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Implementation Theory*

Thomas R. Palfrey

1 Introduction

Implementation theory is an area of research in economic theory that rigorously investi-
gates the correspondence between normative goals and institutions designed to achieve
(implement) those goals. More precisely, given a normative goal or welfare criterion for
a particular class of allocation problems (or domain of environments) it formally char-
acterizes organizational mechanisms that will guarantee outcomes consistent with that
goal, assuming the outcomes of any such mechanism arise from some specification of
equilibrium behavior. The approaches to this problem to date lie in the general domain
of game theory because, as a matter of definition in the implementation theory litera-
ture, an institution is modelled as a mechanism, which is essentially a non-cooperative
game. Moreover, the specific models of equilibrium behavior are usually borrowed from
game theory. Consequently, many of the same issues that intrigue game theorists are
the focus of attention in implementation theory: How do results change if informational
assumptions change? How do results depend on the equilibrium concept governing stable
behavior in the game? How do results depend on the distribution of preferences of the
players or the number of players? Also, many of the same issues that arise in social choice
theory and welfare economics are also at the heart of implementation theory: Are some
first-best welfare criteria unachievable? What is the constrained second-best solution?
What is the general correspondence between normative axioms on social choice func-
tions and the possibility of strategic manipulation, and how does this correspondence
depend on the domain of environments? What is the correspondence between social
choice functions and voting rules?

In order to limit this chapter to manageable proportions, attention will be mainly fo-
cussed on the part of implementation theory using non-cooperative equilibrium concepts
that follows the seminal (unpublished) paper by Maskin (1977). This body of research
has its roots in the foundational work on decentralization and economic design of Hayek,

*This is prepared for Handbook of Game Theory, Vol. 8 (R. Aumann and S. Hart, eds.). I thank
John Duggan, Matthew Jackson, and Sanjay Srivastava for helpful comments and many enlightening
discussions on the subject of implementation theory. Suggestions from Robert Aumann, Sergiu Hart
and two anonymous readers are also gratefully acknowledged. I also wish to thank the National Science
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Koopmans, Hurwicz, Reiter, Marschak, Radner, Vickrey and others that dates back more
than half a century.

The limitation to this somewhat restricted subset of the enormous literature of imple-
mentation theory and mechanism design excludes three basic categories of results. The
first category is implementation via dominant strategy equilibrium, perhaps more famil-
iarly known as the characterization of strategyproof mechanisms. This research, mainly
following the seminar work of Gibbard (1973) and Satterthwaite (1975) has close connec-
tions with social choice theory, and for that reason has already been treated in some depth
in Chapter 31 of this Handbook (Vol. 2). The second category excluded is.implementation
via solution concepts that allow for coalitional behavior, most notably, strong equilibrium
(Dutta and Sen 1991c) and coalition-proof equilibrium (Bernheim, Peleg, and Whinston
1987). The third category involves practical issues in the design of mechanisms. The
is a vast literature identifying specific classes of mechanisms such as divide-and-choose,
sequential majority voting, auctions, and so forth, and studying/characterizing the range
of social choice rules that are implementable using such mechanisms. Most of these topics
are already covered in some detail in other chapters of this Handbook.

Later in this chapter we discuss practical aspects of implementation, as it relates to
the specific mechanisms used in the constructive proofs of the main theorems. But a
few introductory remarks about this are probably in order. In contrast to the literature
devoted to studying classes of “natural” mechanisms, the most general characterizations
of implementable social choice rules often resort to highly abstract mechanisms, with
little or no concern for practical application. The reason for this is that the mechanisms
constructed in these theorems are supposed to apply to arbitrary implementable social
choice rules. A typical characterization result in implementation theory takes as given
an equilibrium concept (say, subgame perfect Nash equilibrium) and tries to identify
necessary and sufficient conditions for a social choice rule to be implementable, under
minimal domain restrictions on the environment. The method of proof (at least for
sufficiency) is to construct a mechanism that will work for any implementable social
choice rule. That is, a single game form is identified which will implement all such rules,
under the specified equilibrium concept. It should come as no surprise that this often
involves the construction of highly abstract mechanisms.

A premise of the research covered in this chapter is that to create a general foundation
for implementation theory it makes sense to begin by identifying general conditions on
social choice rules (and domains and equilibrium concepts) under which there ezists some
implementing mechanism. In this sense it is appropriate to view the highly abstract
mechanisms more_as vehicles for proving existence theorems-than as specific suggestions
for the nitty gritty details of organizational design. This is not to say that they provide
no insights into the principles of such design, but rather to say that for most practical
applications one could (hopefully) strip away a lot of the complexity of the abstract
mechanisms. Thus a natural next direction to pursue, particularly for those interested in
specific applications, is the identification of practical restrictions on mechanisms and the
characterization of social choice rules that can be implemented by mechanisms satisfying




such restrictions. Some research in implementation theory is beginning to move in this
direction, and, by doing so, is beginning to bridge the gap between this literature and
the aforementioned research which focuses on implementation using very special classes
of procedures such as binary voting trees and bargaining rules.

1.1 The basic structure of the implementation problem

The simple structure of the general implementation problem provides a convenient way to
organize the research that has been conducted to date in this area; and at the same time

~organize the possibilities for future research. Before, presenting this classification scheme,
it is useful to present one of the most concise representations of the implementation
problem, called a Mount-Reiter diagram, a version of which originally appeared in Mount
and Reiter (1974).

[FIGURE 1 HERE]

This figure contains the basic elements of an implementation problem. The notation is
as follows:

£: The domain of environments. Each environment, € £, consists of a set of feasible
outcomes, A(e), a set of individuals, I(e), and a preference profile R(e), where R;(e) is a
weak order on A(e).!

X: The outcome space. Note: A(e) C X foralle € £.

F C{f:€&— X}: The welfare criterion (or social choice set) which specifies the set
of acceptable mappings from environments to outcomes. An element, f, of F' is called a

social choice function.
M = M; xX...x My The message space.
g : M — X The outcome function.
p =< M, g > The mechanism.
¥ = The equilibrium concept that maps each p into £, C {0 : £ - M}

As an example to illustrate what these different abstract concepts might be, consider
the domain of pure exchange economies. Each element of the domain would consist of a
set of traders, each of whom has an initial endowment, and the set of feasible outcomes
would just be the set of all reallocations of the initial endowment. Many implementation

!Except where noted, we will assume that the set of feasible outcomes is a constant A that is in-
dependent of e, and the planner knows A. Furthermore, we will typically take the set of individuals
I={1,2,...,N} as fixed.




results rely on domain restrictions, which in this illustration would involve standard
assumptions such as strictly increasing, convex preferences, and so forth. The welfare
criterion, or social choice set might consist of all social choice functions satisfying a list
of conditions such as individual rationality, Pareto optimality, interiority, envy-freeness,
and so forth. One common social choice set is the set of all selections from the Walrasian
equilibrium correspondence. For this case the message space might be either an agent’s
entire preference mapping or perhaps his demand correspondence, and the “planner”
would take on the role of the auctioneer. An example of an outcome function would be
the allocations implied by a deterministic pricing rule (such as some selection from the set
of market clearing prices), given the reported demands. -Common equilibrium concepts
employed in these settings are Nash equilibrium or dominant strategy equilibrium.

The arrows of the Mount-Reiter diagram indicate that the diagram has the commu-
tative property that, under the equilibrium concept ¥, the set of desirable social choice
functions defined by F' correspond exactly to the outcomes that arise under the mecha-
nism p. That is F' = go ¥,. When this happens, we say that “x implements F' via X
in £.” Whenever there exists some mechanism such that that statement is true, we say
“F' is implementable via ¥ in £.” Implementation theory then looks at the relationship
between domains, equilibrium concepts, welfare criteria, and implementing mechanisms,
and the various questions that may arise about this relationship. The remainder of this
chapter summarizes a small part of what is known about this. Because this has been
the main focus of the literature, the discussion here will concentrate primarily on the
existence question: Under what conditions on F, %, and £ does there exist a mechanism
4 such that p implements F' via ¥ in £7

1.2 Informational issues

To this point, nothing has been said about what information can be used in the con-
struction of a mechanism nor about what information the individuals have about £. A
common interpretation given to the implementation problem is that there is a mythical
agent, called “the planner,” who has normative goals and very limited information about
the environment (typically one assumes that the planner only knows £ and X). The
planner then must elicit enough information from the individuals to implement outcomes
in a manner consistent with those normative goals. This requires creating incentives for
such information to be voluntarily and accurately provided by the individuals. Nearly all
of the literature in implementation theory assumes that the details of the environment
are not directly verifiable by the planner, even ex post.? Thus, implementation theory
characterizes the limits of a planner’s power in a society with decentralized information.

The information that the individuals have about £ is also an important considera-
tion. This information is best thought of as part of the description of the domain. The
main information distinction that is usually made in the literature is between complete

2There are some results on auditing and other ez post verification procedures. See, for example,
Townsend (1979), Chander and Wilde (1992) and the references they cite.
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wnformation and incomplete information. Complete information models assume that e
'is common knowledge among the individuals (but, of course, unknown to the planner).
Incomplete information assumes that individuals have some private information. This is
usually modelled in the Harsanyi (1967-68) tradition, by defining an environment as a
profile of types, one for each individual, where a type indexes an individual’s information
about other individuals’ types. In this manner, an environment (preference profile, set
of feasible allocations, etc.) is uniquely defined for each possible type profile.

One branch of implementation theory addresses a somewhat different informational
issue. Given a social choice correspondence and a domain of environments, how much in-
formation about the environment is minimally needed to determine which outcome should
be selected, and how close to this level of minimal information gathering (informationally
efficient) do different “natural” mechanisms come? In particular, this question has been
asked in the domain of neoclassical pure exchange environments, where the answer is that
the Walrasian market mechanism is informationally efficient. (Hurwicz, 1977, Mount and
Reiter (1974)). With few exceptions that branch of implementation theory does not di-
rectly address questions of incentive compatibility of mechanisms. This chapter will not
cover the contributions in that area.

1.3 Equilibrium: Incentive Compatibility and Uniqueness

In principle, the equilibrium concept ¥ could be almost anything. It simply defines a
systematic rule for mapping environments into messages for arbitrary mechanisms. How-
ever, nearly all work in implementation theory and mechanism design restricts attention
to equilibrium concepts borrowed from noncooperative game theory, all of which require
the rational response property in one form or another. That is, each individual, given
their information, preferences, and a set of assumptions about how other individuals are
behaving, and given a set of rules < M, g >, adopts a rational response, where rationality
is usually based on maximization of expected utility.3

The requirement of implementation can be broken down into two components. The
first component is incentive compatibility:* This is most transparent for the special case
of social choice functions (i.e., F" is a singleton). If a mechanism < M, g > implements a
social choice function f, it must be the case that there is an equilibrium strategy profile
o : & — M such that goo = f. The second component is uniqueness. If a mechanism
< M, g > implements a social choice function f, it must be the case, for all social choice
functions A ¢ f, that there is not an equilibrium strategy profile ¢’ such that g o o/ = h.

3There are some exceptions, notably the use of maximim strategies (Thomson 1979) and undominated
strategies (Jackson 1992), which do not require players to adopt expected utility maximizing responses
to the strategies of the other players.

4This is sometimes referred to as Truthful Implementability (Dasgupta, Hammond, and Maskin 1979)
because, in the framework where individual preferences and information are represented as “types,” if
the mechanism is direct in the sense that each individual is required to report their type (i.e., M = T),
then the truthful strategy o(t) =t is an equilibrium of the direct mechanism p=<T,f >.



For the more general case of the implementation of a social choice set, F, these two
components extend in the natural way. If a mechanism < M, g > implements a social
choice set F), it must be the case that, for each f € F' there is an equilibrium strategy
profile o such that goo = f. If a mechanism < M, g > implements a social choice set F',
it must be the case, for all social choice functions h # F', that there is not an equilibrium
strategy profile o such that g o o = h.

1.4 The Organization of this Chapter

The remainder of this paper is divided into three sections. Section II presents char-
acterizations of implementation under conditions of complete information for several
different equilibrium concepts. In particular, the relatively comprehensive characteri-
zation for Nash implementation (i.e., implementation in complete information domains
via Nash equilibrium) is set out in considerable detail. The partial characterizations for
refined Nash implementation (subgame perfect equilibrium, undominated Nash equilib-
rium, dominance solvable equilibrium, etc.) are then discussed. This part also describes
the problem of implementation by games of perfect information, and a few results in the
area, particularly with regard to “voting trees,” are briefly discussed. Finally results for
virtual 1mplementation (both in Nash equilibrium and using refinements) are described,
where social choice functions are only approximated as the equilibrium outcomes of mech-

anisms.

