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Implementation Theory* 

Thomas R. Palfrey 

1 Introduction 

Implementation theory is an area of research in economic theory that rigorously investi
gates the correspondence between normative goals and institutions designed to achieve 
{implement) those goals. More precisely, given a normative goal or welfare criterion for 
a particular class of allocation pro bl ems (or domain of environments) it formally char
acterizes organizational mechanisms that will guarantee outcomes consistent with that 
goal, assuming the outcomes of any such mechanism arise from some specification of 
equilibrium behavior. The approaches to this problem to date lie in the general domain 
of game theory because, as a matter of definition in the implementation theory litera
ture, an institution is modelled as a mechanism, which is essentially a non-cooperative 
game. Moreover, the specific models of equilibrium behavior are usually borrowed from 
game theory. Consequently, many of the same issues that intrigue game theorists are 
the focus of attention in implementation theory: How do results change if informational 
assumptions change? How do results depend on the equilibrium concept governing stable 
behavior in the game? How do results depend on the distribution of preferences of the 
players or the number of players? Also, many of the same issues that arise in social choice 
theory and welfare economics are also at the heart of implementation theory: Are some 
first-best welfare criteria unachievable? What is the constrained second-best solution? 
What is the general correspondence between normative axioms on social choice func
tions and the possibility of strategic manipulation, and how does this correspondence 
depend on the domain of environments? What is the correspondence between social 
choice functions and voting rules? 

In order to limit this chapter to manageable proportions, attention will be mainly fo
cussed on the part of implementation theory using non-coQperative equilibrium concepts 
that follows the seminal (unpublished) paper by Maskin (1977) . This body of research 
has its roots in the foundational work on decentralization and economic design of Hayek, 

*This is prepared for Handbook of Game Theory, Vol. 8 (R. Aumann and S .  Hart, eds. ) .  I thank
John Duggan, Matthew Jackson, and Sanjay Srivastava for helpful comments and many enlightening 
discussions on the subject of implementation theory. Suggestions from Robert Aumann, Sergiu Hart 
and two anonymous readers are also gratefully acknowledged. I also wish to thank the National Science 
Foundation for its finanical support. 



Koopmans, Hurwicz, Reiter, Marschak, Radner, Vickrey and others that dates back more 
than half a century. 

The limitation to this somewhat restricted subset of the enormous literature of imple
mentation theory and mechanism design excludes three basic categories of results. The 
first category is implementation via dominant strategy equilibrium, perhaps more famil
iarly known as the characterization of strategyproof mechanisms. This research, mainly 
following the seminar work of Gibbard (1973) and Satterthwaite (1975) has close connec
tions with social choice theory, and for that reason has already been treated in some depth 
in Chapter 31 of this Handbook (Vol. 2). The second category excluded isjmplementation 
via solution concepts that allow for coalitional behavior, most notably, strong equilibrium 
(Dutta and Sen 1991c) and coalition-proof equilibrium (Bernheim, Peleg, and Whinston 
1987) . The third category involves practical issues in the design of mechanisms. The 
is a vast literature identifying specific classes of mechanisms such as divide-and-choose, 
sequential majority voting, auctions, and so forth, and studying/characterizing the range 
of social choice rules that are implementable using such mechanisms. Most of these topics 
are already covered in some detail in other chapters of this Handbook. 

Later in this chapter we discuss practical aspects of implementation, as it relates to 
the specific mechanisms used in the constructive proofs of the main theorems. But a 
few introductory remarks about this are probably in order. In contrast to the literature 
devoted to studying classes of "natural" mechanisms, the most general characterizations 
of implementable social choice rules often resort to highly abstract mechanisms, with 
little or no concern for practical application. The reason for this is that the mechanisms 
constructed in these theorems are supposed to apply to arbitrary implementable social 
choice r·ules. A typical characterization result in implementation theory takes as given 
an equilibrium concept (say, subgame perfect Nash equilibrium) and tries to identify 
necessary and sufficient conditions for a social choice rule to be implementable, under 
minimal domain restrictions on the environment. The method of proof (at least for 
sufficiency) is to construct a mechanism that will work for any implementable social 
choice rule. That is, a single game form is identified which will implement all such rules, 
under the specified equilibrium concept. It should come as no surprise that this often 
involves the construction of highly abstract mechanisms. 

A premise of the research covered in this chapter is that to create a general foundation 
for implementation theory it makes sense to begin by 'identifying general conditions on 
social choice rules (and domains and equilibrium concepts) under which there exists some 
implementing mechanism. In this sense it is appropriate to view the highly abstract 
mechanisms 1IlillB-8S .. :vehicles .for .proving existence.theorems than as specific suggestions 
for the nitty gritty details of organizational design. This is not to say that they provide 
no insights into the principles of such design, but rather to say that for most practical 
applications one could (hopefully) strip away a lot of the complexity of the abstract 
mechanisms. Thus a natural next direction to pursue, particularly for those interested in 
specific applications, is the identification of practical restrictions on mechanisms and the 
characterization of social choice rules that can be implemented by mechanisms satisfying 
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such restrictions. Some research in implementation theory is beginning to move in this 
direction, and, by doing so, is beginning to bridge the gap between this literature and 
the aforementioned research which focuses on implementation using very special classes 
of procedures such as binary voting trees and bargaining rules. 

