upgrading of decision makers' abilities so that they can handle the complexity of their environments.

4 A problem is NP hard if the time required to solve the problem increases non-polynomially in the
number of variables.

3

2 Difficulty Criteria

No single measure of difficulty is likely to be appropriate for all settings. The standard
approach in computer science classifies problems according to whether they can be solved
in polynomial time (P hard) or whether they require non-polynomial time (NP hard) as
n, the number of decision variables, increases. Though this approach to measuring the
difficulty of a problem has been helpful in categorizing problems, economists will notice
at least three problems with a wholesale application of the NP classification scheme to
economic problems. First, it considers worst case scenarios. Rather than characterizing
the expec te d difficulty given a probability density function over a class of functions, it
measures the worst case. Second, as mentioned, a problem is NP hard if the computation
grows exponentially a s the num ber of decision varia b le s increa se s, which may be of only
secondary concern to economists. In most economic problems, the number of decisions
variables remains unchanged or else does not vary much. 5 Finally, the distinction between
NP and P hard is a blunt instrument.6 Dare we suggest that people can solve problems
which can be solved in polynomial time but cannot solve problems which require non­
polynomial time? Moreover, problems with relatively few variables by computer science
standards, say between twenty and sixty, may be relatively large by economic standards,
and in these problems, the constant term may outweigh the higher order terms: a P har d
pro b lem ma y require more compu ta tion time than an NP har d pro b lem.

The inadequacy of the NP, P hard classification scheme for economic problems partly
motivates our construction of new measures and recommends developing measures moti­
vated by economic concerns as opposed to borrowing measures from another discipline.
If we are to construct measures of difficulty for economic problems, we would like them
to satisfy several normative criteria. First, these measures should create a finer classi­
fication scheme than the binary NP or P distinction. Second, each ought to measure
the difficulty of solving problems given a class of optimization algorithms. Karp (1977)
divides search algorithms into two classes: a scen t and divi de an d conquer. The latter
approach is more commonly referred to as decomposi tion which is the term we employ
here. In accordance with Karp's taxonomy, the two measures of difficulty developed in
this paper: a scen t size and cover size capture the difficulty of optimizing a function using
ascent algorithms and decomposition algorithms respectively. Third, a measure of diffi­
culty should capture regularities in classes of problems. Examples are the works of Lin
(1965) and Reiter and Sherman (1965) which find that traveling salesperson problems
can often be solved by interchanging routes between three or fewer cities. For less than
forty cities, the benefits of switching more than three routes appear to be outweighed by
the computational costs. The perspective of this paper is that an accurate measure of
ascent difficulty 'woulcf classify the traveling salesperson problem as being of size three.

5Though it seems that each visit to the grocery store reveals yet another new Kelloggs' cereal, there
is no reason to believe that the number of cereal brands is heading off to infinity any time in the near
future.

6To be fair, functions can be classified by their exponent, and many are, but the typical distinction
is whether a problem is NP or P hard.

4

Fourth, each measure individually should help explain the performance of search algo­
rithms. We mean not simply that more complex problems should be harder to solve, but
that the measures should explain the performance of nonlinear search algorithms such as
simulated annealing and genetic algorithms. In addition, for some classes of functions the
two measures may differ substantially in their characterization of difficulty. We would
like this information to help guide the search for a successful algorithm for the class of
functions. If, for example, a class of functions has a large cover size and a small ascent
size, then we should have some hint as to which among a genetic algorithm, simulated
annealing, or an ascent algorithm would perform best on average. Fifth, we want to
measure difficulty relative to the function's contour sets. Reiter (1991) has advocated
using measures of difficulty which distinguish between difficulty at lower contour sets and
difficulty near the optimum. This point is demonstrated in figure 1.

Place Figure 1 Here

Each landscape consists of four local peaks and a unique global peak. In landscape
A these local peaks have relatively low values and may not pose much of a problem in
locating the highest point. Once the function value has exceeded a threshold equal to
the value of the highest local but non-global local optima, any ascent algorithm locates
the optimum. In landscape B, the local peaks have values close to the optimal value.
On this landscape, a local ascent method may become stuck on a local optimum. Our
intuition suggests that landscape B is more difficult than landscape A despite the fact
that they have the same number of local optima. In section 4 of this paper, we investigate
the performance of genetic algorithms on two functions, one of which forms a landscape
similar to landscape A. The other function forms a landscape similar to landscape B.

Our final criterion is for the measures of difficulty to be applicable to economic problems.
We apply cover size and ascent size to the organization of firms in section 5.

3 Cover Size and Ascent Size

We construct two measures of difficulty for functions defined over several variables: cove r
size and a scen t size . The entire analysis is done with respect to functions whose domains
are binary strings. Extending the analysis to more general domains is straightforward.
Both of our measures rely on the construction of string dominan t hype rplane s for the
function, which are a special class of subsets of strings. We assume throughout that our
objective is to maximize a function v, and we define the string dominant hyperplanes
with respect to V's upper contour sets. We begin this section with some basic definitions
and then define string dominant hyperplanes and cove rs. A cover is a collection of string
dominant hyperplanes, such that every decision variable is determined by one of the
string dominant hyperplanes.

5

3.1 Binary St rings

3.1.1 Preliminaries

Each binary decision variable will be referred to as a bi t and each element in the domain
will be referred to as a string .

Def'n: The set of bi ts N = {1 , 2, 3, . . , n}

There are several economic problems which can be embedded in this framework. For
instance, each bit may be thought of as the choice as to whether or not to undertake a
public project (Page 1994b), to include someone in a group (De Vany 1994), or to locate
a plant in one of two cities (Koopmans and Beckman 1961) .

Def'n: The set of string s, S = { s : s = s1 s2 . . sn with S i E {O, 1}}

\i\Tithout loss of generality, we assume that our objective is to maximize a function,
11 which belongs to F, the set of all functions whose domain can be encoded as binary
strings of length n and whose range is the real numbers.

Def'n: The set of o bjec tive func tion s, F = {11 : 11 : S ------+ �}

Of particular importance to our analysis are a class of subsets of N called hyperplanes.
A hyperplane can by represented by a ternary string of length n over the set {0,1,*}.
The ternary variables hi are also referred to as bits.

Def'n: The set of hype rplanes, H = { h : h = hih2 .. hn with hi E {O, 1, *}}

We say that a bit in a hyperplane is define d if it assumes a value in the set {O, 1} and
un define d otherwise. ' ·

Def'n: The define d bi ts of h, d(h) = {i: hi E {O, 1}}

A string belongs to a hyperplane if the string and the hyperplane have identical values

6

on the defined bits of the hyperplane. We let S(h) equal the set of binary strings which
belong to h.

Def'n: The set of binar y string s belonging to h, S(h) = { s I Si= hi Vi if hi E {O, 1} }

Example: S(O*l *) = {0010, 0011, 0110, 0111}

The size of h equals the number of defined bits of h. According to this measure, a
hyperplane's size equals its co-dimension. A hyperplane with a larger size contains fewer
strings.