Section IIT explains how the results for complete information are extended to incom-
plete information “Bayesian” domains, where environments are represented as collections
of Harsanyi type-profiles, and players are assumed to have well-defined common knowl-
edge priors about the distribution of types.

Section IV discusses some “difficult” problems in the area of implementation theory
that have either been ignored or studied in only the simplest settings. This includes
dynamic issues such as renegotiation of mechanisms and dynamic allocation problems,
considerations of simplicity, robustness, and bounded rationality, and issues of incomplete
control by the planner over the mechanism (side games played by the agents, or preplay
communication). :

2 Implementation under conditions of complete in-
formation

By complete information, we mean that individual preferences and feasible alternatives
are common knowledge among all the individuals. This does not mean that the planner
knows these preferences. The planner is assumed to know only the set of possible individ-



ual preference profiles and the set of feasible allocations.® For this reason, we simplify the
notation considerably for this section of the chapter. First, we represent the domain by
R, the set of possible preference profiles, with typical element R = (Ry, Ry, ..., Ry), and
the set of feasible alternatives is A. A social choice set can, without loss of generality, be
represented as a correspondence F' mapping R into subsets of A. We denote the image

of F at R by F(R).

2.1 Nash Implementation

Consider a mechanism p =< M, g > and a profile R. The pair (u, R) defines a. N-player
noncooperative game.

Definition 1 A message profile m* € M is called a Nash equilibrium of x4 at R if, for
all v € I, and for all m; € M;

g(m*)Rig(mg, m~;).

Therefore, the condition of Nash implementation is simply:

Definition 2 A social choice correspondence F' is Nash implementable in R if there
exists a mechanism p =< M, g > such that:

1. For every R € R and for every z € F(R), there exists m* € M such that m* is a
Nash equilibrium of p at R and g(m*) = z.

2. For every R € R and for every y € F(R), there does not exist m* € M such that
m* is a Nash equilibrium of i at R and g(m*) =y.

Alternatively, writing o*(R) as the set of Nash equilibria of 11 at R, we can state (a)
and (b) as:

1. F(R)Cgoo*(R) foradl RER

2. goo*(R) C F(R) for all R € boldmath R

Condition (a) corresponds to what we have referred to as incentive compatibility and

condition (b) is what we have referred to as uniqueness. We proceed from here by char-
acterizing the implications of (a) and (b).

5Nearly always, the set of feasible allocations is taken as fixed in implementation theory. Notable
exceptions to this are Hurwicz, Maskin, Postlewaite (1980), and Hong and Page (1994). In these papers,
the mechanisms has individuals report endowments as well as preferences to the planner, but it is
assumed that it is impossible for an individual to overstate his endowment (although understatements
are possible). See Hong (1994) and Tian (1994) for extensions to Bayesian environments.
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Incentive Compatibility

Suppose a social choice function f : R — A is implementable via Nash equilibrium.
Then there exists a mechanism g that implements f via ¥ in £. What exactly does
this mean? First, it means that there is a Nash equilibrium of y that yields f as the
equilibrium outcome function. With complete information this turns out to have very
little bite. That is, examples of social choice functions that are not “incentive compatible”
when the individuals have complete information are rather special. How special, you
might ask. First, the examples must have only two individuals. This fact is quickly
established below as Proposition 3.

Proposition 3 In complete information domains with N > 2, every social choice func-
tion f is incentive compatible (I.e., there exists a mechanism such that (a) is satisfied.).

Proof: Consider the following mechanism, which we call the agreement mechanism. Let
M; = R foralli € I. That is, individuals report profiles.® Arbitrarily pick some ay € A.
Partition the message space into two parts, M, (called the agreement region) and M,
(called the disagreement region).

M, ={m € M|3j € I, R € R such that. m; = R for all i # j}
My={me Mlm ¢ M,}

In other words, the agreement region consists of all message profiles where either
every individual reports the same preference profile, or all except one individual reports
the same preference profile. The outcome function is then defined as follows.

g(m) = f(R) if me M,
=a, if me Md

It is easy to see that if the profile of preferences is R, then it is a Nash equilibrium for
all individuals to report m; = R, since unilateral deviations from unanimous agreement
will not affect the outcome. Therefore, (a) is satisfied. |

Therefore, incentive compatibility” is not an issue when information is complete and
N > 2. Of course the problem with this mechanism is that any unanimous message

6This mechanism could be simplified further by having each agent report a feasible outcome.

"The reader should not confuse this with a number of negative results on implementation of social
choice functions via Nash equilibrium when mechanisms are restricted to being “direct” mechanisms
(M; = R;). If individuals do not report profiles, but only report their own component of the profile
(sometimes called privacy preserving mechanisms) then clearly incentive compatibility can be a problem.
This kind of incentive compatibility is usually called strategyproofness, and is closely related to the prob-
lem of implementation under the much stronger equilibrium concept of dominant strategy equilibrium.
See Dasgupta, Hammond, and Maskin (1979).



profile is a Nash equilibrium at any prefefence profile. Therefore, this mechanism does
not satisfy the uniqueness requirement (b) of implementation. We return to this problem
shortly, after addressing the question of incentive compatibility for the N = 2 case.

When N = 2 the outcome function of the mechanism used in Proposition 3 is not
well defined, since a unilateral deviation from unanimous agreement is not well defined.
If m; = R and my = R/, then it is unclear whether g(m) = f(R) or g(m) = f(R'). There
are some simple cases where incentive compatibility is assured when N = 2. First, if
there exists a uniformly bad outcome, w, with the property that, for all a € A, and for
all R €, a Ryw,7=1,2. In that case, the mechanism above can be modified so that M,
requires unanimous agreement, and a, = w. Clearly any unanimous report of a profile is
* a Nash equilibrium regardless of the actual preferences of the individuals, so this modified
mechanism satisfies (a) but fails to satisfy (b).

A considerably weaker assumption, called nonempty lower intersection is due to Dutta
and Sen (1991b) and Moore and Repullo (1990). We state a slightly weaker version below,
which is sufficient for the incentive compatibility requirement (a) when N = 2. They
define a slightly stronger version that is needed to satisfy the uniqueness requirement

(b)-

Definition 4 A social choice function f satisfies Weak Nonempty Lower Intersection®
if, for all R, R' € R, such that R# R/, 3c € A such that f(R)Ric and f(R')Rjc.

The definition of social choice correspondences is similar:

Definition 5 A social choice correspondence F satisfies Weak Nonempty Lower Inter-
section if for all R, R' € R, such that R # R, and for all af(R) and b € f(R'),3c€ A
such that aR;c and bRjc.

To see that this is a sufficient condition for (a), consider implementing the social
choice function f. From Definition 4, we can define a function c¢(R, R) for R # R’
with the property that f(R)Ric(R, R') and f(R')Ryc(R,R'). We can then modify the
mechanism above by:

f(R) if my=my=R
o(R, R') if my =Rand my =R

g(m)

This mechanism is illustrated in Figure 2. It is easy to check that weak nonempty
lower intersection guarantees m = (R, R) is a Nash equilibrium when the actual profile

is R.
FIGURE 2 HERE

8The stronger version, called Nonempty Lower Intersection, requires f(R)Pic and f(R' )Pjc.




There are two interesting special cases where Nonempty Lower Intersection holds.
The first is when there exists a universally “bad” outcome (Moore and Repullo 1990)
with the property that it is strictly less preferred than all outcomes in the range of the
social choice rule, for all agents, at all profiles in the domain.® This is satisfied by any
nonwasteful social choice rule in exchange economies with free disposal and strictly in-
creasing preferences, since destruction of the endowment is a bad outcome. The second
special case is any Pareto efficient and individually rational interior social choice cor-
respondence in exchange economies (with or without free disposal) with strictly convex
and strictly increasing preferences and fixed initial endowments (Dutta and Sen 1991b,
Moore and Repullo 1990).

Uniqueness

Clearly, incentive compatibility places few restrictions on Nash implementable social
choice functions (and correspondences) with complete information. The second require-
ment of uniqueness is more difficult, and the major breakthrough in characterizing this
was the classic (unpublished) paper of Maskin (1977). In that paper, he introduces two
conditions, which are jointly sufficient for Nash implementation when N > 3. These
conditions are called Monotonicity and No Veto Power (NVP).

Definition 6 A social choice correspondence F' is Monotonic if, for all R,R' € R

(r€ F(R),z ¢ F(R')) = 31 € I,a € A such that zR;aP}z.

The agent ¢ and the alternative a are called, respectively, the test agent and the test
alternative. Stated in the contrapositive, this says simply that if  is a socially desired
alternative at R, and z does not strictly fall in preference for anyone when the profile is
changed to R/, then z must be a socially desired alternative at R’. Thus monotonic social
choice correspondences must satisfy a version of a nonnegative responsiveness criterion
with respect to individual preferences. In fact, this is a remarkably strong requirement
for a social choice correspondence. For example, it rules out nearly any scoring rule, such
as the Borda count or Plurality voting. Several other examples of nonmonotonic social
choice functions in applications to bilateral contracting are given in Moore and Repullo
(1988). One very nice illustration of a nonmonotonic social choice correspondence is a
variation on the “King Solomon’s Dilemma” example of Glazer and Ma (1989) and Moore
(1992). The problem is to allocate a baby to its true mother. There are two individuals
in the game (Ms. o and Ms. f3).

Example 7 Assume that there are four possible alternatives:

a = give the baby to Ms. «

b = give the baby to Ms.

¢ = divide the baby into two equal halves and give each mother one half
d = execute both mothers and the child

9Notice that this is a joint restriction on the domain and the social choice function.
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~ Also, assume the domain consists of only two possible preference profiles depending
on whether « or 3 is the real mother, and we will call these profiles R and R’ respectively.

They are given below:

R = a-=b>=c>d

R, = a>c>b>d
Rg = b>c>a>d
Ry = bra>c>d

The social choice function King Solomon wishes to implement is f(R) = aand f(R') =
b. This is not monotonic. Consider the change from R to R’. Alternative a does not fall
in either player’s preference order as a result of this change. However, f(R') =b # a, a
contradiction of monotonicity. Notice however that this social choice function is incentive
compatible since there is a universally bad outcome, d, which is ranked last by both
players in both of their preference orders. A

A second example, from a neoclassical 2-person pure exchange environment illustrates
the geometry of monotonicity. Consider allocation z in figure 3.

[FIGURE 3 HERE]

Suppose z € f(R) where the indifference curves through z of the two individuals are
labelled R; and R, respectively in that figure. Now consider some other profile R’ where
R, = RY, and R} is such that the lower contour set of z for individual 1 has expanded.
Monotonicity would require z € f(R'). Put another way (formally stated in the defini-
tion) if f is monotonic and z &€ f(R") for some R" # R, then one of the two individuals
must have an indifference curve through z that either crosses the R-indifference curve
through z or bounds a strictly smaller lower contour set. Figure 4 illustrates the (generic)
case in which the R"-indifference curve of one of the individuals (individual 1, in the fig-
ure) crosses the R-indifference curve through z. Thus, in this example agent 1 is the test
agent. One possible test alternative a € A (an alternative required in the definition of
monotonicity which has the property that zR;aP/’z) is marked in that figure.

[FIGURE 4 HERE]
Maskin (1977) proved that monotonicity is a necessary condition for Nash implemen-

tation.

Theorem 8 If F' is Nash tmplementable then F' is monotonic.

11



Proof: Consider any mechanism p that Nash implements F' and consider some z € F(R)
and some Nash equilibrium message, m*, at profile R, such that g(m*) = z. Define the
“option set”!? for 7 at m* as

O;(m*; 1) = {a € A|Fm; € M; such that g(m},m*,)=a}

That is, fixing the messages of the other players at m* ;, the range of possible outcomes
that can result for some message by i under the mechanism p is O;(ma*; ). By the
definition of Nash equilibrium, m}R; a for all 7 and for-all a-€ O;(m*; u). Now consider
some new profile R’ where z ¢ F(R'). Since p Nash implements F, it must be that
m is not a Nash equilibrium at R'. Thus there exists some ¢ and some alternative
a € O;(m*; i) such that aP/z. Thus a is the test alternative and 7 is the test agent as
required in Definition 6, with the property that xR;aP/z. |

The second theorem in Maskin (1977), which was later given a complete proof by
Williams (1984), Saijo (1988), McKelvey (1989), and Repullo (1987), provides a simple
sufficient condition for Nash implementation for the case of three or more agents. This
is a condition of near unanimity, called No Veto Power (NVP).

Definition 9 A social choice correspondence F' satisfies No Veto Power (NVP) if, for
all R€ R and for allz € A, and 1 € I,

[zRjy for all j #1, for all yeY]|=z € F(R).