1.1 The basic structu_re of the implementation problem 

The simple structure of the general implementation problem provides a convenient way to 
organize the research that.has been conducted to date in this area, and at the same time 
organize the possibilities for future research. Before, presenting this classification scheme, 
it is useful to present one of the most concise representations of the implementation 
problem, called a Mount-Reiter diagram, a version of which originally appeared in Mount 
and Reiter (1974) . 

[FIGURE 1 HERE] 

This figure contains the basic elements of an implementation problem. The notation is 
as follows: 

E: The domain of environments. Each environment, E E, consists of a set of feasib le 
outcomes, A(e) , a set of individua ls, I(e) , and a preference profile R(e) , where R,;,(e) is a 
weak order on A(e) . 1

X: The outcome space. Note: A(e) � X for all e E £. 

F � {f : £ -+ X}: The welfare criterion (or socia l choice set) which specifies the set 
of acceptable mappings from environmep.ts to outcomes. An element, f, of F is called a 
socia l choice function. 

M = M1 x ... x MN The message space.

g : M -+ X The outcome function. 

µ =< M, g > The mechanism. 

I: = The equi librium concept that maps each µ into Eµ � { (j : £ -+ M} 

As an exam_ple to illustrate what these different abstract .concepts might be, consider 
the domain of pure exchange economies. Each element of the domain would consist of a 
set of traders, each of whom has an initial endowment, and the set of feasible outcomes 
would just be the set of all reallocations of the initial endowment. Many implementation 

1 Except where noted, we will assume that the set of feasible outcomes is a constant A that is in
dependent of e, and the planner knows A. Furthermore, we will typically take the set of individuals 
I = {1, 2, . .. , N} as fixed.
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results rely on domain restrictions, which in this illustration would involve standard 
assumptions such as strictly increasing, convex preferences, and so forth. The welfare 
criterion, or social choice set might consist of all social choice functions satisfying a list 
of conditions such as individual rationality, Pareto optimality, interiority, envy-freeness, 
and so forth. One common social choice set is the set of all selections from the Walrasian 
equilibrium correspondence. For this case the message space might be either an agent's 
entire preference mapping or perhaps his demand correspondence, and the "planner" 
would take on the role of the auctioneer. An example of an outcome function would be 
the allocations implied by a deterministic pricing rule (such as some selection from the set 
of market clearing prices) , given the reported demands. Common equilibrium concepts . 
employed in these settings are Nash equilibrium or dominant strategy equilibrium. 

The arrows of the Mount-Reiter diagram indicate that the diagram has the commu
tative property that, under the equilibrium concept L:, the set of desirable social choice 
functions defined by F correspond exactly to the outcomes that arise under the mecha
nism µ. That is F =go L:w When this happens, we say that "µ implements F via L: 
in £." Whenever there exists some mechanism such that that statement is true, we say 
"F is imp lementab le via L: in£." Implementation theory then looks at the relationship 
between domains, equilibrium concepts, welfare criteria, and implementing mechanisms, 
and the various questions that may arise about this relationship. The remainder of this 
chapter summarizes a small part of what is known about this. Because this has been 
the main focus of the literature, the discussion here will concentrate primarily on the 
existence question: Under what conditions on F, L:, and£ does there exist a mechanism 
µ such that µ implements F via L: in £? 

1.2 Informational issues 

To this point, nothing has been said about what information can be used in the con
struction of a mechanism nor about what information the individuals have about £. A 
common interpretation given to the implementation problem is that there is a mythical 
agent, called "the planner," who has normative goals and very limited information about 
the environment (typically one assumes that the planner only knows £ and X). The 
planner then must elicit enough information from the individuals to implement outcomes 
in a manner consistent with those normative goals . This r.equires creating incentives for 
such information to be voluntarily and accurately provided by the individuals. Nearly all 
of the literature in implementation theory assumes that the details of the environment 
are not directly verifiable by the planner, even ex post.2 Thus, implementation theory
characterizes the limits of a planner's power in a society with decentralized information. 

The information that the individuals have about £ is also an important considera
tion. This information is best thought of as part of the description of the domain. The 
main information distinction that is usually made in the literature is between comp lete 

2There are some results on. auditing and other ex post verification procedures. See, for example, 
Townsend (1979), Chander and Wilde (1992) and the references they cite. 
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information and incomp lete information. Complete information models assume that e 
· is common knowledge among the individuals (but, of course, unknown to the planner) .
Incomplete information assumes that individuals have some private information. This is 
usually modelled in the Harsanyi (1967-68) tradition, by defining an environment as a 
profile of types, one for each individual, where a type indexes an individual's information 
about other individuals' types. In this manner, an environment (preference profile, set 
of feasible allocations, etc.) is uniquely defined for each possible type profile. 