Def 'n: The size of h, (]"(h) =I d(h) I

3.2 St ring Dominant Hyp erplanes

In creating a cover for a function, we must accomplish two tasks: to identify hyperplanes
whose strings have high values and to combine these hyperplanes to form good strings.
We address the latter of these tasks first by defining the projection operator /\ which
combines hyperplanes.

Def'n: The projection operator/\: H x H ------+ H according to the following rule: h/\h = y,
where

if hi=*
if hi E {O, 1}

Example: O** /\ 1 *1 = O*l

To simplify notatfon, we· also de-fiiie the projection.product over a set of hyperplanes.

Def 'n: Given a set of hyperplanes I
/\(I)= h1 /\ h2 . . /\ hm

{ h 1, h2, ... h m}, the projection product of I,

7

The set of strings, S, is contained in H, therefore, /\ is also a map from the Cartesian
product of H and S into S. We can think of h /\ s as moving the string s into the
hyperplane h making the minimal number of changes in bit values. Page (1994a) shows
that the operator /\ is associative but not symmetric.

To accomplish the second task, the identification of hyperplanes whose strings have
high values under 11, we rely on the notion of string dominance. A hyperplane h is said
to be string dominant on a subset of strings, T, if for all s belonging to T, the value of
h /\ s under 11 is at least as large as the value of s.

Def'n: A hyperplane, h, is string dominan t for V on T i:ff 11(h /\ s) 2: 11(s) V s E T

Claim 3. 1 states that if h and h are string dominant on T then h /\ h is also string
dominant on T, provided that h /\ T------+ T.

Claim 3.1 If h and h are string dominan t for V on T and h : T ------+ T) then h /\ h i s
string dominan t on T.

pf. ii string dominant for 11 on T implies V (h /\ s) 2: V (s) V s E T. By assump­
tion h /\ s E T. Therefore, given that h is string dominant for 11 on T, it follows that
11(h /\(ii /\ s)) 2: 11(h /\ s), and by the associativity of A, 11((h /\ h) /\ s) 2: 11(s), which
completes the proof.

3.3 Covers

Before formally defining a cover, we first construct the contour sets for the objective
function, 11. To simplify the analysis, we assume that the function 11 is injective. This
assumption allows us to define the upper contour sets with ordinal notation. The exten­
sion to cardinal characterization of the upper contour sets, and non-injective objective
functions, is straightforward provided a technical condition is met.7

Assumption 1: V s, s E S, s.t. s -:J s, V(s) -:J 17(8)

Assumption 1 allows us to ordinally rank the strings from 1 to 2n according to their
value under 11.

7 A sufficient condition for the proofs to hold as stated is that there exists a unique string of highest
value.

8

Def'n: S ordered b y V = { s1, .. s2n} where V(si) > V(si+l) for i = 1 to 2n - 1

Def 'n: The upper contour set including s°', T(a) = { s.6 : /3 ::::; a}

Claim 3.2 states that applying the projection operator with a string dominant hyper­
plane maps an upper contour set into itself.

Claim 3.2 h string dominant for V on T(a) implie s h /\ s E T(a) V s E T(a)

pf: h string dominant for V on T(a) implies V(h /\ s) 2:: V(s) V s E T(a) . It follows that
h /\ sET(a).

Corollary 3. 1 states that combining two hyperplanes which are string dominant on an
upper contour set with the projection operator forms a new string dominant hyperplane
on the upper contour set.

Corollary 3.1 For an y h, h string dominant for V on T(a)1 h /\ h i s string dominant
for V on T(a).

pf. Follows directly from Claim 3.1 and Claim 3.2.

A cover for V is a finite set of string dominant hyperplanes, the union of whose defining
bits contains all variables.

Def'n: The collection of hyperplanes, C = { h1, h2, .. hm}, forms a cover for V on T iff
(i) and (ii) hold:

(i) hi is string dominant for V on T Vi

This definition allows for two hyperplanes in a cover to be defined on the same bit.
The example below shows that a cover does not have to be a partition.

9

Example: n=3 and V(s) = 3s1 + s2 + s3 - 2 s1 s2 - 2 s1s3. It is straightforward to show
that C = { 10*, 1 * O} is a cover for V on S.

Note that if C is a cover for V on an upper contour set, T(a) then it is also a cover
for V on any upper contour set contained in T(a) .

Claim 3.3 If C i s a cover for V on T(a) t hen C i s a cover for V on T(f3) V (3::; a.

pf: If hi is string dominant for V on T (a), then hi is also string dominant for V on
T((J) V (3 ::; a, which completes the proof.

Claim 3.4 below states that any string belonging to every hyperplane in a cover for V
must optimize\/. A consequence of Claim 3.4 is that the order in which the hyperplanes
comprising a cover are located is irrelevant.

Claim 3.4 If C = {h1, h2, .. hm} i s a cover for V on T(a) and T E <I>1 t he permutation
group on rn element s1 t hen hr(l) /\ (P(2) /\ (... hr(m) /\ (s) ..)) = s1 V s E S.

pf. By Claim 3.3, C is a cover for\/ on T(l) = { s1 }. By Corollary 3.1, hi string dominant
for V on T(a) implies V(P(l) /\ (hr(2) /\ (... hr(m) /\ (s1) ..))) = V(s1). It follows that:

hr(l) /\ (hr(2) /\ (... hr(m) /\ (sl) ..) = Sl

Therefore, by (ii) in the definition of a cover:

hr(l) /\ (hr(2) /\ (... hr(m) /\ (s) ..) = hr(l) /\ (hr(2) /\ (... hr(m) /\ (sl) ..) V s E S

which completes the proof.

Claim 3.4 implies that we can simplify the expression hr(l) /\ (hr(2) /\ (... hr(m) /\ (s1) ..)))
as /\(C).

3.3.1 Cover Size

A cover can be interpreted as a decomposition into subproblems. If these subproblems
are solved in parallel, then the time required to solve every subproblem is determined
by the most times consuming subproblem. Therefore, we define a cover's size to be the
maximal number of defined bits in any hyperplane which belongs to the cover.

10

Def'n: The size of a cover, C = {h1, h2, .. hm}, for V on S, Z(C) = maxi{a-(hi)}.

Example: C = {1 * **, *00*, * * 01} is a cover of size 2.

We define aj(V) as the number of strings in the largest upper contour set which has a
cover of size j. Each a(·) can be thought of as a functional which maps functions defined
over binary strings into the set {1, .. , 2n}.

Def'n: aj(V) =max{ a: :::JC, a cover for V on T(a), s.t. Z(C) :::; j}

For example, if a1 (V) = 2n, then there exists a cover of size 1 for V on all of S. Such
functions have been characterized by Liepins and Vose (1990) as easy. The aj(-)'s can
be combined to form the decomposability vector. The decomposability vector measures
the cardinality of the upper contour sets which have covers of various sizes.