Theorem 10 If N > 3 and F is Monotonic and satisfies NVP, then F' is Nash imple-
mentable.

Proof: (based on Repullo 1987) The proof is constructive, like the proof of Proposition 3.
A very general mechanism is defined, and then the rest of the proof consists of demon-
strating that, the mechanism implements any social choice function that satisfies the
hypotheses of the theorem. This is usually how characterization theorems are proved
in implementation theory. Consider the following generic mechanism, which we call the

agreement/integer mechanism

M;=RAx{0,1,2,...}

That is, each individual reports a profile, an allocation, and an integer. The
outcome function is similar to the agreement mechanism, except the disagreement region
is a bit more complicated, and agreement must be with respect to an allocation and a
profile.

10T his is similar to the role of option sets in the strategyproofness literature.
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M, ={m € M|3j,R € Ra € F(R) such that m; = (R, a, z;) where z; = 0 for each ¢ # j}

My={me M\m ¢ M,}

The outcome function is defined as follows. The outcome function is constructed
so that, if the message profile is in M,, then the outcome is either a or the allocation
announced by individual j, which we will denote a;. If the outcome is in My, then the
outcome is a; where £ is the individual announcing the highest integer (ties broken by a
predetermined rule). This feature of the mechanism has become commonly known as an
integer game (although in actuality, it is only a piece of the original game). Formally,

g(m) =a ifmeM,anda;Pja
= aj if m € M, and aRjaj

g(m) =uay if me Myand k =max{i€ I|z; > z; for all j € I}

Recall that we must show that F(R) C NEj,.(R) and NE,(R) C F(R) for all R,
‘where NE,(R) = {a € A|3m € M such that a = g(m)R;9(m},m_;) for all i € I, mj €
M;} is the set of Nash equilibrium outcomes to p at R.

1. F(R) C NE,(R)
At any R, and for any a € F'(R), there is a Nash equilibrium in which all individuals
report m; = (R,a,0). Such a message lies in M, and any unilateral deviation
also lies in M,. The only unilateral deviation that could change the outcome
in a deviation in which some player j reports an alternative a; such that aR;a;.
Therefore, a is a R;-maximal element of O;(m; u) for all j € I, so m = (R, a,0) is
a Nash equilibrium.

2. NE,(R) C F(R)
This is the more delicate part of the proof, and is the part that exploits Monotonic-
ity and NVP. (Notice that part (1) of the proof above exploited only the assumption
that N > 3.) Suppose that m € NE,(R) and g(m) = a € F(R). First notice that
it cannot be the case that all individuals are reporting (R, a, 0) where a € F(R)
for some R’ € R. This would put the outcome in M, and Monotonicity guarantees
the existence of some j € I,b € A such that a R;bP;a, so that player is better
off changing to a message (,b,:) which changes the outcome from a to b. Thus
m; # m; for some i, j. Whenever this is the case, the option set for at least N — 1
of the agents is the entire alternative space, A. Since a ¢ F(R) and F satisfies
NVP, it must be that there is at least one of these N — 1 agents, &, and some
element ¢ € A such that cPra. Since the option set for & is the entire alternative
space, A, individual k is better off changing his message to (-,c,2x) # m; where
2k > zj, j # k, which will change the outcome to from a to c. This contradicts the

hypothesis that m is a Nash equilibrium.
1
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Since these two results, improvements have been developed to make the characteri-
zation of Nash implementation complete and/or to reduce the size of the message space
of the general implementing mechanism. These improvements are in Moore and Repullo
(1990), Dutta and Sen (1991b), Danilov (1992),!! Saijo (1988), Sjostrém (1991b) and
McKelvey (1989) and the references they cite.

The last part of this section on Nash implementation is devoted to a simple application
to pure exchange economies. It turns out the Walrasian correspondence satisfies both
Monotonicity and NVP under some mild domain restrictions. First notice that in private
good economies with strictly increasing preferences and three or more agents, NVP is
satisfied vacuously. Next suppose that indifference curves are strictly quasi-concave and
twice continuously differentiable, endowments for all individuals are strictly positive in
every good, and indifference curves never touch the axis. It is well known that these
conditions are sufficient to guarantee the existence of a Walrasian equilibrium and to
further guarantee that all Walrasian equilibrium allocations in these environments are
interior points, with every individual consuming a positive amount of every good in
every competitive equilibrium. Finally, assume that “the planner” knows everyone’s

endowment.!?

Since the planner knows the endowments, a different mechanism can be constructed
for each endowment profile. Thus, to cheek for monotonicity it suffices to show that
the Walrasian correspondence, with endowments fixed and only preferences changing, is
monotonic. If a is a Walrasian equilibrium allocation at R and not a Walrasian equilib-
rium allocation at R’, then there exists some individual for whom the supporting price
line for the equilibrium at R is not tangent to the R} indifference curve through a. But
this is just the same as the illustration in Figure 4, and we have labelled allocation b as
a “test allocation” as required by the monotonicity definition. The key is that for a to
be a Walrasian equilibrium allocation at R and not a Walrasian equilibrium allocation
at R’ implies that the indifference curves through =z at R and R’ cross at z.

~As mentioned briefly above, there are many environments and “nice” (from a nor-
mative standpoint) allocation rules that violate Monotonicity, and in the N = 2 case
(“bilateral contracting” environments) NVP is simply too strong a condition to impose
on a social choice function. There are two possible responses to this problem. One
possibility, and the main direction implementation theory has pursued, is that Nash

110f these, Danilov (1992) establishes a particularly elegant necessary and sufficient condition (with
three or more players), which is a generalization of the notion of monotonicity, called essential mnonotonic-
ity. However, these results are limited somewhat by this assumption of universal domain. Nash imple-
mentable social choice correspondences.need not satisfy essential monotonicity under domain restrictions.

12This assumption can be relaxed. See Hurwicz, Maskin, and Postlewaite (1980). The Walrasian
correspondence can also be modified somewhat to the “constrained Walrasian correspondence” which
constrains individual demands in a particular way. This modified competitive equilibrium can be shown
to be implementable in more general economic domains in which Walrasian equilibrium allocations are
not guaranteed to be locally unique and interior. See the survey by Postlewaite (1985), or Hurwicz

(1986).
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equilibrium places insufficient restrictions on the behavior of individuals.!® This leads
to consideration of implementation using refinements of Nash equilibrium, or refined
Nash implementation. A second possibility is that implementability places very strong
restrictions on what kinds of social choice functions a planner can hope to enforce in a
decentralized way. If not all social choice functions can be implemented, then we need to
ask “how close” can we get to implementing a desired social choice function? This has
led to the work in virtual implementation. These two directions are discussed next.

2.2 Refined Nash implementation

More social choice correspondences can be implemented using refinements of Nash equi-
librium. The reason for this is straightforward, and is easiest to grasp in the case of
N > 3. In that case, the incentive compatibility problem does not arise (Proposition 3),
so the only issue is (ii) uniqueness. Thus the problem with Nash implementation is that
Nash equilibrium is too permissive an equilibrium concept. A nonmonotonic social choice
function fails to be implementable simply because there are too many Nash equilibria. It
is impossible to have f(R) a Nash equilibrium outcome at R and at the same time avoid
having a # f(R) also be a Nash equilibrium outcome at R. But of course this is exactly
the kind of problem that refinements of Nash equilibrium can be used for. The trick
in implementation theory with refinements is to exploit the refinement by constructing
a mechanism so that precisely the “bad” equilibria (the equilibria whose outcomes lie
outside of F') are refined away, while the other equilibria survive the refinement.'

2.2.1 Subgame perfect implementation

The first systematic approach to extending the Maskin characterization beyond Nash

equilibrium in complete information environments was to look at implementation via

subgame perfect Nash equilibrium (Moore and Repullo (1988) and Abreu and Sen (1990)).
They find that more social choice functions can be implemented via subgame perfect

Nash equilibrium than via Nash equilibrium. The idea is that sequential rationality can

be exploited to eliminate certain bad equilibria. The following simple example in the

“voting/social choice” tradition illustrates the point.

130One might argue to the contrary that in other ways Nash equilibrium places too strong a restriction
on individual behavior. Both directions are undoubltedly true. Experimental evidence has shown that
both of these are defensible. On the one hand, some refinements of Nash equilibrium have received
experimental support indicating that additional restrictions beyond mutual best response have predictive
value (Banks, Camerer, and Porter’ (1994)). On the other hand, many experiments indicate that players
are at best imperfectly rational, and even violate simple basic axioms such as transitivity and dominance.
Thus, from a practical standpoint, it is very important to explore the implementation question under
assumptions that other than the simple mutual best response criterion of Nash equilibrium.

MEarlier work by Farquharson (1957/69), Moulin (1979), Crawford (1979) and Demange (1984) in
specific applications of multistage games to voting theory, bargaining theory, and exchange economies
foreshadows the more abstract formulation in the relatively more recent work in implementation theory

with refinements.
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Example 11 There are three players on a committee who are to decide between three
alternatives, A = {a,b,c}. There are two profiles in the domain, denoted R and R’
Individuals 1 and 2 have the same preferences in both profiles. Only player 3 has a
different preference order under R than under R'. These are listed below:

Ri=Ri=a>b>c
Ry=Ry,=b>c>a
R3y=c>a>b
Ri=a>c>b

The following social choice function is Pareto optimal and satisfies the Condorcet
criterion that an alternative should be selected if it preferred by a majority to any other
alternative:

f(R)=b
f(R)=a

This social choice function violates monotonicity since b does not go down in player 3’s
rankings moving from profile R to R’ (and no one else’s preferences change). Therefore
it is not Nash implementable. However, the following trivial mechanism (extensive form
game form) implements it in subgame perfect Nash equilibrium:

Stage 1: Player 1 either chooses alternative b, or passes. The game ends if b is chosen.
The game proceeds to stage 2 if player 1 passes.

Stage 2: Player 3 chooses between a and c. The game ends at this point.

The voting tree is illustrated in Figure 5.

[FIGURE 5 HERE]

To see that this game implements f, work back from the final stage. In stage 2,
player 3 would choose c in profile R and a in profile R’. Therefore, player 1’s best
response is to choose b in profile R and to pass in profile R'. Notice that there is another
Nash equilibrium under profile R', where player 2 adopts the strategy of choosing c
if player 1 passes, and thus player 1 chooses b in stage 1. But of course this is not
sequentially. rational and-is therefore ruled out by subgame: perfection. A

Abreu and Sen (1990) provide a nearly complete characterization of social choice
correspondences that are implementable via subgame perfect Nash equilibrium, by giving
a general necessary condition, which is also sufficient if N > 3 for social choice functions
satisfying NVP. This condition is strictly weaker than Monotonicity, in the following way.
Recall that monotonicity requires, for any R, R and a € A, with a = f(R), a # f(R'), the
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existence of a test agent, ¢ and a test allocation b such that aR;bR;a. That there is some
‘player and some allocation that produces a preference switch with f(R) when moving
from R to R'. The weakening of this resulting from the sequential rationality refinement
is that the preference switch does not have to involve f(R) directly. Any preference
switch between two alternatives, say b and ¢ will do, as long as these alternative can
be indirectly linked to f(R) in a particular fashion. We formally state this necessary
condition and call it indirect monotonicity,’> to contrast it with the direct linkage to
f(R) of the test alternative in the original definition of monotonicity.

Definition 12 A social choice correspondence F' satisfies indirect monotonicity if there
3B C A such that F(R) C B for all R € R, and if for all R,R' and a € A, with
a € F(R), a ¢ F(R'),3L < 0o, and 3 a sequence of agents {Jo,...,Jr} and 3 sequences
of alternatives {ag,...,ar+1}, {bo,...,br} belonging to B such that:

(Z) (J,kRjkak+1 k= 0, 1, sy L
(ZZ) aL+1P')jLaL
(Z’LZ) kaJfkak k= 0, 1, ey L

(iv) (a1 Rjw¥b € B)= (L =0 or jr_1 = jr)

The key parts the definition of indirect monotonicity are (i) and (ii). A less restrictive
version of indirect monotonicity consisting of only parts (i) and (ii) was used first by
Moore and Repullo (1988) as a weaker necessary condition for implementation in subgame
perfect equilibrium with multistage games.

The main two general theorems about implementation via subgame perfect imple-
mentation are the following. The proofs (Abreu and Sen, 1990) are long and tedious and
are omitted, although an outline of the proof for the sufficiency result is given. Similar
results, but slightly less general, can be found in Moore and Repullo (1988)."

Theorem 13 (necessity) If a social choice correspondence F is implementable via sub-
game perfect Nash equilibrium, then F' satisfies indirect monotonicity.

Theorem 14 (sufficiency) If N > 3 and F satisfies NVP and indirect monotonicity,
then F' is implementable via subgame perfect Nash equilibrium.