One branch of implementation theory addresses a somewhat different informational 
issue. Given a social choice correspondence and a domain of environments, how much in
formation about the environment is minimally needed to determine which outcome should 
be selected, and how close to this level of minimal information gathering (informationally 
efficient) do different "natural" mechanisms come? In particular, this question has been 
asked in the domain of neoclassical pure exchange environments, where the answer is that 
the Walrasian market mechanism is informationally efficient. (Hurwicz, 1977, Mount and 
Reiter (1974)) .  With few exceptions that branch of implementation theory does not di
rectly address questions of incentive compatibility of mechanisms. This chapter will not 
cover the contributions in that area. 

1.3 Equilibrium: Incentive Compatibility and Uniqueness 

In principle, the equilibrium concept I; could be almost anything. It simply defines a 
systematic rule for mapping environments into messages for arbitrary mechanisms. How
ever, nearly all work in implementation theory and mechanism design restricts attention 
to equilibrium concepts borrowed from noncooperative game theory, all of which require 
the rationa l response property in one form or another. That is, each individual, given 
their information, preferences, and a set of assumptions about how other individuals are 
behaving, and given a set of rules < M, g > , adopts a rational response, where rationality 
is usually based on maximization of expected utility. 3 

The requirement of implementation can be broken down into two components. The 
first component is incentive compatibi lity:4 This is most transparent for the special case 
of social choice functions (i .e . ,  F is a singleton) . If a mechanism < M, g > implements a 
social choice function f,  it must be the case that there is an equilibrium strategy profile 
(j : E -+ M such that go O' = f .  The second component is uniqueness : If a mechanism 
< M, g > implements a social choice function f, it must be the case, for all social choice 
functions h tj. f, that there is not an equilibrium strategy profile ()1 such that go ()1 = h. 

3There are some exceptions, notably the use of maximim strategies (Thomson 1979) and undominated 
strategies (Jackson 1992), which do not require players to adopt expected utility maximizing responses 
to the strategies of the other players. 

4This is sometimes referred to as Truthful Implementability (Dasgupta, Hammond, and Maskin 1979) 
because, in the framework where individual preferences and information are represented as "types,'' if 
the mechanism is direct in the sense that each individual is required to report their type (i .e., M = T), 
then the truthful strategy <T(t) =tis an equilibrium of the direct mechanismµ=< T, f >. 

5 



For the more general case of the implementation of a social choice set , F, these two 
components extend in the natural way. If a mechanism < M, g > implements a social 
choice set F, it must be the case that, for each f E F there is an equilibrium strategy 
profile O" such that go (j = f .  If a mechanism < M, g > implements a social choice set F, 
it must be the case, for all social choice functions h =I F, that there is not an equilibrium 
strategy profile (j such that g o (j = h. 

1.4 The Organization of this Chapter 

The remainder of this paper is divided into three sections. Section II presents char
acterizations of implementation under conditions of complete information for several 
different equilibrium concepts. In particular, the relatively comprehensive characteri
zation for Nash implementation (i.e. , implementation in complete information domains 
via Nash equilibrium) is set out in considerable detail. The partial characterizations for 
refined Nash implementation (subgame perfect equilibrium, undominated Nash equilib
rium, dominance solvable equilibrium, etc.) are then discussed.· This part also describes 
the problem of implementation by games of perfect information, and a few results in the 
area, particularly with regard to "voting trees," are briefly discussed. Finally results for 
virtual implementation (both in Nash equilibrium and using refinements) are described, 
where social choice functions are only approximated as the equilibrium outcomes of mech
amsms. 

Section III explains how the results for complete information are extended to incom
plete information "Bayesian" domains, where environments are represented as collections 
of Harsanyi type-profiles, and players are assumed to have well-defined common knowl
edge priors about the distribution of types. 

Section IV discusses some "difficult" problems in the area of implementation theory 
that have either been ignored or studied in only the simplest settings. This includes 
dynamic issues such as renegotiation of mechanisms and dynamic allocation problems, 
considerations of simplicity, robustness, and bounded rationality, and issues of incomplete 
control by the planner over the mechanism (side games played by the agents, or preplay 
communication): 

2 Implementation under conditions of complete in

formation 

By complete information , we mean that individual preferences and feasible alternatives 
are common knowledge among all the individuals. This does not mean that the planner 
knows these preferences. The planner is assumed to know only the set of possible individ-
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ual preference profiles and the set of feasible allocations. 5 For this reason, we simplify the 
notation considerably for this section of the chapter. First, we represent the domain by 
R, the set of possible preference profiles, with typical element R = (Ri, R2 , • • •  , RN) , and
the set of feasible alternatives is A. A social choice set can, without loss of generality, be 
represented as a correspondence F mapping R into subsets of A. We denote the image 
of F at R by F(R) . 

2.1 Nash Implementation 

Consider a mechanism µ=< M, g > and a profile R. The pair (µ, R) defines a. N-player 
noncooperative game. 