Def'n: The decomposability vectora(V) = (a1(V),a2(V), ... ,an(V))

The decomposability vector, a(V), can be considered as a functional mapping the set
of all functions defined on S into integer valued vectors of length n. Functions mapped to
decomposability vectors with larger values are less complex, as measured by cover size,
than those mapped to vectors with smaller values. Claim 3.5 states that for any function
VE F, aj(V) is weakly increasing in j. In other words, as the function value improves,
the cover size decreases.

Claim 3.5 For all VE F1 the following hold:

(i) o:H1(V) 2:: aj(V)

(ii} O:n(V) = 2n

pf. (i) Let C be a cover for V of size j on T(aj(V)). Thus, Z(C) = j < j + 1.

(ii) C = { s1} is a cover of size n on T(2n).

Claim 3.5 implies that covers distinguish between irrelevant nonlinear interactions,

11

those that may affect optimization, and relevant nonlinear interactions, those that do. 8

This distinction is of substantial importance. If nonlinear effects do not create problems
for optimization, such as those shown in landscape A in figure 1, then a heuristic, mech­
anism, or institution constructed to overcome the nonlinear effects may be unnecessarily
complicated.

3.4 As cent Size

Cover size measures the number of decision variables in the largest subproblem in a
decomposition which forms a cover. Therefore, cover size can be interpreted as a proxy
for the minimal time required to solve the problem in parallel. We now show through an
example that cover size may overstate the minimal number of bit decisions which must
be coordinated in order to locate the optimal string using an ascent algorithm. We then
develop an alternative measure of the difficulty of a function called ascent size. Prior to
defining the ascent size of a function, we define the ascent size of a cover, which is at
least as large as the ascent size of the function. As in our formulation of cover size, both
measures of difficulty are made with respect to the upper contour sets of the function.

We begin by defining an algorithm applied to a function 11 and then define a class of
ascent algorithms, the ALGO(r)s. We describe an algorithm as a functional which maps
a value function and an initial string into the set of strings.

Def'n: An algorithm A : F x S -----+ S.

We want to restrict attention to ascent algorithms, algorithms whose image given
any function, 11, and any initial string, s, has a greater value under 11 than the values of
neighboring strings. In the class of algorithms we define, the ALGO(r)'s, a neighborhood
consists of all strings which differ by fewer than a fixed number of bits. One bit mutation
(Kauffman 1988), a sequential algorithm which compares a string's value to the values of
all strings which differ on exactly one bit and moves to any string with a strictly higher
value, satisfies this condition.

Def'n: An algorithm A E ALGO(r), iff 11 (A(17, s)) > 11 (h /\ A(11, s)) for all h s.t.
o- (h) ::::; r for alls.ES and for all 11.E.F. � . ..

Obviously, if A belongs to ALGO(r), then it also belongs to ALGO(k) for all k less
than or equal to r. Another consequence of the definition is that if the function 11 has

8Buchanan and Stubblebine (1962) draw a similar distinction between nonlinearities in economic
problems.

12

a cover of size less than or equal to r on all of S, then A locates the global optimum
regardless of the starting point.

Claim 3.6 If A E ALGO (r) and C is a cover for 11 on S with Z(C) ::; r1 then A(11, s) =
s1 for all s E S.

pf: Let C = {h1, .. , hm} be a cover for f on S. By above, 11(A(11, s)) � 11(hi /\ A(11, s))
for all hi. The result follows immediately.

3.4.1 Ascent Size of a Cover

The previous claim guarantees that if ascent size is measured by the minimal size r
such that ALGO(r) optimizes 11 for all initial points, then ascent size cannot be larger
than cover size. As the next example demonstrates, if a bit belongs to more than one
hyperplane in a cover, then the ascent size of a cover may in fact be less than the cover
size.

Exainple: N = {1, 2, 3, 4} 11 : S -------+ �. Let C = {10 * *, 1 * **, * * 00, * * *O} be the
unique cover for 11 on S of size 2. By Claim 3.4, the string 1000 optimizes 11 . Suppose
that we apply A which belongs to ALGO(l) to 11 . By Claim 3.6, A locates the string
dominant hyperplanes 1 * ** and * * *O. Once those two hyperplanes have been located,
the resulting string must lie in the hyperplane 1 * *O. By assumption 10 * * is string
dominant, therefore 11(1010) > 11(1110) and 11(1000) > 11(1100) . Thus A(11, s) E 10 * 0
for any s E S. By a similar argument, A(11, s) = 1000. Thus, if A belongs to ALGO(l) ,
it locates the optimal string, even though 11 has a cover size of two.

The ascent size of a cover can be defined recursively. The presentation of the definition
is sin1plified if we adopt the convention of referring to a hyperplane by its defined bits,
d(h) . Recall that if hi = 101 * *1, then d(hi) = {1, 2, 3, 6}. The definition is constructed
as follows: first all string dominant hyperplanes in the cover of size one are located. The
defined bits of these hyperplanes are subtracted from the set N. If any hyperplanes in the
cover have only one defined bit on the remaining elements of N, then their defined bits
are also subtracted. This process continues until either all bits have been subtracted or
until all remaining hyperplanes have at· least two .. defined .. bits .on the remaining elements
of N. If the latter occurs, then hyperplanes with two defined bits on the remaining
elements of N are identified and their defined bits are subtracting from the remaining
elements of N. This process continues until all elements have been subtracted from the
set N.

13

Def'n: Given a cover, C = {h1, h2, .. hm}, for V on T(a), the ascent size of a cover C,
AS(C) is defined recursively:

Step 0: t = O, m = 0, No = N, di,t = d(hi) for all i EN

Step 1: m = m + 1

Step 2: N = Nt\{ LJ di,t}
ldi,tl=m

Step 3: If fl = 0
If N = Nt
IfNCNt

Step 4: AS(C) = m,

3.4.2 Test Functions

then begin
Nt+1 = Nt
di,t+1 = di,t n Nt+1
go to Step 2

go to Step 4
go to Step 1

We now compare the cover size for a function with the ascent size of the minimal covers
for the same function. We consider two classes of functions, each is a simple spin glass
model. In the first case we consider, the nonlinear effects are symmetric, and in the
second case the nonlinear effect between bit i and bit J differs from the nonlinear effect
between bit J and bit i.

A function f1 which belongs to the class of functions F1 is described as follows:

8 8 8

!1 (s) = L /i . Si + L L /ij . Si . Sj
i=l i=l j=i

/i E (-1,1], /ij E (-8,8]

' ,.
The data shown are from one hundred trials with n = 8. We vary the parameter

8 to demonstrate that both cover size and the ascent size of the covers increases as
the expected size of the nonlinear effects increases. (Estimated standard errors of the
distributions are given in parenthesis.)