Proof: Since F' satisfies indirect monotonicity, there exists the required set B and for any
(R, R/, a) such that a € F(R) and a ¢ F(R’') there exists an integer L and the required
sequences {jx(R,R',a)})k=0,1,...,L and {ax(R, R',a)}x=0,1,..1+1 that satisfy (i)-(iv)
of Definition 6. In the first stage of the mechanism, all agents announce a triple of the
form (m;1, mse, m;3) where m;; € R,mi € A, and my3 € {0,1,...}. The first stage of

15 Abreu and Sen (1990) call it Condition a.
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the game then conforms fairly closely to the agreement/integer mechanism, with a minor
exception. If there is too much disagreement (there exist three or more agents whose
reports are different) the outcome is determined by mj2 of the agent who announced
the largest integer. If there is unanimous agreement in the first two components of the
message, so all agent send some (R, a, 2;) and a € F(R), then the game is over and the
outcome is a. The same is true if there is only one disagreeing report in the first two
components, unless the dissenting report is sent by (R, mio1, a), in which case the first
of a sequence of at most L “binary” agreement/integer games is triggered in which either
some agent gets to choose his most preferred element of B or the next in the sequence
of binary agreement/integer games is triggered. If the game ever gets-to the (L + 1)%

stage, then the outcome is az; and the game ends.

The rest of the proof follows the usual order. First one shows that for all R € R
and for all @ € F(R) there is a subgame perfect Nash equilibrium at R with a as the
equilibrium outcome. Second one shows that for all R € R and for all a ¢ F(R) there is
no subgame perfect Nash equilibrium at R with a as the equilibrium outcome. |

In spite of its formidable complexity, some progress has been made tracing out the
implications of indirect monotonicity for two well-known classes of implementation prob-
lems: exchange economies and voting. Moore and Repullo (1988) show that any selection
from the Walrasian equilibrium correspondence satisfies indirect monotonicity, in spite
of being nonmonotonic. There are also some results for the N = 2 case that can be
found in Moore (1992) and Moore and Repullo (1988) which rely on sidepayments of a
divisible private good. The case of voting-based social choice rules contrasts sharply with
this. Abreu and Sen (1990), Palfrey and Srivastava (1991a) and Sen (1987) show that
many voting rules fail to satisfy indirect monotonicity, as do most runoff procedures and
“scoring rules” (such as the famous Borda rule). However, a class of voting-based social
choice correspondences, including the Copeland rule, is implementable via subgame per-
fect Nash equilibrium (Sen 1987). Some related findings are in Moulin (1979), Dutta and
Sen (1993), and the references they cite.

There are a number of applications that exploit the combined power of sidepayments
and sequential mechanisms. See Glazer and Ma (1989), Varian (1993), and Jackson and
Moulin (1990). Moore (1992) also gives some additional examples.

2.2.2 Implementation by backward induction and voting trees

In general, it is not possible to implement a social choice function via subgame perfect
Nash equilibrium without resorting to games of imperfect information. At some point, it
is necessary to have a stage with simultaneous moves. Others have investigated the imple-
mentation question when mechanisms are restricted to be games of perfect information.
In that case, the refinement implied by solving the game in its last stage and working
back to earlier moves, generates similar behavior as subgame perfect equilibrium.'® Ex-

161n fact, it is exactly the same if players are assumed to have strict preferences. Much of the work in
this area has evolved as a branch of social choice theory, where it is common to work with environments
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ample 11, above illustrates how it is possible for nonmonotonic social choice functions to
be implemented via backward induction. The work of Glazer and Ma (1989) illustrates
how economic contracting and allocation problems similar in structure to example 7
(King Solomon’s Dilemma) can be solved with backward induction implementation if
sidepayments are possible. Crawford’s work (1977, 1979) on bargaining mechanisms!”
proves in fairly general bargaining setting that games of perfect information can be used
to implement nonmonotonic social choice functions that are fair. The general problem
of implementation by backward induction has been studied by Hererro and Srivastava
(1992) and Trick and Srivastava (1994). The characterizations, unfortunately, are quite
cumbersome to deal with, and the necessary conditions for implementation via backward
induction are virtually impossible to check in most settings. But some useful results have
been found for certain domains.

Closely related to the problem of implementation by backward induction is implemen-
tation by voting trees, using the solution concept of sophisticated voting as developed by
Farquharson (1957/69). Sophisticated voting works in the following way. First, a binary
voting tree is defined, which consists of an initial pair of alternatives, which the individ-
uals vote between. Depending on which outcome wins a majority of votes,'® the process
either ends or moves on to another, predetermined pair and another vote is taken. Usu-
ally one of the alternatives in this new vote is the winner of the previous vote, but this
is not a requirement of voting trees. The tree is finite, so at some point the process ends
regardless of which alternative wins. Sophisticated voting means that one starts at the
end of the voting tree, and, for each “final” vote, determines who will win if everyone
votes sincerely at that last stage. Then one moves back one step to examine every penul-
timate vote, and voters vote taking account of how the final votes will be determined.
Thus, as in subgame perfect Nash equilibrium, voters have perfect foresight about the
outcomes of future votes, and vote accordingly.

The problem of implementation by voting trees was first studied in depth by Moulin
(1979), using the concept of dominance solvability, which reduces to sophisticated voting
(McKelvey and Niemi 1978) in binary voting trees. There are two distinct types of
sequential voting procedures that have been investigated in detail. The first type consists
of binary amendment procedures. In a binary amendment procedure, all the alternatives
(assumed to be finite) are place in a fixed order, say, (a1,a2,...,aj4)). At stage 1, the first
two alternatives are voted between. Then the winner goes against the next alternative
in the list, and so forth. A major question in social choice theory, and for that matter,
in implementation theory, is to characterize the set of social choice functions that are
implementable by binary amendment procedures via sophisticated voting. This work
is closely -zelated- to -work by Miller (1977), Banks <(1985), and others, which explores
general properties of the majority rule dominance relation, and following in the footsteps
of Condorcet, looks at the implementability of social choice correspondences that satisfy

where A is finite and preferences are linear orders on A4 (i.e., strict.)

17This includes the divide-and-choose method and generalizations of it.

181t is common to assume an odd number of voters for obvious reasons. Extensions to permit even
numbers of voters are usually possible, but the occurrence of ties clutters up the analysis.
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certain normative properties. Several results appear in Moulin (1986), who identifies an
“adjacency condition” that is necessary for implementation via binary voting trees. For
more details, the reader is referred to the chapter of Social Choice Theory by Moulin
(1993) in Volume 2 of this Handbook.

More recent results on implementation via binary voting trees are found in Dutta
and Sen (1993). First, they show that implementability by sophisticated voting in bi-
nary voting trees implies implementability in backward induction using games of perfect
information. The also show that several well-known selections from the top-cycle set!®
are implementable, but that certain selections that have appealing normative properties
are not implementable.

2.2.3 Normal form refinements

There are some other refinements of Nash equilibrium that have been investigated for
mechanisms in the Normal form. These fall into two categories. The first category relies
on dominance (either strict or weak) to eliminate outcomes that are unwanted Nash equi-
libria. This was first explored in Palfrey and Srivastava (1991a) where implementation
via undominated Nash equilibrium is characterized. Subsequent work that explores this
and other variations of dominance-based implementation in the normal form includes
Jackson (1992), Jackson, Palfrey, and Srivastava (1994), Sjéstrom (1991a), Tatamitami
(1991) and Yamato (1993). Using a somewhat different approach, Abreu and Matsushima
(1990) obtain results for implementation in iteratively weakly undominated strategies,
if randomized mechanisms can be used and small fines can be imposed out of equilib-
rium. The work by Abreu and Matsushima (1992a, 1992b), Glazer and Rosenthal (1992),
and Duggan (1993) extends this line of exploiting strategic dominance relations to refine
equilibria by looking at iterated elimination of strictly dominated strategies and also in-
vestigating the use of these dominance arguments to design mechanisms that wvirtually
implement (see Section 2.3 below) social choice functions.

" The second category o‘f refinements looks at implementation via trembling hand per-
fect Nash equilibrium. The main contribution here is the work of Sjostrom (1993).

The central finding of the work in implementation theory using normal form refine-
ments is that essentially anything can be implemented. In particular, it is the case that
dominance-based refinements are more powerful than refinements based on sequential
rationality, at least in the context of implementation theory. A simple result is in Palfrey
and Srivastava (1991a), for the case of undominated Nash equilibrium.

Definition 15 Consider a mechanism p =< M,g >. A message profile m* € M
18 called an undominated Nash equilibrium of p at R if, for all i € I, for all m; €
M;, g(m*)R;g(m;,m* ;) and there does not exist i € I and m; € M such that

19The top cycle set at R is the minimal subset, T'C, of A, with the property that for all a,b such that
a € TC and b € TC, a majority strictly perfer a to b. This set has a very prominent role in the theory
of voting and committees.
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g(mi, m_;)R;g(m¥,m_;) for all m_; € M_; and

g(ms, m_;)P,g(m?, m_;) for some m_; € M_;.

In other words, m* is an undominated Nash equilibrium at R if it is a Nash equilibrium
and, for all i, m} is not weakly dominated.

Theorem 16 Suppose R contains no profile where some agent is indifferent between all
elements of A. If N > 3 and F satisfies NVP, then F is implementable in undominated

Nash equilibrium.

- Proof: The proof of this theorem is quite involved. It uses a variation on the agree-
ment/integer game, but the general construction of the mechanism uses an unusual tech-
nique, called tailchasing. Consider the standard agreement/integer game, u, used in the
proof of Theorem 10. If m* is a Nash equilibrium of x at R, but g(m*) ¢ f(R), then
one can make m* dominated at R by amending the game in a simple way. Take some
player 7 and two alternatives z, y such that £Py. Add a message m; for a player 7 and a
message for each of the other players j # i, m;, such that

g(mi,m-;) = g(m;,m_;) forall m_; #m’,
glmi,m_;) =y
gmi,m.;) = =z

Now strategy m* is dominated at R. Of course, this is not the end of the story, since
it is now possible that (m'i,m*;) is a new undominated Nash equilibrium which still
produces the undesired outcome a ¢ f(R). To avoid this, we add can another message

for 4, m{ and another message for the other players j # 4,mj and do the same thing

again. If we repeat this an infinite number of times, we have created an infinite sequence
of strategies for i, each one of which is dominated by the next one in the sequence.
The complication in the proof is to show that in the process of doing this, we have
not disturbed the “good” undominated Nash equilibria at R and have not inadvertently
added some new undominated Nash equilibria. [

This kind of construction is illustrated in the following example.

Example 17 (from Palfrey and.Srivastava.1991a, p. 488-89)
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A={a,bc,d} N=2 R={R,/R'}

Ry = Ry R, =R,
a a
b b
cd c
d

F(R) ={a,b} F(R')={a}

It is easy to show that there is no implementation with a finite mechanism, and any
implementation must involve an infinite chain of dominated strategies for one player in
profile R'. One such mechanism is:

Player 2

My M M7 M

Player m? ¢ b d d

1 my ¢ b c d
4

Few would argue that mechanisms of this sort solve the implementation problem in
a satisfactory manner.?? This concern motivated the work of Jackson (1992) who raises

the issue of bounded mechanisms.?! A

20In fact, few would argue that any of the mechanisms used in the most general sufficiency theorems
are particularly appealing. '

ZABoundedness is not the first property of mechanisms that has been investigated. Hurwicz (1960)
suggests a numher of criteria for judging the.adequacy. of a-mechanism...Saijo (1988), McKelvey (1989),
Dutta, Sen, and Vohra (1994), Reichelstein and Reiter (1988) and others have argued that message
spaces should be as small as possible and have given results about how small the message spaces of
implementing mechanisms can be. Abreu and Sen (1990) argue that mechanisms should have a best
response property relative to the domain for which they are designed. Reichelstein (1984), Postlewaite
and Wettstein (1989), and Wettstein (1992) analyze continuity of outcome functions as a property of
implementing mechanisms.
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Definition 18 A mechanism is bounded relative to R if, for all R € R, and m; € M;, if
'm; is weakly dominated at R, then there ezists an undominated (at R) message m! € M;

that weakly dominates m; at R.

In other words, mechanisms that exploit infinite chains of dominated strategies, as
occurs in tailchasing constructions, are ruled out. Note that, like the best response
criterion, it is not just a property of the mechanism, but a joint restriction on the mech-
anism and the domain. Jackson?? (1992) shows that a weaker equilibrium notion than
Nash equilibrium, called “undominated strategies” has a similar property to undominated
Nash implementation, namely that essentially all social choice correspondences are imple-
mentable. He shows that if mechanisms are required to be bounded, then very restrictive
results reminiscent of the Gibbard-Satterthwaite theorem hold, so that almost no social
choice function is implementable via undominated strategies with bounded mechanisms.
However, these negative results do not carry over to undominated Nash implementation.