Definition 1 A messa ge profile m* E M is called a Nash equilibrium of µ at R if, for 
all i E I, and for all mi E Mi 

Therefore, the condi tion of Nas h implemen ta tion is simply : 

Definition 2 A social c hoice correspondence F is Nash implementable in R if there 
exis ts a mec hanism µ =< M, g > s uc h  tha t: 

1. For every RE R and for every x E F(R) ,  there exis ts m* EM s uc h  tha t m* is a
Nas h eq uilibrium of µ a t  R and g(m*) = x .

2. For every RE R and for every y </. F(R), there does no t exis t m* E M s uc h  tha t
m"" is a Nas h eq uilibri um of µ a t  R and g(m*) = y .

Alterna tively, wri tin g CY* (R) as the se t of Nas h equilibria of µ a t  R, we can s ta te {a) 
and {b) as : 

1. F(R) �go CY* (R) for all RE R

2. go CY* (R) � F(R) for all RE boldma th R

Condi tion (a) corresponds to wha t  we have referred to as incen tive compa tibili ty and 
condi tion {b) is wha t  we ·have referred to as uniqueness. We proceed from here by c har
ac terizin g the implica tions of (a) and {b). 

5Nearly always, the set of feasible allocations is taken as fixed in implementation theory. Notable 
exceptions to this are Hurwicz, Maskin, Postlewaite (1980), and Hong and Page (1994). In these papers, 
the mechanisms has individuals report endowments as well as preferences to the planner, but it is 
assumed that it is impossible for an individual to overstate his endowment (although understatements
are possible) . See Hong (1994) and Tian (1994) for extensions to Bayesian environments.
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Incentive Compatibility 

Suppose a social choice function f : R---+ A is implementable via Nash equilibrium. 
Then there exists a mechanism µ that implements f via � in E. What exactly does 
this mean? First, it means that there is a Nash equilibrium of µ that yields f as the 
equilibrium outcome function. With complete information this turns out to have very 
little bite. That is, examples of social choice functions that are not "incentive compatible" 
when the individuals have complete information are rather special. How special, you 
might ask. First , the examples must have only two individuals. This fact is quickly 
established below as Proposition 3. 

Proposition 3 In comple te informa tion domains wi th N > 2, every social c hoice func
tion f is incen tive compa tible (I.e., there exis ts a mec hanism s uc h  tha t (a) is sa tisfied.). 

Proof : Consider the following mechanism, which we call the a greemen t mec hanism. Let 
Mi = R for all i E J. That is, individuals report profiles.6 Arbitrarily pick some a0 E A.
Partition the message space into two parts, Ma (called the agreement region) and Md 
(called the disa greemen t region) . 

Ma= {m E Ml:Jj E I, R E R such that.mi= R for all i -/=  j} 

In other words, the agreement region consists of all message profiles where either 
every individual reports the same preference profile, or all except one individual reports 
the same preference profile. The outcome function is then defined as follows. 

g(m) = f(R) if m E Ma 
= a0 if m E Md 

It is easy to see that if the profile of preferences is R,  then it is a Nash equilibrium for 
all individuals to report mi = R, since unilateral deviations from unanimous agreement 
will not affect the outcome. Therefore, (a) is satisfied. 

. 
I

Therefore, incentive compatibility7 is not an issue when information is complete and 
N > 2. · Of course the problem with this mechanism is that any unanimo us messa ge 

6This mechanism could be simplified further by having each agent report a feasible outcome. 
7The reader should not confuse this with a number of negative results on implementation of social 

choice functions via Nash equilibrium when mechanisms are restricted to being "direct" mechanisms 
(Mi = Rj ) . If individuals do not report profiles, but only report their own component of the profile
(sometimes called privacy preserving mechanisms) then clearly incentive compatibility can be a problem. 
This kind of incentive compatibility is usually called strategyproofness, and is closely related to the prob
lem of implementation under the much stronger equilibrium concept of dominant strategy equilibrium. 
See Pasgupta, Hammond, and Maskin (1979). 
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profile is a Nash equilibrium at any preference profile. Therefore, this mechanism does 
not satisfy the uniqueness requirement (b) of implementation. We return to this problem 
shortly, after addressing the question of incentive compatibility for the N = 2 case. 

When N = 2 the outcome function of the mechanism used in Proposition � is not 
well defined, since a unilateral deviation from unanimous agreement is not well defined. 
If m1 =R and m2 = R', then it is unclear whether g(m) = f(R) or g(m) = f(R') . There 
are some simple cases where incentive compatibility is assured when N = 2. First, if 
there exists a uniformly bad outcome, w,  with the property that, for all a E A,  and for 
all RE, a �w, i = 1 ,  2. In that case, the mechanism above can be modified so. that Ma 
requires unanimous agreement, and a0 = w. Clearly any unanimous report of a profile is 

· a Nash equilibrium regardless of the actual preferences of the individuals, so this modified 
mechanism satisfies (a) but fails to satisfy (b) . 