14

Sy1n1netric Nonlinear Effects, F1
8 Cover Size Ascent Size of Cover

1.2 5.000 (.163) 2.240 (.100)
1.4 5.220 (.151) 2. 770 (.109)
1.6 5.200 (.143) 2.880 (.109)
1.8 5.320 (.154) 3.000 (.118)
2.0 5.430 (.157) 2.970 (.104)

The second class of functions allow for asymmetric nonlinear effects. A function fz
which belongs to the class of functions F2 is described as follows:

8 8 8

fz (S) = I: /i ' Si + I: I: /ij · Si ' S j
i=l i=l j=l

/i E [-1, 1], /ij E [-8, 8]

The data shown are also from 100 trials and again n = 8. In these computations, the
8 parameter was varied as in the symmetric case.

Asymmetric Nonlinear Effects, F2
8 Cover Size

1.2 5.210 (.174)
1.4 5.870 (.169)
1.6 5.860 (.171)
1.8 5.900 (.172)
2.0 5.810 (.177)

3.4.3 Ascent Size of a Function

Ascent Size of Cover

2.680 (.150)
3.350 (.167)
3.260 (.148)
3.360 (.152)
3.460 (.159)

We now define the ascent size of a function, which differs from the ascent size of a cover.
There are two reasons to draw this further distinction. First, there may exist string
dominant hyperplanes not belonging to a particular cover, which nevertheless allow the
ascent size to be reduced. And second, as string dominant hyperplanes are located the
function .value increases, which implies.that the,ordinaLrank of the current string, a,
decreases. As a decreases, the set of string dominant hyperplanes increases, creating
the potential for a further reduction in the ascent size. Therefore, the ascent size of a
function is weakly less than the ascent size of a cover. Before formally defining the ascent
size of a cover, we first define the set of string dominant hyperplanes on T(a) which we
denote Ho:.

15

Def'n: The string dominant hyperplanes on T(a), Ho:(V) = { h : h is string dominant
for V on T(a)}

Claim 3. 7 states that as a decreases, the set of Ho: weakly increases with respect to
set inclusion.

Claim 3. 7 If a::::; (31 then Ho:(V) � Hf3(V)

pf: If h is string dominant for V on T ((3), then h is string dominant for V on T (a).

Claim 3.8 states that if two hyperplanes belong to Ho: then any defined bits common
to both hyperplanes must have the same bit value.

Claim 3.8 Given V E F1 suppose h, h E Ho:(V). If i E d(h) n d(h)) then hi = hi

pf: By assumption h, ii E Ho:(V) . By Claim 3.7 h, ii E Hi(V), the upper contour set
consisting of s1, where s1 is the highest valued string under V. Therefore, h A (h A s1) =

ii A (h A s1) = s1, The result follows from the defintion of the projection operator A.

The ascent size for V on T(a), which we denote by Az(V, a) is defined recursively. As
in the definition of the ascent size of a cover, the bits which belong to the set of defined
bits of a string dominant hyperplane are removed from consideration. The definition is
simplified if we first define the set of string dominant hyperplanes on T(a) of size m with
reduced support, N, a subset of N.

Def 'n: Given a subset of bits N � N and an integer m, the set of string dominant
hyperplanes for V on T(a) of size m and support N:

I(a,ni,N) = { h : h E Ho:, I d(h) n N I::::; rn}

We can now define the ascent size of a function V. There are two differences between
this definition and definition of the ascent size of a cover. First, the set of hyperplanes
being considered consists of all string dominant hyperplanes on Ho: rather than just the
hyperplanes in the cover. Second, as hyperplanes are located, the minimal value of a
string which belongs to the hyperplanes may exceed the value of so:. When this occurs,

16

we increase the set of string dominant hyperplanes from Ha to He,, where a is the rank
of the string of minimal value belonging to the hyperplanes located.

Def'n: The ascent size of V on T(ex), Az(V, ex) is defined recursively:

A

Step 0: t = 0, m = 0, N = N
hf = * for all i E N

Step 1: m=m+l

Step 2: a= max{,B:

Step 3: D= u
hEI(&,N,m)

Step 4: f.r = N\D

Step 5: I£N= 0
IfN=N
Hf.re fr

Step 6: Az(V, ex) = m

sf3 E S(hA)}

d(h)

go to Step 6
go to Step 1
then begin
N = f.r
hA = /\(I(&,N,m))
go to Step 2

Recall that given any function V, the cover size for V on T (ex) cannot be smaller than
the cover size for V on T(,B) if ,B < ex. Less formally, this says that if the upper contour
set decreases, i.e. if it contains fewer strings, the cover size over that upper contour set
must also decrease weakly. Claim 3.9 states that a similar result holds for ascent size:
the ascent size varies directly with the size of the upper contour set.

Claim 3.9 For all VE F1 if ex:::; ,81 then Az(V,ex):::; Az(V,,B).

pf: Follows directly from Claim 3.8 and the definition of Az(V, ex).

Claim 3. 9 provides a partial theoretical explanation for the performance of simulated
annealing on nonlinear search problems and may guide search for an optimal annealing
schedule. These topics are a focus of section 4 of this paper.

17

3.4.4 Decomposition Size

We have remarked several times that a unique feature of the two measures that we
have constructed: cover size and ascent size, is their focus on difficulty relative to upper
contour sets. An additional advantage of these measures is that they do not consider the
number and size of encoded nonlinear effects (Kauffman 1989, Liepins and Vose 1990).
These other types of measures, which we call domain based are useful in creating test
functions but can be misleading in their characterizations of difficulty. They can both
over and underestimate a problem's difficulty.

Here we define a simple domain based measure, decomposition size, for functions
defined over binary strings. Before defining decomposition size, we introduce the decom­
position basis coefficients, which attach a value to each subset of N (Liepins and Vose
1991). If O(s) denotes the subset of bits ins which assume the value 1, then the value
of a string equals the sum of the values of the subsets contained in 0(s) .

Given V E F, the decomposition basis coefficients (/3v,0, .. f3v,I, .. f3v,N) E �n satisfy:

V(s) = 2:: /3v,I
I�O(s)

where O(s) = { i: Si = 1}

The decomposition size equals the size of the largest subset I which has a nonzero
coefficient in the decomposition basis.

The decomposition size of V, sized(V) =max {I I I: /3v,I I= O}

In previous work (Page 1994a), we have shown that there exist functions with de­
composition sizes of two and cover sizes of n for arbitrary n and that there also exist
functions with decomposition sizes of n which have covers of size one. An example of
the latter would be a function in which all subsets, I, have strictly positive coefficients
in the decomposition basis. Examples of the former are more involved. The fact that
decomposition size may understate difficulty is evident in the tables reporting cover sizes
earlier in this paper. By construction, these classes of functions have decomposition sizes
equal to two, but their,cover·sizes a1Je much,fal'ger. ·

4 Applications to Nonlinear Search

In this section, we evaluate our measures in terms of their ability to explain the perfor­
mance of search algorithms. To address this criteria, we examine theoretical explanations

18

of two search algorithms in light of our measures of difficulty. The two search algorithms
we have selected, simulated annealing and genetic algorithms, have been widely used in
computer science and engineering.