Following the work of Jackson (1992), Jackson, Palfrey, and Srivastava (1994) pro-
vide a characterization of undominated Nash implementation using bounded mechanisms
and requiring the best response property. They find that the boundedness restriction,
while ruling out some social choice correspondences, is actually quite permissive. First
of all, social choice correspondences that are Nash implementable are implementable
by bounded mechanisms (see also Tatamatami (1991) and Yamato (1993)). Second, in
economic environments with free disposal, any interior allocation rule is implementable.
Furthermore, there are many allocation rules that fail to be subgame perfect Nash im-
plementable that are implementable via undominated Nash equilibrium using bounded

mechanisms.

2.3 Virtual Implementation
2.3.1 Virtual Nash implementation

A mechanism virtually implements a social choice function?® if it can (exactly) implement
arbitrarily close approximations of that social choice function. The concept was first
introduced by Matsushima (1988). It is immediately obvious that, regardless of the
domain and regardless of the equilibrium concept, the set of virtually implementable
social choice functions contains the set of allimplementable social choice functions. What
is less obvious, is how much more is virtually implementable compared with what is
exactly implementable. It turns out that it makes a big difference.

22That is also the first paper to seriously raise the issue of mixed strategies. All of the results that
have been described so far in this paper are for pure strategy implementation. Only very recently have
results been appearing that explicitly address the mixed strategy problem. See for example the work by
Abreu and Matsushima (1992a) on virtual implementation.

23The work on virtual implementation limits attention to single valued social choice correspondences.
Since the results in this area are so permissive (i.e., few social choice functions fail to be virtually
implementable), this does not seem to be an important restriction.
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One way to see why so much more is virtually implementable can be seen by referring
back to Figure 3. That figure shows how the preferences R and R’ must line up in order for
monotonicity to have any bite in pure exchange economies. As can readily be seen, this is
not a generic picture. Rather, Figure 4 shows the generic case, where monotonicity places
no restrictions on the social choice at R’ if a = f(R). Virtual implementation exploits the
nongenericity of situations where monotonicity is binding.?* It does so by implementing
lotteries that produce, in equilibrium at R, f(R) with very high probability, and some
other outcomes with very low probability. '

In finite or countable economic environments, every social choice function is virtually
implementable if individuals have preferences over lotteries that admit a von Neumann-
Morgenstern representation and if there are at least three agents.? The result is proved
in Abreu and Sen (1991) for the case of strict preferences and under a domain restriction
that excludes unanimity among the preferences of the agents over pure alternatives. They
also address the 2-agent case, where a nonempty lower intersection property is needed.

A key difference between the virtual implementation construction and the Nash im-
plementation construction has to do with the use of lotteries instead of pure alternatives
in the test pairs. In particular, virtual implementation allows test pairs involving lotter-
ies in the neighborhood (in lottery space) of f(R) rather than requiring the test pairs to
ezactly involve f(R). It turns out that by expanding the first allocation of the test pair
to any neighborhood of f(R), one can always find a test pair of the sort required in the
definition of monotonicity.

There are several ways to illustrate why this is so. Perhaps the simplest is to con-
sider the case of von Neumann-Morgenstern preferences for lotteries. If an individual
maximizes expected utility, then his indifference surfaces in lottery space are parallel
hyperplanes. For the case of three pure alternatives, this is illustrated in Figure 6 below.

[FIGURE 6 HERE]

For this three alternative case, consider two preference profiles, R and R/, which
differ in some individual’s von Neumann-Morgenstern utility function. This means that
the slope of the indifference lines for this individual have changed. Accordingly, in every
neighborhood of every interior lottery in Figure 6, there exists a test pair of lotteries such
that this agent has a preference switch over the test pair of lotteries. Now consider a
social choice function that assigns a pure allocation to each preference profile, but which
fails to satisfy monotonicity. In other words, the social choice function assigns one of
the vertices of the triangle in Figure 6 to each profile. We can perturb this social choice

24This fact that monotonicity holds generically is proved formally in Bergin and Sen (1992). They
show for classical pure exchange environments with continuous, strictly monotone (but not necessarily
convex) preferences there exists a dense subset of utility functions that always “cross” (i.e., there are
never tangencies of the sort depicted in Figure 2).

25In fact, more general lottery preferences can be used, as long as they satisfy a condition that guaran-
tees individuals prefer lotteries that place more probability weight on more-preferred pure alternatives.
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function ever so slightly so that instead of assigning a vertex, it assigns an interior lottery,
z, arbitrarily close to the vertex. This “approximation” of the social choice function
satisfies monotonicity because there exists agent 7 (whose von Neumann-Morgenstern
utilities have changed), and a lottery y such that zR;yP/z. In this way, every (interior)
approximation of every pure social choice function in this simple example is monotonic
and hence (if veto power problems are avoided) implementable.

Abreu and Sen (1991) prove that this simple construction outlined above for the case
of von Neumann-Morgenstern preferences and |A| = 3 is very general. The upshot of this
is that moving from exact to virtual implementation completely eliminates the necessity
of monotonicity.

2.3.2 Virtual implementation in iterated removal of dominated strategies

An even more powerful result is established in Abreu and Matsushima (1992a). They
show that by requiring only virtual implementation, then in finite-profile environments
one can find mechanisms such that not only is there a unique Nash equilibrium that
approximately yields the social choice function, but the Nash equilibrium is strictly dom-
inance solvable. They exploit the fact that for each agent there is a function from his
possible preferences to lottery space, A, such that if R; # R, then h(R;)P)ih(R}) and
h(R})P!h(R;). The message space of agent i consists of a single report of i’s own pref-
erences and multiple (ordered) reports of the entire preference profile, with the final
outcome patching together pieces of a lottery, each piece of which is determined by some
portion of the reported profiles. The payoff function is then constructed so that falsely
reporting one’s own type as R’ at R will lead to individual ¢ receiving the g(R') lottery
instead of the g(R) lottery with some probability, so this false report is a strictly dom-
inated strategy. Incentives are provided so that subsequent?® reports of the profile will
“agree” with earlier reports in a particular way. The first defection from agreement is
punished severely enough to make it unprofitable to defect from the truthful self-reports
of the first component of the message space. The degree of approximation can then be
made as fine as one wishes simply by requiring a very large number of reported profiles.

Formally, a message for 4, is a K + 1 vector m; = (m?,m}, ..., m¥) where the first
component is an element of ¢’s set of possible preferences and the other K components
are each elements of the set of possible preference profiles. The outcome function is
then pieced together in the following way. Let € be some small positive number. With
probability €/I (where I is the number of players), the outcome is based only on m?,
and equals h(m?) so 7 is strictly better off reporting m{ honestly. With probability €2 /1
agent i is rewarded if, for all k = 1,...,K,mf = m® whenever m¥ = m?® for all j [ =i
for all h < k. That is, ¢ gets a small reward (in expected terms) for honestly revealing

26The term “subsequent” should not be interpreted as meaning that the profiles are reported se-
quentially, since the game is simultaneous-move. Rather, the vector of reported profiles is ordered, so
subsequent refers to reported profile with the next index number. Glazer and Rubinstein (1994) show
that there is a similar sequential game that can be constructed which is dominance solvable following

similar logic.
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his preference, and then gets an order of magnitude smaller reward for always agreeing
with the vector of first reports (including his own). These are the only pieces of the
outcome function that are affected by m°. Clearly for € small enough the first order loss
overwhelms any possible second order gain from falsely reporting m?. Thus messages
involving false reports of m!? are strictly dominated.

The remaining pieces of the outcome function (each of which is used with probability
(1—e—¢?)/K) correspond to the final K components of the messages, where each agent
is reporting a preference profile. If everyone agrees on the kth profile, then that k** piece
of the outcome function is simply the social choice function at that commonly reported
profile. For K large enough, the gain one can obtain from deviating and reporting
m¥ # m? in the k* piece can be made arbitrarily small. But the penalty from being the
first to report m¥ # m? is constant with respect to K, so this penalty will exceed any gain
from deviating when K is large. Thus deviating A = £ +1 can be shown to be dominated
once all strategies involving deviations at A < £+ 1 have been eliminated. Variations on
this “piecewise” approximation technique also appear in Abreu and Matsushima (1990)
where the results are extended to incomplete information (see below) and Abreu and
Matsushima (1994) where a similar technique is applied to exact implementation via
iterated elimination of weakly dominated strategies.?”

This kind of construction is quite a bit different from the usual Maskin-type of con-
struction used elsewhere in the proofs of implementation theorems. It has a number of
attractive features, one of which is the avoidance of any mixed strategy equilibria. In
other constructions, mixed strategies are usually just ignored. This can be problematic
as an example of Jackson (1992) shows that there are some Nash implementable social
choice correspondences that are impossible to implement by a finite mechanism without
introducing other mixed strategy equilibria. A second feature is that in finite domains
one can implement using finite message spaces. While this is also true for Nash imple-
mentation when the environment is finite, there are several examples that illustrate the
impossibility of finite implementation in other settings. Palfrey and Srivastava (1991a)
show that sometimes infinite constructions are needed for undominated Nash implemen-
tation, and Dutta and Sen (1994b) show that Bayesian Nash implementation in finite
environments can require infinite message spaces.

Glazer and Rosenthal (1992) raise the issue that in spite of the obvious virtues of the
implementing mechanism used in the Abreu and Matsushima (1992a) proof, there are
other drawbacks. In particular, Glazer and Rosenthal (1992) argue that the kind of game
that is implied by the mechanism is precisely the same kind of game that game theorists
have argued. as being. fragile, in the sense that the.predictions:of Nash equilibrium are
not a priori plausible. Abreu and Matsushima (1992b) respond that they believe iterated
strict dominance is a good solution concept for predictive®® purposes, especially in the

2Glazer and Perry (1992) show that this mechanism can be reconstructed as a multistage mechanism
which can be solved by backward induction. Glazer and Rubinstein (1993) propose that this reduces

the computational burden on the players.
28In implementation theory, it is the predictive value of the solution concept that matters. One can
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context of their construction. However, pfeliminary experimental findings (Sefton and
Yavas, 1993) indicate that in some environments the Abreu-Matsushima mechanisms

perform poorly.

This is part of an ongoing debate in implementation theory about the “desirability” of
mechanisms and/or solution concepts in the constructive existence proofs that are used
to establish implementation results. The arguments by critics are based on two premises:
1) equilibrium concepts, or at-least the ones that have been explored, do not predict
equally well for all mechanisms; and 2) the quality of the existence result is diminished
if the construction uses a mechanism that seems unattractive.  Both premises suggest

interesting avenues of future research.

An initial response to 1) is that these are empirical issues that require serious study,
not mere introspection. The obvious implication is that experimental?® work in game
theory will be crucial to generating useful predictive models of behavior in games. This
in turn may require a redirection of effort in implementation theory. For example, from
the game theory experiments that have been conducted to date, it is clear that limited
rationality considerations will need to be incorporated into the equilibrium concepts, as
will statistical (as opposed to deterministic) theories of behavior.3°

Possible responses to 2) are more complicated. The cheap response is that the imple-
menting mechanisms used in the proofs are not meant to be representative of mechanisms
that would actually be used in “real” situations that have a lot of structure. These are
merely mathematical techniques, and any mechanism used in a “real” situation should
exploit the special structure of the situation. Since the class of environments to which
the theorems apply is usually very broad, the implementing mechanisms used in the
constructive proofs must work for almost any imaginable setting. The question this
response begs is: for a specific problem of interest, can a “reasonable” mechanism be
found? The existence theorems do not-answer this question, nor are they intended to.

That is a question of specific application. So far, even with the alternative mechanisms of

Abreu-Matsushima, the mechanisms used in general constructive existence theorems are
impractical. However, some nice results for familiar environments exist (e.g., Crawford
1979, Moulin 1984, Jackson and Moulin 1990) that suggest we can be optimistic about
finding practical mechanisms for implementation in some common economic settings.

think of the solution concept as the planner’s model for predicting outcomes that will arise under different
mechanism and in different environments. If the model predicts inaccurately, then a mechanism will fail
to implement the planner’s targeted social choice function. :

29The use of controlled experimentation in settling these empirical questions is urged in Abreu and
Matsushima’s (1992b) response to Glazer and Rosenthal (1992).

-805ee, for example, McKelvey and Palfrey (1993).
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3 Implementation with Incomplete Information

This section looks at the extension of the results of section 3 to the case of incomplete
information. Just as most of the results above are organized around Nash equilibrium
and refinements, the same is done in this section, except the baseline equilibrium concept

is Harsanyi’s (1967-68) Bayesian equilibrium.!