A considerably weaker assumption, called nonempty lower intersection is due to Dutta 
and Sen (1991b) and Moore and Repullo (1990) . We state a slightly weaker version below, 
which is sufficient for the incentive compatibility requirement (a) when N = 2. They 
define a slightly stronger version that is needed to satisfy the uniqueness requirement 
(b) . 

Definition 4 A social choice function f satisfies Weak Nonempty Lower Intersection8 
if, for all R, R' E R, such that R-=/= R', ::Jc E A  such that f(R)R1c and f(R')R�c. 

The definition of social choice correspondences is similar: 

Definition 5 A social choice correspondence F satisfies Weak Nonempty Lower Inter
section if for all R, R' E R, such that R-=/= R', and for all af(R) and b E J (R') ,  ::Jc E A
such that aR1 c and bR�c .  

To see that this is  a sufficient condition for (a) , consider implementing the social · 

choice function f. From Definition 4, we can define a function c(R, R') for R -=/= R' 
with the property that f(R)R1c(R, R') and f(R')R�c(R, R') . We can then modify the 
mechanism above by: 

g(m) f(R) if m1 = m2 = R 
c( R, R') if m1 = Rand m2 = R' 

This mechanism is illustrated in Figure 2. It is easy to check that weak nonempty 
lower intersection guarantees m = (R, R) is a Nash equilibrium when the actual profile 
is R. 

FIGURE 2 HERE 
8The stronger version, called Nonempty Lower Intersection, requires J(R)P1c and f(R')P�c. 
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There are two interesting special cases where Nonempty Lower Intersection holds. 
The first is when there exists a universally "bad" outcome (Moore and Repullo 1990) 
with the property that it is strictly less preferred than all outcomes in the range of the 
social choice rule, for all agents, at all profiles in the domain.9 This is satisfied by any 
nonwasteful social choice rule in exchange economies with free disposal and strictly in
creasing preferences, since destruction of the endowment is a bad outcome. The second 
special case is any Pareto efficient and individually rational interior social choice cor
respondence in exchange economies (with or without free disposal) with strictly convex 
and strictly increasing preferences and fixed initial endowments (Dutta and Sen 1991b, 
Moore and Repullo 1990). 

Uniqueness 

Clearly, incentive compatibility places few restrictions on Nash implementable social 
choice functions (and correspondences) with complete information. The second require
ment of uniqueness is more difficult, and the major breakthrough in characterizing this 
was the classic (unpublished) paper of Maskin (1977). In that paper, he introduces two 
conditions, which are jointly sufficient for Nash implementation when N > 3 .  These 
conditions are called Monotonicity and No Veto Power (NVP). 

Definition 6 A social choice correspondence F is Monotonic if, for all R,  R' E R 

(x E F(R) , x rf_ F(R')) �:Ji E J, a E A such that xf4aPf x.  

The agent i and the alternative a are called, respectively, the test agent and the test 
alternative. Stated in the contrapositive, this says simply that if x is a socially desired 
alternative at R, and x does not strictly fall in preference for anyone when the profile is 
changed to R', then x must be a socially desired alternative at R'. Thus monotonic social 
choice correspondences must satisfy a version of a nonnegative responsiveness criterion 
with respect to individual preferences. In fact, this is a remarkably strong requirement 
for a social choice correspondence. For example, it rules out nearly any scoring rule, such 
as the Borda count or Plurality voting. Several other examples of nonmonotonic social 
choice functions in applications to bilateral contracting are given in Moore and Repullo 
(1988). One very nice illustration of a nonmonotonic social choice correspondence is a 
variation on the "King Solomon's Dilemma" example of Glazer and Ma (1989) and Moore 
(1992). The problem is to allocate a baby to its true mother. There are two individuals 
in the game (Ms. a and Ms. /3) . 

Example "7. Assume that tnere are four possible alternatives: 

a give the baby to Ms. a 
b give the baby to Ms. /3 
c divide the baby into two equal halves and give each mother one half 
d execute both mothers and the child 

9Notice that this is a joint restriction on the domain and the social choice function. 
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Also, assume the domain consists of only two possible preference profiles depending 
on whether a or /3 is the real mother, and we will call these profiles R and R' respectively. 
They are given below: 

Ra a >-b >-c >-d 
R' a >-c >-b >-d Q

R13 b >-c ·>-a >-d 
R� b >-a >-c >-d 

The social choice function King Solomon wishes to implement is f(R) = a  and f (R') = 
b. This is not monotonic. Consider the change from R to R' . Alternative a does not fall
in either player's preference order as a result of this change. However, f (R') = b =I a ,  a 
contradiction of monotonicity. Notice however that this social choice function is incentive 
compatible since there is a universally bad outcome, d, which is ranked last by both 
players in both of their preference orders. !:::,. 

A second example, from a neoclassical 2-person pure exchange environment illustrates 
the geometry of monotonicity. Consider allocation x in figure 3 .  