4.1 Genetic Algorithms

A genetic algorithm is a population based search algorithm which mimics evolution.9 A
genetic algorithm begins with a finite population of randomly generated binary strings.
For explanatory purposes, we assume that there are thirty strings throughout our de­
scription. From this initial population, thirty strings are reproduced from the initial
population by a process of natural selection -strings with higher values are more likely to
be reproduced than those strings with lower values.10 Following reproduction, two genetic
operators are applied to the strings. First, the thirty strings are randomly collected in
fifteen pairs of strings and with some probability, usually around 0.5, a crossover operator
is applied. If crossover occurs, then the strings switch their values for some subset of bits.
For example, if the strings to be crossed are 111111 and 000000 and the strings switch
bits two and four then the resulting strings are 010100 and 101011. Following crossover, a
bit mutation operator is applied the strings. In bit mutation, each bit randomly changes
its value with small probability, usually below 0.1. An application of reproduction and
the two genetic operators to the thirty strings counts as a generation. The population at
the end of generation i becomes the entering population for generation t + 1 .11

4.1.1 The Schema Theorem

The extant theory explaining the performance of genetic algorithms relies on the schema
theorem. The schema theorem focuses not on the strings that are being reproduced but
on the hyperplanes to which the strings belong.12 A binary string of length n belongs
to 2n hyperplanes, each of which is brought along as informative baggage when a string
is reproduced. The schema theorem provides a lower bound on the number of strings
belonging to a particular hyperplane h in generation t + 1, Nt+1(h), as a function of
the number of strings in generation t belonging to h, Nt(h), the relative value of strings
belonging to h, and the susceptibility of h to crossover and mutation. 13 For hyperplanes
whose strings have above average values which are not likely to be destroyed by mutation
and crossover, then the expected number of strings which belong to the hyperplane in
the next generation increases:

9Genetic algorithms were.invented by ,John, Holland �1975)." ·Fm:. an understandable, ,general intro­
duction to genetic algorithms, see Goldberg (1989).

10The repro duction operator typically has a random component which allows for low valued strings
to survive if they are fortunate .

11 A formal description of a genetic algorithm is contained in appendix 1.
12 Schema is another word for hyperplane.
13For a hyperplane not to be susceptible to the operators it must have few defined bits.

19

E[Nt+1(h)] � Nt(h) · (relative value of strings in h) · (prob h disrupted)

An implication of the schema theorem is that if the strings belonging to a hyperplane
have values which are consistently above average and are not likely to be disrupted by
the genetic operators, then the number of strings in the population belonging to this
hyperplane grows over time. Such hyperplanes are often called building blocks. In one
interpretation of the schema theorem, if h is a building block, then, eventually, most of
the strings in the population will belong to h. Let B be the set of all building blocks.
Using similar logic, eventually most strings belong to most elements of B. Provided that
combining building blocks leads to a string of high value, the genetic algorithm locates
a good string, and in some cases, locates the optimal string.

The schema theorem and its derivatives capture the intuition that reproduction of
the fittest strings implies the survival of better hyperplanes and that the combination
of better hyperplanes should form good strings. However, the schema theorem by itself
does not explain why genetic algorithms have been successful across a variety of problems.
The fact that the population should drift towards higher valued strings does not imply
that a genetic algorithm will outperform an ascent algorithm. Why cannot a genetic
algorithm become stuck in a region of the space which does not contain the optimum?
The answer is that it can and often does. Nevertheless, a genetic algorithm generally
performs satisfactorally on functions regardless of their difficulty. The question remains
as to why.

The point of this section is not to suggest that the schema theorem is incorrect but
to provide additional explanations for the ability of genetic algorithms to locate good
solutions. We focus on two applications of covers to genetic algorithms though there are
certainly more. The first is obvious: the elements of a cover can be thought of as potential
building blocks. If the cover size is small enough that the constituent hyperplanes are
not susceptible to the genetic operators and likely to be building blocks, then the genetic
algorithm should easily find the optimum. We might be tempted to think that if the
cover size is large, then a genetic algorithm would perform poorly. Though this may
be true in some cases, it need not be true in general. This is the essence of the second
application of cover theory.

Recall from Claim 3.5 that the cover size decreases as the function value improves
regardless of the function. However, the rate of decrease of the cover size depends upon
the specific function. Among the' implications of this daim are that a si.lccessful search
algorithm should reduce the number of bits switched as it moves up the contour sets and
this reduction in bits should differ across functions. We would not expect an algorithm
which switched a prespecified number of bits as a function of the number of trials to
perform as well as an algorithm which adapted the number of bits switched in response
to the function values encountered during search. Page (1994a) analyzes the performance
of a genetic algorithn1 on some test functions to test this theory and finds that not

20

only does a genetic algorithms reduce the number of bits switched as the function value
increases, but also that it adapts the number of bits switched in response to search. For
a problem with a large cover size, the genetic algorithm switches many bits even late into
the search, whereas for a problem with a small cover size, within a few generations, the
genetic algorithm only switches a few bits.

4.2 Simulated Annealing

The second search algorithm that we discuss is simulated annealing (Metropolis, et al.
1953) which grew out of research connecting statistical mechanics to multi-variate com­
binatoric optimization (Otten and van Ginneken, 1989). Simulated annealing is perhaps
best understood as a Markov process. Given any strings, there is a transition function,
T : s x s-+ [O, 1], where r (s, s) gives the probability of testing string s given that the
current string s. In an ascent algorithm, the tested string s would be accepted as the
current string if it has a higher value. In simulated annealing, this is also the case. Where
simulated annealing differs from an ascent algorithm is that it also accepts strings with
lower values with some probability. The probability of accepting a string of a lower value
depends on the temperature of the system and the difference in function values between s

ands. We can loosely interpret the temperature as the probability of making a mistake,
although the mistakes only occur in one direction: all improvements are accepted.14 The
term annealing refers to the fact that during an application of simulated annealing the
temperature lowers according to an exogenous schedule.

We define the transition function r as giving equal probability to all strings which
differ by exactly one bit and zero probability to all strings which differ by more than one
bit.

Def'n: The transition function T : S X S -+ [O, 1] according to the following rule:

{ l if I s -s I = 1
T (s' s) = 0 if I s -s I � 2

The annealing schedule determines the probability that the algorithm accepts a string
with a lower function value. This feature of simulated annealing reduces the probability
that the algorithm becomes stuck at a .local .optimum.

Def'n: The annealing schedule {TtH=o satisfies

141 have some preliminary notes and simulation data on a double annealing algorithm which makes
mistakes in both directions . Double annealing appears to be less effective than standard simulated
annealing.

21

(i) Tt 2". 0 for all t
(ii) Tt 2". Ti fort < i
(iii) Te= O

The simulated annealing algorithm determined by the transition function T and the
annealing schedule {Tt}f=o can now be defined.