3.1 The Type Representation

The main difference in the model structure with incomplete information is that a domain
specifies not only the set of possible preference profiles, but also the information each
agent has about the preference profile and about the other agents’ information. We
adopt the “type representation” that is familiar to literature on Bayesian mechanism

design (see, e.g., Myerson 1985).

An incomplete information domain3? consists of a set, I, of n agents, a set, A, of
feasible alternatives, a set of types, T;, for each agent ¢ € I, a von Neumann Morgenstern
utility function for each agent, u; : T X A — R, and a collection of conditional probability
distributions {g;(¢_;|t;), for each 7 € I and for each ¢; € T;. There are a variety of familiar
domain restrictions that will be referred to, when necessary, as follows:

1. Finite types: |Ti| < o0
2. Diffuse priors: ¢i(t=;|t;) > 0, for all s € I, for all t; € T},
and forall t_; € T_;
3. Private values:3 ui(ti, t—i,a) = ui(t;, ¢, a) for all 4,¢;,t-,t;,a
4. Independent types: q;(t—s|t;) = q;(t=;|th) for all 4,¢;,¢ ,,t_;, a

5. Value-distinguished types: For all 1,t;,t; € T;, t; # t},Ja, b such that
ui(ti,t—i, a) > u;(ti, 1, b)
and u; (t:, t_;, b) > ui(té, t_;, a)
forallt_; € T_;.

A social choice function (or allocation rule) f : T A assigns a unique outcome to each
type profile. A soctal choice correspondence, F, is a collection of social choice functions.
The set of all allocation rules in the domain is denoted by X, so in general, we have
f € F C X. A mechanism p =< M,g > is defined as before. A strategy for ¢ is a
function mapping T; into M;, denoted o; : T; — M;. We also denote type t; of player i’s
interim utility of an allocation rule z € X by:

Ui(SE, ti) = Et{ui(x(t), t) Iti}

31This should come as no surprise to the reader, since Bayesian equilibrium is simply a version of Nash
equilibrium, adapted to deal with asymmetries of information.

32Myerson (1985) calls this a Bayesian Collective Decision Problem.

33In this case, we simply write u;(¢;,a), since #’s utility depends only on his own type.
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‘where E; is the expectation over ¢. Similarly, given a strategy profile o in a mechanism
i, we denote type t; of player i’s interim utility of strategy o in p by:

Uio, 1) = Br{us(g(o (1)), 1)[2:}

3.2 Bayesian Nash Implementation

Bayesian Nash implementation, like Nash implementation has two components, incentive
compatibility and uniqueness. The main difference is that incentive compatibility imposes
genuine restrictions on social choice functions, unlike the case of complete information.
When players have private information, the planner must provide the individual with
incentives to reveal that information, in contrast to the complete information case, where
an individual’s report of his information could be checked against another individual’s
report of that information. Thus, while the constructions with complete information
rely heavily on mutual auditing schemes that we called “agreement mechanisms,” the
constructions with incomplete information do not.3*

Definition 19 A strategy o is a Bayesian equilibrium of p if, for all i and for allt; € T;

Ui(a,t;) > Ui(ol, 0_i,t;) for all o) : T; — M;

Definition 20 A social choice function f : T — A (or allocation rule x : T — A) is
Bayesian implementable if there is a mechanism p =< M, g > such that there exists a
Bayesian equilibrium of p and, for every Bayesian equilibrium, o, of M, f(t) = g(a(t))
forallteT.

Implementable social choice sets are defined analogously.

For the rest of this section, we restrict attention to the simpler case of diffuse types,
defined above. Later in the chapter, the extension of these results to more general

information structures will be explained.
Incentive Compatibility and the Bayesian Revelation Principle

Paralleling the definition for complete information, a social choice function (or al-
location rule) is called (Bayesian) incentive compatible if and only if it can arise as a

34There are special exceptions where mutual auditing schemes can be used, which include domains
in which there is enough redundancy of information in the group so that an individual’s report of the
state may be checked against the joint report of the other individuals. This requires a condition called
Non-Ezclusive Information (NEI). See Postlewaite and Schmeidler, 1986 or Palfrey and Srivastava, 1986.
Complete information is the extreme form of NEL

29



Bayesian equilibrium of some mechanism. The revelation principle (Myerson 1979, Har-
ris and Townsend 1981) is the simple proposition that an allocation rule z can arise as the
Bayesian equilibrium to some mechanism if and only if truth is a Bayesian equilibrium
of the direct3® mechanism, 4 =< T,z >. Thus, we state the following.

Definition 21 An allocation rule x is incentive compatible if, for all ¢ and for all t;,t; €
T;

Us(z,t:) > E{ui(z(t;, ), t)[t:}

Uniqueness

Just as the multiple equilibrium problem can arise with complete information, the
same can happen with incomplete information. In particular, direct mechanisms often
have this problem (as was the case with the “agreement” diréct mechanism in the com-
plete information case). Consider the following example.

Example 22 (an allocation rule investigated in Holmstrém and Myerson (1983))

There are two agents, each of whom has two types. Types are equally likely and
statistically independent and individuals have private values. The alternative set is A =
{a, b, c}. Utility functions are given by (u;; denotes the utility to type j of player ¢):

u11(a) = 2u11(b) = 1u11(c) =0 wui2(a) = 0uy2(b) = 4uge(c) =9

u21(a) = 2u21(b) = lugi(c) =0 uge(a) = 2uge(b) = luge(c) = —8

The following social choice function, f, is incentive compatible and efficient (where
fi; denotes the outcome when player 1 is type ¢ and player 2 is type j): '

fllza f12=b f21=c 'f22=b.

It is easy to check that for the direct revelation mechanism < T, f >, there is a
“¢truthful” Bayesian equilibrium where both players adopt strategies of reporting their
actual type,-i.e., . f-is-incentive compatible.--However, -there is-another equilibrium of
< T, f >, where both players always report type 2 and the outcome is always b. We call
such strategies in the direct mechanism deceptions, since such strategies involve falsely
reported types. Denoting this deceptive strategy profile as «, it defines a new social choice
function which we call f, defined by f,(t)f(c(t))t. This illustrates that this particular
allocation rule is not Bayesian Nash implementable by the direct mechanism. However,

35A mechanism is direct if M; = Ty for all § € I.
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it turns out to be possible to add messages, augmenting® the direct mechanism into
an “indirect” mechanism that implements f. One way to do this is by giving player 1
another pair of messages, call them “truth” and “lie” one of which must be sent along
with the report of his type. The outcome function is then defined so that g(m) = f(¢) if
the vector of reported types is ¢t and player one says “truth.” If player 1 says “lie,” then
g(m) = f(t1,ty) where ¢; is player 1’s reported type and t5 is the opposite of player 2’s
reported type. This is illustrated in Figure 7 below.

[FIGURE 7 HERE]

It is easy to check that if the players use the o deception above, then player 1 will
announce “lie,” which is not an equilibrium since player 2 would be better off always
responding by announcing type 1. In fact, simple inspection shows that there are no
longer any Bayesian equilibria that lead to social choice functions different from f, and
(truth, “truth”) is a Bayesian equilibrium®’ that leads to f.

Given that the incentive compatibility condition holds, the implementation problem
boils down to determining for which social choice functions it is possible to augment the
direct mechanism as in the example above, to eliminate unwanted Bayesian equilibria.
This is the so-called method of selective elimination (Mookherjee and Reichelstein 1990)
that is used in most of the constructive sufficiency proofs in implementation theory.
Again paralleling the complete information case, there is a simple necessary condition
for this to be possible, which is an “interim” version of Maskin’s monotonicity condition
(definition 6), called Bayesian monotonicity. JAN

Definition 23 A social choice correspondence F' is Bayesian monotonic if, for every
f € F and for every joint deception o : T — T such that fo & F,3i € I,t; € T;, and an
allocation rule y : T — A such that U;(fa, t;) < Ui(Ya,t:) and, for all ti € T;,Ui(f,t]) >

Ui(ya t;)

The intuition behind this condition is simpler than it looks. In particular, think of
the relationship between f and f, being roughly the same in the above definition as the
relationship between R and R/, the difference being that with asymmetric information,
we need to consider changes in the entire social choice function f, rather than limiting
attention to the particular change in type profile from R to R’ (or ¢ to t', in the type
notation). So, if f, &€ F (analogous to a ¢ F(R') in the complete information-formula-
tion), we need a test agent, 4, and a test allocation rule y (analogous to test allocation,
in monotonicity.definition), such.that 4's .(interim) -preference between f and y is the re-
verse of his preference between f, and y, (with the appropriate quantifiers and qualifiers
included). Thus the basic idea is the same, and involves a test agent and a test allocation
rule.

36The terminology “augmented” mechanism is due to Mookherjee and Reichelstein (1990).
37There is another Bayesian equilibrium that also leads to f. See Palfrey and Srivastava (1993).
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3.3 Necessary Condition for Bayesian Implementation

We are now ready to state the main result regarding necessary conditions®® for Bayesiaﬁ
implementation.

Theorem 24 If F' is Bayesian Nash implementable, then F' is Bayesian monotonic, and
every f € F is incentive compatible.

Proof: The necessity of incentive compatibility is obvious. The proof for necessity of
Bayesian monotonicity follows the same logic as the proof for necessity .of monotonicity
with complete information (see Theorem 8). [

3.4 Sufliciency Theorems

As with complete information, sufficient conditions generally require an allocation rule
to be in the social choice correspondence if there is nearly unanimous agreement among
the individuals about the “best” allocation rule. This is the role of NVP in the original
Maskin sufficiency theorem. There are two ways to guarantee this.. The first way (and
by far the simplest) is to make a domain assumption that avoids the problem by ruling
out preference profiles where there is nearly unanimous agreement. The prototypical
example of such a domain is a pure exchange economy. In that case, there is a great
deal of conflict across agents, as each agent’s most preferred outcome is to be allocated
the entire societal endowment, and this most preferred outcome is the same regardless
of the agent’s type. Another related example includes the class of environments with
sidepayments using a divisible private good that everyone values positively, the best
known case being quasi-linear utility. We present two sufficiency results, one for the case
of pure exchange economies, and the second for a generalization. We assume throughout
that information is diffuse and n > 3.

-Consider a pure exchange economy with asymmetric information, F, with L goods
and n individuals, where the societal endowment?® is given by w = (wy,...,wz). The
alternative set, A, is the set of all nonnegative allocations of w across the n agents.*°
The set of feasible allocation rules mapping 7" into A are denoted X.

38There are other necessary conditions. For example, F' must be closed with respect to common
knowledge concatenations. See Postlewaite and Schmeidler (1986) or Palfrey and Srivastava (1993) for
details.

39We will not be addressing questions of individual rationality, so the initial allocation of the endow-
ment is left unspecified.

400ne could permit free disposal as well, but this is not needed for the implementation result. The
constructions by Postlewaite and Schmeidler (1986) and Palfrey and Srivastava (1989a) assume free
disposal. We do not assume it here, but do assume diffuse information. Free disposability simplifies the
constructions when information is not diffuse, by permitting destruction of the entire endowment (i.e.,
all agents receive 0) when the joint reported type profile is not consistent with any type profile in T.
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Theorem 25 Assume n > 3 and information is diffuse. A social choice function z € X
18 Bayesian Nash implementable if and only if it satisfies incentive compatibility and
Bayestan monotonicity.

Proof: Only if follows from Theorem 24. It is only slightly more difficult. Once again, we
use a variation on the agreement/integer game, adapted to the incomplete information
framework. Notice, however, that there is always “agreement” with diffuse types, since
each player is submitting a different component of the type profile, and all reported type
profiles are possible. Each player is asked to report a type and either an allocation rule
that is constant in his own type (but can depend on other players’ types) or a nonnegative
_integer. Thus:

Mi = TZZE{X_fL U {0, 1, . }}

Where X_; denotes the set of allocation rules that are constant with respect to ¢;. The
agreement region is the set of message profiles where each player sends a reported type
and “0.” The unilateral disagreement region is the set of message profiles where exactly
one agent reports a type and something other than “0.” Finally, the disagreement region
is the set of all message profiles with at least two agents failing to report “0.” In the
agreement region, the outcome is just z(t), where ¢ is the reported type profile. In the
unilateral disagreement region the outcome is also just z(t), unless the disagreeing agent,
i, sends y € X_; with the property that U;(z,t)) > U;(y,ti) for all ¢/ € T;. In that
case, the outcome is y(t). In the disagreement region, the agent who submits the highest
integer®! is allocated w and everyone else is allocated 0.