[FIGURE 3 HERE] 

Suppose x E f(R) where the indifference curves through x of the two individuals are 
labelled R1 and R2 respectively in that figure. Now consider some other profile R' where 
R2 = R�, and R� is such that the lower contour set of x for individual 1 has expanded. 
Monotonicity would require x E f(R') . Put another way (formally stated in the defini
tion) if f is monotonic and x tJ. f (R") for some R" =IR, then one of the two individuals 
must have an indifference curve through x that either crosses the R-indifference curve 
through x or bounds a striCtly smaller lower contour set. Figure 4 illustrates the (generic) 
case in which the R"-indifference curve of one of the individuals (individual 1, in the fig
ure) crosses the R-indifference curve through x. Thus, in this example agent 1 is the test 
agent. One possible test alternative a E A (an alternative required in the definition of 
monotonicity which has the property that x�aPf' x) is marked in that figure. 

[FIGURE 4 HERE] 

Maskin (1977) proved that monotonicity is a necessary condition for Nash implemen
tation. 

Theorem 8 If F is Nash implementable then F is monotonic. 
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Proof : Consider any mechanism µ that Nash implements F and consider some x E F(R) 
and some Nash equilibrium message, m*, at profile R, such that g(m*) = x. Define the 
"option set" 10 for i at m* as 

That is, fixing the messages of the other players at m *_i , the range of possible outcomes 
that can result for some message by i under the mechanism µ is Oi(ma<µ) . By the 
definition of Nash equilibrium, mi� a for all i and for· all a E Oi(m* ; µ) . Now consider 
some new profile R' where x tf. F(R'). Since µ Nash implements F, it must be that 
m is not a Nash equilibrium at R'. Thus there exists some i and some alternative 
a E Oi (m* ; µ) such that aPf x. Thus a is the test alternative and i is the test agent as 
required in Definition 6 ,  with the property that x�aPf x. I 

The second theorem in Maskin (1977), which was later given a complete proof by 
Williams (1984), Saijo (1988), McKelvey (1989), and Repullo (1987), provides a simple 
sufficient condition for Nash implementation for the case of three or more agents. This 
is a condition of near unanimity, called No Veto Power (NVP).  

Definition 9 A social choice correspondence F satisfies No Veto Power (NVP) if, for 
all RE R and for all x EA, and i EI, 

[xRjy for all j # i, for all y E Y] :::;. x E F(R). 

Theorem 10 If N � 3 and F is Monotonic and satisfies NVP, then F is Nash imple 
mentable. 

Proof : (based on Repullo 1987) The proof is constructive, like the proof of Proposition 3. 
A very general mechanism is defined, and then the rest of the proof consists of demon
strating that, the mechanism implements any social choice function that satisfies the 
hypotheses of the theorem. This is usually how characterization theorems are proved 
in implementatfon theory. Consider the following generic mechanism, which we call the 
agreement/integer mechanism 

Mi= RA x {0,1,2, ... } 

That is, each individual reports a profile, an allocation, and an integer. The 
outcome function is similar to the agreement mechanism, except the disagreement region 
is a bit more complicated, and agreement must be with respect to an allocation and a 
profile. 

10This is similar to the role of option sets in the strategyproofness literature. 
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Ma= { m E Mj:3j, RE Ra E F(R) such that mi= (R, a,  Zi) where Zi = 0 for each i =I= j} 

The outcome function is defined as follows. The outcome function is constructed 
so that, if the message profile is in Ma, then the outcome is either a or the allocation 
announced by individual j, which we will denote aj . If the outcome is in Md, then the 
outcome is ak where k is the individual announcing the highest integer (ties broken by a 
predetermined rule) . This feature of the mechanism has become commonly known as an 
integer game (although in actuality, it is only a piece of the original game) . Formally, 

g(m) =a if m E Ma and ajPja  
= aj if m E Ma and aRjaj 

g(m) = ak if m E Md and k = max{i E Ilzi � Zj for all j EI} 

Recall that we must show that F(R) � NE1mu(R) and NEµ(R) � F(R) for all R, 
·where N Eµ(R) . {a E Al:3m E M such that a = g(m)�g(m� , m_i) for all i E I, m� E
Mi} is the set of Nash equilibrium outcomes to µ at R. 

1. F(R) � NEµ(R)

At any R, and for any a E F(R) , there is a Nash equilibrium in which all individuals
report mi = (R, a, 0). Such a message lies in Ma and any unilateral deviation
also lies in Ma. The only unilateral deviation that could change the outcome
in a deviation in which some player j reports an alternative aj such that aRjaj .
Therefore, a is a Rrmaximal element of Oj(m; µ) for all j E I, so m = (R, a,  0) is
a Nash equilibrium.