Def 'n: The simulated annealing algorithm given the transition function T, annealing
schedule {Tt}f=0, and initial string s consists of five steps:

Step 1: t = 0 and s* = s

Step 2 : Chooses according to T(s, s)

Step 3: If V (s) 2". V(s) thens*= s
{\f(s*)-V(s)}

If V (s) < V(s) thens*= s with probability P(s, s, t) = e- Tt

Step 4 If t = e goto step 5
If t < e' then t = t + 1, goto step 2

Step 5 end

Notice that if the difference between the value of s* ands increases then the numerator
of the negative exponent increases, which decreases the probability of accepting the string

s. And as the temperature decreases, the denominator decreases, which decreases the
probability of accepting a string s. To summarize, the probability of accepting a lower
valued string is increasing in the ten1perature and decreasing in the difference in string
values.

There are several theoretical explanations for the performance of simulated annealing.
Many of these theorems show that if the annealing temperature is chosen properly then
the global optimum is reached (Hajek 1988) . Underpinning these proofs is the idea that if
the annealing schedule lowers slowly enough than search visits every string, induding, of
course, the optimal string. 'If the annealing algorithm is in.tetpl'eted as a Markov process
then if the temperature is lowered quickly, the system quickly reaches equilibrium but the
equilibrium value is generally not of very high value. Alternatively, if the temperature
is lowered slowly, then the equilibrium state is likely to place substantial weight on the
optimal string at a cost of many searches (Otten and van Ginneken 1989) .

The explanation that we provide here differs from the standard one. In applying

22

simulated annealing to large problems, it has been found to perform well relative to
other algorithms though it may not always locate the optimal string (Davis 1987). More
interesting, for our purposes, is the fact that different functions have different annealing
schedules, even in physical systems. To evaluate the simulated annealing algorithm using
insights gained from our ascent size measure, we rely on Claim 3.9 which states that as the
function value improves, the ascent size decreases. When simulated annealing is applied
to a function the value of the current string generally drifts upward, which implies that
the minimal size ALGO(r) required to locate the optimal string weakly decreases. If
the transition function is biased towards strings which differ by a few bits, then the
only way that several bits can be switched is through a combination of switches of a
few bits. When the temperature is high, combinations of bit switches are likely, because
even descents are accepted with substantial probability. A high temperature offers the
potential of switching many bits even if no subset of bit switches increases the value. A
low temperature makes such combinations of bit switches improbable. This argument
suggests a strong relationship between an optimal annealing schedule for a function and
the function's ascent sizes on its upper contour sets.15

5 Applications to Economics

We have demonstrated that the construction of measures of difficulty can contribute to
our understanding of the difficulty of solving problems using various search algorithms,
and may help to explain the performance of genetic algorithms and simulated annealing.
What remains to be shown is whether these measures have any relevance to economics.
In this section, we apply these measures to the problem of organizational design. The
informal discussion which follows focuses on the divisionalization of firms and the depth
of hierarchies.

5.1 The Divisionalization of Firms

Underpinning our analysis is an assumption that firms confront problems defined over
rn�any variables. A firrn�'s problem may be to maximize profits and its decision variables
may be production technologies, advertising plans, or input suppliers. Intuitively, a
firm's organizational structure - be it divisionalization by task, product, technology, or
geography must depend upon the external relationships among decisions and the costs
of coordination. In sum, a firm's organizational structure characterizes the extent and
nature of the c.oorgination among decisions and.det�rmiJJ-es the firll1's ability to maximize
profits.

To apply cover theory, we want to think of a situation in which a firm selects an
organizational structure to maximize their expected revenues minus costs. We include

15In fairness, some of the formal proofs that simulated annealing locates the optimal string determine
an optimal annealing schedule as a function of the depth of the function. Depth is a measure of ruggedness
(Kern 1993)

23

among a firm's costs, the costs of computing the values of various decisions, the compu­
tation costs, as well as the costs of transmitting information between levels of the firm,
the communication costs. To include these costs in a formal model of organizations goes
beyond the current analysis. 16 For now, we can think of these costs as either delay as
in Radner's (1993) model or as being administrative costs. What we wish to explore
here is whether the notion of a cover can be of any use in understanding how firms are
divisionalized. For this exploration to lead to interesting questions, we assume that the
cover size for a firm's problem exceeds one - that the firm's decisions are inter-related.

Suppose that a firm produces and rn�arkets three goods or services (hereafter referred
to as goods) denoted by 1,2, and 3 respectively. Suppose also that these goods require
substantial research and development. The firms decision vector might consist of nine
decision variables:

• Pi production of good i

• mi marketing for good i

• 'T'i research and development for good i

The firm's objective function is given by:

A firm without computation and communication costs could locate and select the
optimal decision vector through exhaustive search. Alternatively, a firm could be om­
niscient and know the optimal decision vector. We find neither story convincing and
believe instead that a firm is likely to evaluate some small subset of the possible decision
vectors and choose the decision vector which has the highest expected value given the
information gathered. In our interpretation, the decision vectors evaluated by a firm
depend in a fundamental way on the firm's organizational structure.

Expanding on this example, we assume that there are external effects among the
decisions for the individual products: decisions about the production, marketing, and
research and development of product i may have an irn,pact on one another, and external
effects between similar tasks: marketing decisions for products i and j might be related,
and so on. These two types of external effects generate two focal organizational structures:
divisionalization by product and divisionalization by task. If the first type of external

16Radner (1993) has a model in which he determines optimal organizational forms given computation
costs, where the costs are in terms of delay. In his model, the problem that the firm solves is equivalent
to the addition of a long string of numbers, which we would argue is not complex.

24

effects dominate the latter type then the function may have a cover which breaks the
larger problem into the subproblems:

In this case, the firm would be divisionalized by product. Alternatively, if the latter
type of external effect dominates the external effects among products, then the function
11 may have a cover which breaks the problem into the subproblems:

Now, the firm would be divisionalized by task. In each case, the firm would reduce the
computation costs: fewer decision vectors must be evaluated; and reduce the communi­
cation costs: less information is passed between decision makers.

In this framework, we must assume that the firm does not confront the exact same
problem each period. Otherwise, it would make the same decision each period. A more
reasonable assumption is that the firm's problem is drawn from some class of problems.
For our theory to apply, problems within this class must possess sufficient regularity that
the defined bits of the hyperplanes in their covers must be approximately the same. The
bit values on the defined may differ.17 As we have already stated, a firm's organizational
structure determines its ability to make good decisions. If decisions m1 and m2 belong
to different components in firm's structure, then external effects between these decisions
would be ignored by the firm. Cover theory may provide the foundation for a framework
in which to evaluate and interpret the organizational structures as decompositions of
decision variables.