Notice how the mechanism parallels very closely the complete information mechanism.
The structure of the unilateral disagreement region is such that if all individuals are

reporting truthfully, no- player can unilaterally falsely report and or disagree and be

better off. By incentive compatibility it does not pay to announce a false type. The fact
that y does not depend on the disagreer’s types implies that it doesn’t pay to report y
and a false (or true) type. Therefore, there is a Bayesian equilibrium in the agreement
region, where all players truthfully report their types. There can be no equilibrium
outside the agreement region, because there would be at least two agents each of whom
could unilaterally change their message and receive w. Thus the only possible other
equilibria that might arise would be in the agreement region, where agents are using
a joint deception «. But the Bayesian monotonicity condition (which f satisfies by
assumption) says that either z, = z or there exists a y, and ¢, and a t;, such that
Ui(z,t) > Us(y, t}) for all t; € T; but U;(Ya, t:) > Ui(2a,t:). Since it is easy to project
y onto X _; (see Palfrey and Srivastava 1993) and preserve these inequalities, it follows
that ¢ is better off deviating unilaterally and reporting y instead of “0.” |

411n this region, if a player sends an allocation instead of an integer, this is counted as “0.” Ties are
broken in favor of the agent with the lowest index.
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The extension of the above result to more general environments is simple, as long as
individuals have different “best elements” that do not depend on their type. For each 1,
suppose that there exists an alternative b; such that U;(b;,t) > Uj(a,t) for all a € A and
t € T, and further suppose that for all i, j it is the case that U;(b;,t) > U;(bj,t) for all
t € T. If this condition holds, we say players have distinct best elements.

Theorem 26 If n > 3, information is diffuse and players have distinct best elements,
then f is Bayesian implementable if and only if f is incentive compatible and Bayesian

monotonic.

Proof: Identical to the proof of Theorem 25, except in the disagreement region the
outcome is b;, where 7 is winner of the integer game. [

Jackson (1991) and Matsushima (1990) show that the condition of distinct best el-
ements can be further weakened, and their result is summarized in Palfrey and Srivas-
tava (1993, p. 35). An even more general version, that considers nondiffuse as well as
diffuse information structures is in Jackson (1991). That paper identifies a condition
that is a hybrid between Bayesian monotonicity and an interim version of NVP, called
monotonicity-no-veto (MNV). The earlier papers by Postlewaite and Schmeidler (1986)
and Palfrey and Srivastava (1987, 1989a) also consider nondiffuse information structures.

Dutta and Sen (1991b) provide a sufficient condition for Bayesian implementation,
when n > 3 and information is diffuse, that is even weaker than the MNV condition of
Jackson (1991). They call this condition extended unanimity, and it, like MNV, incor-
porates Bayesian monotonicity. They also prove that when this condition holds and T
is finite, then any incentive compatible social choice function can be implemented using
a finite mechanism. They do this using a variation on the integer game, called a modulo
game,?? which accomplishes the same thing as an integer game but only requires using
the first n positive integers.

Dutta and Sen (1994b) raise an interesting point about the size of the message space
that may be required for implementation of a social choice function. They present an
example of a social choice function that fails their sufficiency condition (it violates una-
nimity and there are only two agents), but is nonetheless implementable via Bayesian
equilibrium. But they are able to show that the only implementing mechanisms use
infinite message spaces, in spite of the fact that both A and T are finite.

Dutta and Sen (1994a) extend their general characterization of Bayesian implementable
social choice correspondences when n > 3 to the n = 2 case, using an interim ver-
sion of the nonempty lower intersection property that they used in their n = 2 char-
acterization with complete information (Dutta and Sen, 1991a). This complements
some earlier work on characterizing implementable social choice functions by Mookher-
jee and Reichelstein (1990). Dutta and Sen (1994a) extend these results to characterize

42The modulo game is due to Saijo (1988) and is also used in McKelvey (1989) and elsewhere. A
potential weakness of a modulo game is that it typically introduces unwanted mixed strategy equilibria
that could be avoided by the familiar greatest-integer game.
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Bayesian implementable social choice correspondences for the n = 2 case, for “economic
) 943

environments.

All of the results described above are restricted (either explicitly or implicitly) to
finite sets of player types. Obviously for many applications in economics this is a strong
requirement. Duggan (1994b) provides a rigorous treatment of the many difficult tech-
nical problems that can arise when the space of types is uncountable. He extends the
results of Jackson (1991) to very general environments, and identifies some new, more
inclusive conditions that replace previous assumptions about best elements, private val-
ues, and economic environments. The key assumption he uses is called interiority, which

is satisfied in most applications.

3.5 Implementation using refinements of Bayesian equilibrium

Just as in the case of complete information, refinements permit a wider class of social
choice functions to be implemented. These fall into two classes: dominance based refine-
ments using simultaneous-move mechanisms, and sequential rationality refinements using
sequential mechanisms. In both cases, the results and proof techniques have similarities
to the complete information case.

3.5.1 Undominated Bayesian equilibrium

The results for implementation using dominance refinements in the normal form are lim-
ited to undominated Bayesian implementation, where a nearly complete characterization
is given in Palfrey and Srivastava (1989b). An undominated Bayesian equilibrium is a
Bayesian equilibrium where no player is using a weakly dominated strategy. There are
several results, some positive and some negative. First, in private value environments
with diffuse types and value-distinguished types, any incentive compatible allocation rule
satisfying no veto power is implementable via undominated Bayesian equilibrium. The
proof assumes the existence of best and worst elements** for each type of each agent,
but does not require No Veto Power. They also show that with non-private values, some
additional very strong restrictions are needed, and, moreover, the assumption of value

distinction is critical.#5

43The term economic is vague. “Informally speaking, an economic environment is one where it is
possible to make some individual strictly better off from any given allocation in a manner which is
independent of her type. This hypothesis, while strong, will be satisfied if there is a transferable private
good in which the utilities-of-both individuals ‘arestrictly increasing.” (Dutta and Sen, 1994a, p. 52.

44Notice that if A is finite or more generally if A is compact and preferences are continuous, then best
and worst elements exist. The proof can be extended to cover some special environments where best
elements do not exist, such as the quasi-linear utility case.

45The assumption of value distinction is stronger than might appear. It rules out environments where
two types of an agent differ only in their beliefs about the other agents. One can imagine some natural
environments where value distinction might be violated, such as financial trading environments, where
a key feature of the information structure involves what agents know about what other agents know.
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Two simple voting public goods examples illustrate both the power and the limitations
(with common values) of the undominated refinement.

Example 27 There are three agents, two feasible outcomes, A = {a, b}, private values,
independent types, and each player can be one of two types. Type « strictly prefers a to
b and type (3 strictly prefers b to a, and the probability of being type « is ¢, with ¢*> >= %
The “best solution” according to almost any set of reasonable normative criteria is to
chose a if and only if at least two agents are type a. Surprisingly, this “majoritarian”
solution, while incentive compatible, is not implementable via Bayesian equilibrium. It
is fairly easy to show that for any mechanism that produces the majoritarian solution as
a Bayesian equilibrium that mechanism will have another equilibrium in which outcome
b is produced at every type profile. However, it is easy to see that the majoritarian
solution is implementable via undominated Bayesian equilibrium, since it is the unique
undominated Bayesian equilibrium?* outcome in the direct mechanism. A

Example 28 This is the same as Example 27 (two feasible outcomes, three agents, two
independent types and type o occurs with probability ¢> > %), except there are common
values.*” The common preferences are such that if a majority of agents are type «, then
everyone prefers a to b, and if a majority of agents are type (3, then everyone prefers b to a.
We call these “majoritarian preferences.” Obviously, there is a unique best social choice
function for essentially any non-malevolent welfare criterion, which is the majoritarian
(and unanimous, as wellll) solution: choose a if and only if at least two agents are type

«.

First observe that because of the common values feature of this example, players no
longer have a dominant strategy in the direct game for agents to honestly report their true
type. (Of course, truth is still a Bayesian equilibrium of the direct game.) One can show
(Palfrey and Srivastava 1989b) that this social choice function is not even implementable
in undominated Bayesian equilibrium. In particular, any mechanism which produces
the majoritarian solution as an undominated Bayesian equilibrium always has another
undominated Bayesian equilibrium where the outcome is always b. A

The point of Example 28 is to illustrate that with common values, using refinements
may have only limited usefulness in a Bayesian framework. We know from the work in
complete information that implementation requires the existence of test agents and test
pairs of allocations that involve (often delicate) patterns of preference reversal between
preference profiles. Analogously, in the Bayesian setting such preference reversals must
occur across type profiles. With private values, such preference reversals are easy to find.
With common values and/or non-value-distinguished types, such preference reversals
often simply do not exist, even in very natural examples of social choice functions that

46Notice that it is actually a dominant strategy equilibrium of the direct mechanism. This example
illustrates how it is possible for an allocation rule to be dominant strategy implementable (and strategy

proof), but not Bayesian Nash implementable.
4By common values we mean that every agent has the same type-contingent preferences. A related
mechanism design problem is explored in more depth by Glazer and Rubinstein (1994).
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satisfy No Veto Power and N > 2. We turn next*® to the question of implementation
using sequential rationality refinements, where results parallel (to an extent) the results
for subgame perfect implementation.

For virtual implementation, Abreu and Matsushima have an extension of their com-
plete information paper on the use of iterated elimination of strictly dominated strategies
(Abreu and Matsushima 1990) for implementation in incomplete information environ-
ments. They show that, under a condition they call measurability and some additional
minor restrictions on the domain, any incentive compatible social choice function de-
fined on finite domains can be virtually implemented by iterated elimination of strictly
dominated strategies. They conjecture in Abreu and Matsushima (1994) that with some
additional assumptions (such as the ability to use small monetary transfers) one can
obtain exact implementation via iterated elimination of weakly dominated strategies in
finite incomplete information domains.

Duggan (1994a, 1995a) looks at the related issue of virtual implementation in Bayesian
equilibrium (rather than iterated elimination of dominated strategies). He shows that
the measurability of Abreu and Matsushima (1990) is not necessary for virtual Bayesian
implementation. With a mild domain restriction,*® Bayesian incentive compatibility is
necessary and sufficient in environments where there exists some uniquely®® Bayesian
incentive compatible allocation rule. An analogous result is established for dominant
strategy implementation, using a similar proof technique.

3.5.2 Implementation via sequential equilibrium

There are two papers that partially characterize the set of implementable social choice
functions for incomplete information environments using the equilibrium refinement of
sequential equilibrium. The main idea behind these characterizations is the same as the
ideas behind the results for subgame perfect equilibrium implementation under conditions
of complete information. Instead of requiring a test pair involving the social choice
function, z, as is required in Bayesian monotonicity, all that is needed is some (interim)
preference reversal between some pair of allocation rules, plus an appropriate sequence
of allocation rules that indirectly connect z with the test pair of allocation rules.

The details of the conditions analogous to indirect monotonicity for incomplete in-
formation are messy to state, because of quantifiers and qualifiers that relate to the
posterior beliefs an agent could have at different stages of an extensive form game in

48There isa second -approach to using dominance based refinements in games of incomplete infor-
mation, which is virtual implementation via iterated elimination of dominated strategies (Abreu and
Matsushima 1990). Results parallel their findings for complete information, and the differences are dis-
cussed in the Palfrey and Srivastava (1993) monograph. Duggan (1994a) has extended those results to
allow for continuous types.

49The restriction on the environment is that there must exist some Bayesian incentive compatible
allocation rule whose associated direct mechanism has a unique equilibrium.

50That is, truth is the unique equilibrium of the allocation rule’s direct mechanism.
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which different players are adopting different deceptions. However, the intuition behind
the condition is similar to the intuition behind Condition ¢ in Abreu and Sen (1990).

As with the necessary and sufficient results for Bayesian implementation, results are
easiest to state and prove for the special case of economic environments, where No Veto
Power problems are assumed away and where there are at least three agents.

Bergin and Sen (1993) have some results for this case. They identify a condition
which is sufficient for implementation by sequential equilibrium in a two-stage game.
That paper also makes the point that with incomplete information there exist social
choice functions that are implementable sequentially, but are not implementable via
undominated Bayesian equilibrium (or via iterated dominance), and are not even virtually
implementable. This contrasts with the complete information case, where that any social
choice function in economic environments is implementable via subgame perfect Nash
equilibrium is also implementable via undominated Nash equilibrium. They are able to
obtain these very strong results by showing that the “consistent beliefs” condition of
sequential equilibrium can be exploited to place restrictions on equilibrium play in the
second stage of the mechanism.

Baliga (1993) also looks at implementation via sequential equilibrium, limited to
finite stage extensive games. His paper makes additional restrictions of private values
and independent types, which lead to a significant simplification of the analysis.