2. NEµ(R) � F(R)

This is the more delicate part of the proof, and is the part that exploits Monotonic
ity and NVP. (Notice that part (1) of the proof above exploited only the assumption
that N � 3.) Suppose that m E NEµ(R) and g(m) =a rj F(R) . First notice that
it cannot be the case that all individuals are reporting ( R' , a, 0) where a E F( R')
for some R' E R. This would put the outcome in Ma and Monotonicity guarantees
the existence of some j E I, b E A such that a R�bPia , so that player is better
off changing to a message ( ·, b, · ) which changes the outcome from a to b. Thus
mi =I= mi for some i, j. Whenever this is the case, the option set for at least N - 1
of the agents is the entire alternative space, A .  Since a rj F(R) and F satisfies
NVP, it must be tnat there is at least one of these N - 1 agents, k, and some
element c E A such that cPka. Since the option set for k is the entire alternative
space, A, individual k is better off changing his message to ( · , c, zk) =I= mj where
zk > Zj, j =I= k, which will change the outcome to from a to c. This contradicts the 
hypothesis that mis a Nash equilibrium. 

I 
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Since these two results, improvements have been developed to make the characteri
zation of Nash implementation complete and/or to reduce the size of the message space 
of the general implementing mechanism. These improvements are in Moore and Repullo 
(1990) , Dutta and Sen (199lb) , Danilov (1992) , 1 1  Saijo (1988) , Sjostrom (199lb) and 
McKelvey (1989) and the references they cite. 

The last part of this section on Nash implementation is devoted to a simple application 
to pure exchange economies. It turns out the Walrasian correspondence satisfies both 
Monotonicity and NVP under some mild domain restrictions. First notice that in private 
good economies with strictly increasing preferences and three or more. agents, NVP is 
satisfied vacuously. Next suppose that indifference curves are strictly quasi-concave and 
twice continuously differentiable, endowments for all individuals are strictly positive in 
every good,  and indifference curves never touch the axis. It is well known that these 
conditions are sufficient to guarantee the existence of a Walrasian equilibrium and to 
further guarantee that all Walrasian equilibrium allocations in these environments are 
interior points, with every individual consuming a positive amount of every good in 
every competitive equilibrium. Finally, assume that "the planner" knows everyone's 
endowment. 12 

Since the planner knows the endowments, a different mechanism can be constructed 
for each endowment profile. Thus, to cheek for monotonicity it suffices to show that 
the Walrasian correspondence, with endowments fixed and only preferences changing, is 
monotonic. If a is a Walrasian equilibrium allocation at R and not a Walrasian equilib
rium allocation at R' , then there exists some individual for whom the supporting price 
line for the equilibrium at R is not tangent to the R� indifference curve through a. But 
this is just the same as the illustration in Figure 4, and we have labelled allocation b as 
a "test allocation" as required by the monotonicity definition. The key is that for a to 
be a Walrasian equilibrium allocation at R and not a Walrasian equilibrium allocation 
at R' implies that the indifference curves through x at R and R' cross at x . 

. As mentioned briefly above, there are many environments and "nice" (from a nor
mative standpoint) allocation rules that violate Monotonicity, and in the N = 2 case 
( "bilateral contracting" environments) NVP is simply too strong a condition to impose 
on a social choice function. There are two possible responses to. this problem. One 
possibility, and the main direction implementation theory has pursued, is that Nash 

110f these, Danilov (1992) establishes a particularly elegant necessary and sufficient condition (with 
three or more players), which is a generalization of the notion of monotonicity, called essential monotonic
ity. However, these results are limited somewhat by this assumption of universal domain. Nash imple
mentable social chuice correspondences.need not satisfy essential monotonicity under domain restrictions. 

12This assumption can be relaxed. See Hurwicz, Maskin, and Postlewaite (1980) . The Walrasian 
correspondence can also be modified somewhat to the "constrained Walrasian correspondence" which 
constrains individual demands in a particular way. This modified competitive equilibrium can be shown 
to be implementable in more general economic domains in which Walrasian equilibrium allocations are 
not guaranteed to be locally unique and interior. See the survey by Postlewaite (1985), or Hurwicz 
(1986). 
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equilibrium places insufficient restrictions on the behavior of individuals. 13 This leads 
to consideration of implementation using refinements of Nash equilibrium, or refined 
Nash implementation. A second possibility is that implementability places very strong 
restrictions on what kinds of social choice functions a planner can hope to enforce in a 
decentralized way. If not all social choice functions can be implemented, then we need to 
ask "how close" can we get to implementing a desired social choice function? This has 
led to the work in virtual implementation. These two directions are discussed next. 

2.2 Refined Nash implementation 

More social choice correspondences can be implemented using refinements of Nash equi
librium. The reason for this is straightforward, and is easiest to grasp in the case of 
N 2: 3. In that case, the incentive compatibility problem does not arise (Proposition 3), 
so the only issue is (ii) uniqueness. Thus the problem with Nash implementation is that 
Nash equilibrium is too permissive an equilibrium concept. A nonmonotonic social choice 
function fails to be implementable simply because there are too many Nash equilibria. It 
is impossible to have f(R) a Nash equilibrium outcome at R and at the same time avoid 
having a -:f=. f(R) also be a Nash equilibrium outcome at R. But of course this is exactly 
the kind of problem that refinements of Nash equilibrium can be used for. The trick 
in implementation theory with refinements is to exploit the refinement by constructing 
a mechanism so that precisely the "bad" equilibria (the equilibria whose outcomes lie 
outside of F) are refined away, while the other equilibria survive the refinement. 14 