In addition to providing a framework for the problem of optimal organizational struc­
ture for a firm, cover theory may also contribute to the study of how firms choose their
organizational structures. The class of problems confronting firms in a given industry
probably drifts over time due to changes in technology, shifts in input factor prices, or
changes in consumer preferences. In responding to this drift, firms may have to alter
their organizational structures.18

There are several competing theories as to how firms choose their organizational struc­
ture ranging from tl�e choices being optima) to bt:;ing �.made through "?- long string of
incalculable and disreputable accidents" (Edgeworth 1881) . Alchian (1950) and Winter
(1975) advocate an adaptive theory in which firms change their structure incrementally.

17Thus, we really need a theory of covers for classes of functions, which we have not included in this
paper.

18For example, as purchasers of automobiles have become more concerned with safety, automobile
producers' marketing departments have increased their emphasis on safety features and presumably
their interaction with safety engineers.

25

Among the proponents of this view are Dahl and Lindblom (1963) who provide a litany
of reasons as to why large organizations must change slowly. We now investigate a con­
sequence of this incrementalist assumption. We show with an example that it is possible
that a small change in the parameterization of a function can result in a large change in
the set of string dominant hyperplanes. 19 Obviously, any such finding depends upon the
choice of metrics over both the space consisting of the class of problems confronting the
firm and the space of possible organizational structures. Therefore, any inferences which
can be drawn from simple examples have a large subjective component. Nevertheless, we
feel that the computational findings presented below are informative.

We return to the example above in which the firm produces three goods. To simplify
notation, let rn = (m 1 +m 2+m 3), r = (r1 +r2+r3), p = (p1 +pz+p3), o = (P1 +r1 +m 1),
w = (p2 + r2 + m 2), and h = (p3 + r3 + m 3) . The computational experiments assume the
following functional form:

where the ai E [-4, 4] and are distributed uniformly. This functional form was chosen
because two focal decompositions are divisionalization by product and by task. In the
computational experiments, we randomly chose ais and located a minimal size cover. We
then simulated drift in the parameters by setting

where E is uniformly distributed in [-1, 1] and j3 is a parameter of the model. We
then calculated how many of the string dominant hyperplanes in the original cover were
no longer string dominant given the drift in parameters.

Nu1nber of Changes 111 Cover
[-/3, /3] # hyps lost (s. d)

[-0.005, 0.005] 0.563 (1.01)
[-0.050, 0.050] 1.884 (1.81)
[-0.100, 0. 100] 2.337 (1.94)
[-"-0:150, 0�150] 2 :940 (2:06)
[-0.200, 0.200] 2.990 (2.29)
[-0.250, 0.250] 3.111 (2.15)

19This example suggests also that two firms with similar objective functions may have radically dif­
ferent optimal organizational structures.

26

As can be seen from the data, the number of hyperplanes in the original cover which
are no longer string dominant is quite large for even small changes in the parameters
of the model. To the extent that this is a generic phenomenon, it merits further study.
Though, we run the risk of over-interpretation of findings, we feel that these simple
computations shed light on a potential problem if firms do in fact change their organi­
zational structures incrementally. Imagine a firm which has an optimal divisionalization
given some set of parameters representing technology, taste, etc . . . If, as appears pos­
sible from these computations, a small change in parameters leads to a massive change
in the optimal organizational structure. For example, if the optimal structure shifts
from divisionalization by product to divisionalization by task, then a firm which adapts
incrementally may not be able to switch to the optimal organizational form. Perhaps
the more important question is whether a suboptimal organizational structure, such as
divisionalization by task, may be a local optimum in the sense that it is better than any
structure which can be achieved by an incremental change. A firm might then be trapped
with a non-optimal organizational structure and be susceptible to competition from an
entrant which can assume any organizational form. 20

5.2 The Dep t h of Hierarchies

The second application of our measures of difficulty to the organization of firms pertains
to the depth of hierarchies. Clearly, the depth of a firm's hierarchy must be influenced
by the costs of transmitting information within the organization. Here we pursue a
complementary explanation: that the depth of the hierarchy depends upon the difficulty
of the firm's objective function. In this preliminary analysis, we consider only the number
of strings which have to be evaluated in order to locate the optimal string. We are
counting the structural costs here entirely in terms of delay.

Suppose that a firm's objective function is defined over seven binary variables and has
a cover of size three. To better elucidate the argument we refer to a string dominant
hyperplane by its defined bits; the string dominant hyperplane 1 1 **1 ** is written as
{1 , 2, 5 } . Suppose that the cover for the firm's objective function, V, is given by:

{ 1 }, {2}, {3}, {4}, {1 , 2, 5} , {3, 4, 6} , {5, 6, 7}

The function V has a cover of size three. The firm's problem could be decomposed
into three problems each consisting of three decision variables. Three]Jinary variables
implies that there are eight distinct combinations of values, therefore we can use eight
as a rough measure of the time required to compute the optimal string. Suppose that
instead the firm has a hierarchical structure as shown in figure 2:

20This could b e viewed as an example of Schumpeterian creative destruction at the level of organiza­
tional form (Schumpeter 1950).

27

Figure 2

7

5 6

1 2 3 4

Decisions at the bottom level are made first and then passed up to the middle level.
The decisions at the middle level are then made contingent upon the decisions made at
the lower level. The decisions from both levels are then passed up to the decision maker
at the top, who chooses a value for decision seven. The maximal number of strings
evaluated at each level equals one and there are three levels. Ignoring communication
costs between levels, the total costs equal three which is less than the eight required by
a decomposition into a cover.

To summarize, the function has a cover size of three and an ascent size of one. The
difference in these two measures captures the advantage of sequential search over decom­
position of the larger problem. A firm whose problem has an ascent size much lower than
its cover size should have a deeper hierarchy than a firm whose problem has an equal
cover size and ascent size.

6 Discussion

In this paper we have constructed two measures of difficulty for functions defined over
binary strings of arbitrary length. One of these measures, cover size, captures the dif­
ficulty of decomposing a large problem into subproblems which can then be solved in
parallel. The other, ascent size, measures the difficulty of solving a problem using an
ascent algorithm. We have discussed how these concepts may provide insights into the di­
visionalization of organizations and the depth of hierarchies. Other possible applications
of these tech�iques includ� decision inaking over public proj�cts (Page 1994b) and the
problem of location of industries (Koopmans and Beckman 1961) . The latter problem
has recently been addressed by Arthur (1989) and Krugman (1993) 21 . In these models, a
firm must decide whether to locate in one of several cities and there are external effects

2 1 De Va.ny (1994) addresses this problem indirectly.

28

between firms.22 Consider the problem of a central planner in these environments. If
the central planner's problem has a small ascent size then a decentralized approach in
which firms make independent decisions may be quite effective, provided the individual
firm's incentives are in line with the planner's. If the ascent size is large, then greater
coordination may be necessary.