A more general approach is taken in Brusco (1993) who does not limit himself to stage
games nor to economic environments. He looks at implementation via perfect Bayesian
equilibrium and obtains the incomplete information equivalent to indirect monotonicity
which he calls “Condition f+.” This condition is then combined with No Veto Power in a
manner similar to Jackson’s (1991) monotonicity-no-veto condition to produce sequential
monotonicity-no-veto. His main theorem5! is that any incentive compatible social choice
function satisfying SMNV is implementable in perfect Bayesian equilibrium. He also
identifies a weaker condition than 8+ (called condition £), which he proves is necessary
for implementation in perfect Bayesian equilibrium. However, Brusco’s (1993) results
are weaker than Bergin-Sen (1993) because his conditions on the requisite sequence of
test allocations include a universal quantifier on beliefs that makes it much more difficult
to guarantee existence of the sequence. Bergin-Sen show that the very tight condition
of belief consistency can replace the universal quantifier. Loosely speaking, Brusco’s
results exploit only the sequential rationality part of sequential equilibrium, while Bergin-
Sen exploit both sequential rationality and belief consistency. This seemingly minor
distinction actually makes quite a difference in proving what can be implemented.

Duggan (1995b) focuses on sequentially rational implementation®? in quasi-linear en-

51The main theorem is stated more generally. In particular he allows for social choice correspondences,
which means that the additional restriction of closure under the common knowledge concatenation is

required.
52Duggan (1995b) defines sequentially rational implementation as implementation simultaneously in

Perfect Bayesian Equilibrium and Sequential Equilibrium.
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vironments where the outcomes are lotteries over a finite set of public projects (and trans-
fers). He shows that any incentive compatible social choice function is implementable in
private values environments with diffuse priors over a finite type space if there are three
or more agents. He also shows that these results can be extended, with some modifica-
tions, in a number of directions: two agents; the domain of exchange economies; infinite
type spaces; bounded transfers; nondiffuse priors; and social choice correspondences. He
also shows how a “belief revelation mechanism” can be used if the planner does not know
the agents prior beliefs, as long as these prior beliefs are common knowledge among the

agents.

4 Open Issues

Open problems in implementation theory abound. Several issues have been explored at
only a superficial level, and others have not been studied at all. Some of these have been
mentioned in passing in the previous sections. There are also numerous untied loose
ends having to do with completing full characterizations of implementability under the
solution concepts discussed above.

Implementation using perfect information extensive forms and voting trees

Among these uncompleted problems is implementation via backward induction and
the closely related problem of implementing using voting trees. If this class of implemen-
tation problems has a shortcoming, it is that extensions to the more challenging problem
of implementation in incomplete information environments are limited. The structure of
the arguments for backward induction implementation fails to extend nicely to incom-
plete information environments, as we know from the literature on sophisticated voting
with incomplete information (e.g., Ordeshook and Palfrey 1988).

Renegotiation and information leakage

Many of the above constructions have the feature that undesirable (e.g., Pareto ineffi-
cient, grossly inequitable, or individually irrational) allocations are used in the mechanism
to break unwanted equilibria. The simplest examples arise when there exists a universally
bad outcome that is reverted too in the event of disagreement. This is not necessarily a
problem in some settings, where the planner’s objective function may conflict with Pareto
optimality from the point.of view .of the. agents.(as in many principal-agent problems).
However, in some settings, most obviously exchange environments, one usually thinks
of the mechanism as being something that the players themselves construct in order to
achieve efficient allocations. In this case, one would expect agents to renegotiate out-
comes that are commonly known among themselves to be Pareto dominated.’® Maskin

530ne doesn’t have to look very hard to find counterexamples to this in the real world. Institutional
structures (such as courts) are widely used to enforce ex post inefficient allocations in order to provide
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and Moore (1989) examine the implications of requiring that the outcomes always to be
Pareto optimal. This approach has the virtue of avoiding mixed strategy equilibria and
also avoiding implausibly bad outcomes off the the equilibrium path. It has the defect of
implicitly permitting the outcome function of the mechanism to depend on the preference
profile, which makes the specification of renegotiation somewhat arbitrary. Ideally, one
would wish to specify a bargaining game that would arise in the event that an outcome is
reached which is inefficient.?* But then the bargaining game itself should be considered
part of the mechanism, which leads to an infinite regress problem.

More generally, the planner may be viewed directly as a player, who has state-
contingent preferences over outcomes, just as the other players do. The planner has
prior beliefs over the states or preference profiles (even if the players themselves have
complete information). Given these priors, the planner has induced preferences over the
allocations. This presents a commitment problem for the planner, since the outcome
function must adhere to these preferences. This places restrictions both on the mecha-
nism that can be used and also on the social choice functions that can be implemented.
Several papers have been written recently on this subject, which vary in the assumptions
they make about the extent to which the planner can commit to a mechanism, the extent
to which the planner may update his priors after observing the reported messages, and
the extent to which the planner participates directly in the mechanism. The first paper
on this subject is by Chakravorti, Corchon, and Wilkie (1994) and assumes that the
social choice function must be consistent with some prior the planner might have over
the states, which implies that the outcome function is restricted to the range of the social
choice function. The planner is not an active participant and does not update beliefs
based on the messages of the players, nor does he choose an outcome that is optimal
given his beliefs. Baliga, Corchon, and Sjdstrém (1995) obtain results with an actively
participating planner,®> who acts optimally, given the messages of the players and can-
not commit ex ante to an outcome function. Thus, the mechanism consists of a message
space for the players and a planner’s strategy of how to assign messages to outcomes.
This strategy replaces the familiar outcome function, but is required to be sequentially
rational. Thus, the mechanism is really a two-stage (signalling) game, and an equilib-
rium of the mechanism must satisfy the the conditions of Perfect Bayesian Equilibrium.
Baliga and Sj6strém (1995) obtain further results on interactive implementation with an
uninformed planner who can commit to an outcome function, and who also participates
in the message-sending stage.

Another sort of renegotiation arises in incomplete information settings if the social
choice function calls for allocations that are known by at least some of the players to
be inefficient. In-particular; for certain' type-realizations; -some players may be able
to propose to replace the mechanism with a new one that all other types of all other
players would unanimously prefer to the outcome of the social choice function. This

salient incentives. Some forms of criminal punishments, such as incarceration and physical abuse, fall

into this category.
54Gee, for example, Aghion, Dewatripont, and Rey (1994) or Rubinstein and Wolinsky (1991).
55That is, the planner also submits messages. They call this “interactive implementation.”
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problem of lack of durability®® (Holmstrom and Myerson 1983) opens up another kind of
‘renegotiation problem, which may involve the potential leakage of information between
agents in the renegotiation process. This has been addressed to some extent in principal-
agent settings by Maskin and Tirole (1992) and in exchange economies by Palfrey and
Srivastava (1993).

Also related to this kind of renegotiation is the problem of preplay communication
among the agents. It is well known that preplay communication can expand the set of
equilibria of a game, and a similar thing can happen in mechanism design. This can occur
because information can be transmitted by preplay communication and because commu-
nication opens up possibilities for coordination that were impossible to achieve with
independent actions. In nearly all of the implementation theory research, it is assumed
that preplay communication is impossible (i.e., the message space of the mechanism spec-
ifies all possible communication). An exception is Palfrey and Srivastava (1991b), which
explicitly looks at designing mechanisms that are “communication proof,” in the sense
that the equilibria with arbitrary kinds of preplay communication are interim-payoff-
equivalent to the equilibria without preplay communication. They show that for a wide
range of economic environments one can construct communication proof mechanisms to
implement any interim efficient, incentive compatible allocation rule.

Implementation in dynamic environments

Many mechanism design problems and allocation problems involve intertemporal al-
locations. One obvious example is bargaining when delay is costly. In that case both
the split of the pie and the time of agreement are economically important components of
the final allocation. Recently, Rubinstein and Wolinsky (1991) look at the renegotiation
proof problem in implementation theory by appending an infinite horizon bargaining
game with discounting to the end of each inefficient terminal node. This is an alterna-
tive approach to the same renegotiation problem that Maskin and Moore (1989) were
concerned about. However, like the rest of implementation theory, their interest is in im-
plementing static allocation rules (i.e., no delay) in environments that are (except for the
final bargaining stages) static. This is true for all the other sequential game constructions
in implementation theory: time stands still while the mechanism is played out.

" Intertemporal implementation raises additional issues. Consider, for example, a set-
ting in which every day the same set of agents is confronted with the next in a series
of connected allocation problems, and there is discounting. A preference profile is not
an infinite sequence of “one shot” profiles corresponding with each time period. A so-
cial choice function-is a mapping from the set of these profile sequences into allocation
sequences. Renegotiation proofness would impose a natural time consistency constraint
that the social choice function would have to satisfy from time ¢ onward, for each t. With
this kind of structure one could begin to look at a broader set of economic issues related
to growth, savings, intertemporal consumption, and so forth.

56Closely related to this are the notions of ratifiability and secure allocations (Cramton and Palfrey
1994) and stable allocations (Legros 1990).

41



There are some very simple intertemporal allocation problems that could be investi-
gated as a first step. One example is the one-sector growth model of Boylan et al. (1990)
which compares different political mechanisms for deciding on investments. As a sec-
ond example, Bliss and Nalebuff (1984) look at an intertemporal public goods problem.
There is a single indivisible public good which can be produced once-and-for-all at any
date t = 1,2,3..., and preferences are quasilinear with discounting. The production
technology requires a unit of private good for the public good to be provided. Thus,
an allocation is a time at which the public good is produced and an infinite stream of
taxes for each individual, as a function of the profile of preferences for the public good.
Bliss and Nalebuff (1984) look at the equilibrium of a specific mechanism, the voluntary
contribution mechanism. At each point in time an individual must decide whether or not
to privately pay for the public good, depending on their type. The unique equilibrium is
for types that prefer the public good more strongly to pay earlier. Thus the public good
is always produced by having the individual with the strongest preference for the public
good paying for it, and the time of delay before production depends on what the highest
valuation is and on the distribution of types. One could generalize this as a dynamic
implementation problem, which would raise some interesting questions: What other al-
location rules are implementable in this setting? Is the Bliss-Nalebuff (1984) equilibrium
allocation rule interim incentive efficient?57

Robustness of the mechanism

Implementation theory (even the relaxed problem of virtual implementation) so far
has investigated special deterministic models of individual behavior. The key assumption
for obtaining results is that the equilibrium model that is assumed to govern individual
behavior under any mechanism is exzactly correct. Many of the mechanisms have no room
for error. One would generally think of such fragile mechanisms as being nonrobust.
Similarly (especially in the Bayesian environments) the details of the environment, such
as the common knowledge priors of the players and the distribution of types, are known
to the planner precisely. Often mechanisms rely on this exact knowledge. It should be
the case that if the model of behavior or the model of the environment is not completely
accurate, the equilibrium behavior of the agents does not lead to outcomes too far from
the social choice function one is trying to implement.

This problem suggests a need to investigate mechanisms that either do not make
special use of detailed information about the environment (such as the distribution of
types) or else look at models that permit statistical deviation from the behavior that
is predicted under the equilibrium model. In the latter case, it may be more natural
to think of social choice functions as type-contingent random variables rather than as
deterministic functions of the type profile. Related to the problem of robustness of
the mechanisms and the possible use of statistical notions of equilibrium is bounded
rationality. The usual rationale for purely rational modelling in economics is that it is
a good first cut on the problem and may often capture much of the reality of a given

57Notice that it is not ex post efficient since there is always delay in producing the public good.
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economic situation. In any case, most economists regard the fully rational equilibrium
as an appropriate benchmark in most situations. Unfortunately, since implementation
theorists and mechanism designers get to choose the economic game in very special ways,
this rationale loses much of its punch. It may well be that the games where rational
models predict poorly are precisely those games that implementation theorist are prone
to designing. Integer games, modulo games, “grand lottery” games like those used in
virtual implementation proofs, and the enormous message spaces endemic to all the
general constructions would seem for the most part to be games that would challenge the
limits of even the most brilliant and experienced game player. If such constructions are
unavoidable we really need to start to look beyond models of perfectly rational behavior.
Even if such constructions are avoidable, we have to be asking more questions about the
match (or mismatch) between equilibrium concepts as predictive tools and limitations

on the rationality of the players.
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Outcome = b

Outcome = a Outcome = ¢

Figure 5. Game tree for example 2.
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Figure 6. Vertices a, b, and c represent pure alternatives, with all other points -

representing lotteries over those alternatives. The indifference curves passing
through lottery z for agent ¢ under two Von Neumann-Morgenstern utility
functions are lablled R; and R}, with the direction of preference marked with
arrows. Lottery y satisfies zR;yP/z.
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Figure 7. Implementing mechanism for Holmstrém-Myerson example
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