Finally, in recent years there has been increased use of computational methods in
the social sciences. As a rule most of this research has focused on situations in which
artificial agents following sin1ple rules combine to form a complex environment (Arifovic
1989, Marimon, McGratten, and Sargent 1990, Holland and Miller 1991). 23 Choosing a
career, buying a house, allocating assets in a portfolio, or even a visit to the grocery story
requires optimizing a difficult function defined over a discrete set. Current computational
models primarily consider agents who choose a uni-dimensional variable, often price or
quantity. Eventually, theoretical and computational models in economics must admit
more difficult, more realistic objective functions for agents. When they do, the interplay
between difficulty and bounded rationality will become a central issue.

22 Arthur models these external effects as spillovers and Krugman models them as pecuniary
extemali ties.

23 An exception to this rule is the work of Kollman, Miller, and Page (1992) who examine a computa­
tional model of two-party competition. In their model, a challenging political party faces a complicated
decision problem: how to locate the platform in a multi-dimensional issue space which obtains the most
votes against a fixed incumbent. In economic settings, multi-dimensional choice settings are pervasive.

29

Appendix 1

In this appendix we construct a genetic algorithm using pseudo-code. A genetic
algorithm begins with a procedure that initializes the population of strings.

Initialize Population: Randomly generate rn strings of length n and number them from
1 to rn .

Each generation of a genetic algorithm consists of reproduction of the best strings
followed by two genetic operators: crossover and mutation. Here we describe tournament
reproduction, uniform crossover and bit mutation. After these three stages, the resulting
rn strings become the entering population for a new application of reproduction followed
by the genetic operators

Tournament Reproduction: From the set { 1, 2 .. , rn} , randomly select rn pairs of num­
bers. 24 Each pair of numbers denotes two strings. Reproduce the string with the higher
value. If the strings have the same value, choose randomly between the strings.

Uniform Crossover: Group the m strings into 7:): pairs of strings. With probability Pc
apply the following procedure to the strings in the pair s and s :

With prob 0.5 exhange Si with Si for i = 1 to n

Bit Jl,1utation: For each bit on each string 111 the popultion, with probability Pm let
Si = 1 - Si

24These numbers need not be unique.

30

References

Arifovic, J., "Learning by Genetic Algorithms in Economic Environments," Santa Fe
Institute. Working Paper 90-001 (1989).

Arthur, B., "Cornpeting Technologies, Increasing Returns, and Lock-in by Historical
Events" , Economic Journal, 99 116-131 (1989).

Bethke, A., "Genetic Algorithms as Function Optimizers," Doctoral Dissertation, The
University of Michigan, Dissertation Abstracts International 41 (9) 3503B, 1988.

Brewer, P. and C. Plott "A Binary Conflict Ascending Price (BICAP) Mechanism" SSWP
#887, California Institute of Technology, June 1994.

Buchanan, J. and C. Stubblebine, "Externality," Economica. 29 371-384 (1962)

Dahl, R. and C. Lindblom, "Politics, Economics, and Welfare", Harper, New York, 1 963.

Davis, L. "Genetic Algorithms and Simulated Annealing" , Morgan Kauffman, London,
1987.

Gell-Mann, M., "The Quark and the Jaguar: Adventures in the Simple and the Com­
plex" , Freeman and Co., New York, 1994.

Goldberg, D., Genetic Algorithms in Search, Optimization, and Machine Learning, Ad­
dison Wesley, Reading MA, 1989.

Goldberg, D., "Construction of High-order Deceptive Functions Using Low-order Walsh
Coefficients," IlliGAL Report no. 90002, Department of General Engineering, University
of Illinois, 1990.

Greffenstette, J. and J. Baker, "How Genetic Algorithms Work: A Critical Look at
Implicit Parallelism," in Proceedings of the Third International Conference on Genetic
Algorithms edited by J. Schaffer, Morgan Kauffman, New York, 1989.

Hajek, B., "Cooling Schedules for Optimal Annealing" , Mathematics of Operations Re­
search 1 3 311-330 1988.

Holland, J., Adaptation in Natural and Artificial Systems, University of Michigan Press,
Ann Arbor, MI. 1975.

Holland, J. and J. Miller, "Artificial Adaptive Agents in Economic Theory" , Proceedings
of the American Economic Association, 81 365-370 (1991)

Karp, R. "Probabilistic Analysis of Partitioning Algorithms for the Traveling Salesman
Problem in the Plane" , Mathematics of Operations Research, 2 (3) 209-224 (1977).

31

Kauffman, S. "Adaptation on Rugged Fitness Landscapes," in Lectures in the Sciences
of Complexity, Addison Wesley, Reading MA., 1989.

Kern, W. "On the Depth of Combinatorial Optimization Problems" , Discrete Applied
Mathematics, 43 115-129 (1993).

Kollman, K., J. Miller, and S. Page, "Adaptive Parties in Spatial Elections" , American
Political Science Review, 86 929-937 (1992).

Koopmans T. and M. Beckman, "Assignment Problems and the Location of Economic
Activities," Econometrica, 53-76, (1961).

Langton, C., "Computation at the Edge of Chaos: Phase Transitions and Emergent
Computation" , Physica D. 42 12-37 (1990).

Ledyard, J., D. Porter, and A. Rangel, "Using Computational Exchange Systems to Solve
an Allocation Problem in Project Management" , Journal of Organizational Computing
forthcornjng.

Leijonhufvud, A., "Towards a Not-To-Rational Macroeconomics" , Distinguished lecture
annual meeting of the Southern Economics Association, 1992.

Liepins, G., and M. Vose, "Representational Issues in Genetic Optimization," Journal of
Experimental and Theoretical Artificial Intelligence, 2(2), 4-30 (1990).

Lin, S., "Computer Solutions of the Traveling Salesman Problem" , The Bell System
Technical Journal, 2245-2269 (1965).

Marimon, R., E. McGratten, and T. Sargent, "Money as a Medium of Exchange in
an Economy with Artificially Intelligent Agents," Journal of Economic Dynamics and
Control 14 329-373 (1990).

Marshall, A., "Principals of Economics" , Macmillan, London 1961.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, "Equation of
State Calculations by Fast Computing Machines," Journal of Chemical Physics, 21 1087-
1092 (1953).

Otten, R. and L. van Ginnekan, "The Annealing Algorithm", Kluwer, Boston, 1989.

Page, S., "Co:v:ern; A Theory_"of Boolea,n ,Function Decom.positon", Complex Systems 8
1-24. (1994a).

Page, S., "A Bottom-up Efficient Algorithm for Allocating Public Projects with Positive
Complementarities" , working paper #885, California Institute of Technology, 1994b.

Reiter, S. and G. Sherman, "Discrete Optimizing," Journal of the Society of Industrial
and Applied Mathematics, 13(3) 864-889 (1965).

32

Reiter, S., private communication 1991.

Schumpeter, J., "Capitalism, Socialism, and Democracy," Harper, New York, 1950.

Simon, H., "The Sciences of the Artificial," MIT Press, Cambridge MA. 1969.

33