2 .2 .1  Subgame perfect implementation 

The first systematic approach to extending the Maskin characterization beyond Nash 
equilibrium in complete information environments was to look at implementation via 
subgame perfect Nash equilibrium (Moore and Repullo (1988) and Abreu and Sen (1990) ) .  · 

They find that more social choice functions can be implemented via subgame perfect 
Nash equilibrium than via Nash equilibrium. The idea is that sequential rationality can 
be exploited to eliminate certain bad equilibria. The following simple example in the 
"voting/social choice" tradition illustrates the point. 

130ne might argue to the contrary that in other ways Nash equilibrium places too strong a restriction 
on individual behavior. Both directions are undoubltedly true. Experimental evidence has shown that 
both of these are defensible. On the one hand, some refinements of Nash equilibrium have received 
experimental support indicating that additional restrictions beyond mutual best response have predictive 
v:alue (Banks, Camerer, and Porter·(1994)}. On the other hand, many experiments indicate that players 
are at best imperfectly rational, and even violate simple basic axioms such as transitivity and dominance. 
Thus, from a practical standpoint, it is very important to explore the implementation question under 
assumptions that other than the simple mutual best response criterion of Nash equilibrium. 

14Earlier work by Farquharson (1957 /69), Moulin (1979), Crawford (1979) and Demange (1984) in 
specific applications of multistage games to voting theory, bargaining theory, and exchange economies 
foreshadows the more abstract formulation in the relatively more recent work in implementation theory 
with refinements. 
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Example 11  There are three players on a committee who are to decide between three 
alternatives, A = {a, b, c}. There are two profiles in the domain,· denoted R and R'. 
Individuals 1 and 2 have the same preferences in both profiles. Only player 3 has a 
different preference order under R than under R' . These are listed below: 

R1 = R� = a >-b >-c
R2=R;=b>-c>-a
R3 = c >-a>-b
R�=a>-c>-b 

The following social choice function is Pareto optimal and satisfies the Condorcet 
criterion that an alternative should be selected if it preferred by a majority to any other 
alternative: 

j(R) = b 
f(R') =a 

This social choice function violates monotonicity since b does not go down in player 3's 
rankings moving from profile R to R' (and no one else's preferences change) . Therefore 
it is not Nash implementable. However, the following trivial mechanism (extensive form 
game form) implements it in subgame perfect Nash equilibrium: 

Stage 1 :  Player 1 either chooses alternative b, or passes . The game ends if b is chosen. 
The game proceeds to stage 2 if player 1 passes. 

Stage 2 :  Player 3 chooses between a and c. The game ends at this point. 

The voting tree is illustrated in Figure 5 .  

[FIGURE 5 HERE] 

To see that this game implements f, work back from the final stage. In stage 2 ,  
player 3 would choose c in profile R and a in profile R'. Therefore, player 1 's  best 
response is to choose b in profile R and to pass in profile R'. Notice that there is another 
Nash equilibrium under profile R' , where player 2 adopts the strategy of choosing c 
if player 1 passes, and thus player 1 chooses b in stage 1 .  But of course this is not 
sequentially ratienal and .. is t-herefore·ruled out· by subgame perfection. 6 

Abreu and Sen (1990) provide a nearly complete characterization of social choice 
correspondences that are implementable via subgame perfect Nash equilibrium, by giving 
a general necessary condition, which is also sufficient if N 2: 3 for social choice functions 
satisfying NVP. This condition is strictly weaker than Monotonicity, in the following way. 
Recall that monotonicity requires, for any R, R' and a E A, with a= f(R) , a=/= f(R') ,  the 
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existence of a test agent, i and a test allocation b such that aRt,bRia. That there is some 
·player and some allocation that produces a preference switch with f(R) when moving
from R to R'. The weakening of this resulting from the sequential rationality refinement 
is that the preference switch does not have to involve f(R) directly. Any preference 
switch between two alternatives, say b and c will do, as long as these alternative can 
be indirectly linked to f (R) in a particular fashion. We formally state this necessary 
condition and call it indirect monotonicity, 15 to contrast it with the direct linkage to
f (R) of the test alternative in the original definition of monotonicity. 

Definition 12  A social choice correspondence F satisfies indirect monotonicity if there 
::JB � A such that F(R) � B for all R E R, and if for all R, R' and a E A, with 
a E F(R) , a tf. F(R') , �L < oo, and :3 a sequence of agents {j0 , . . .  , )£} and :3 sequences 
of alternatives {a0 , • . .  , aL+1 }, {b0 , • • •  , bL} belonging to B such that: 

The key parts the definition of indirect monotonicity are (i) and (ii) . A less restrictive 
version of indirect monotonicity consisting of only parts (i) and (ii) was used first by 
Moore and Repullo (1988) as a weaker necessary condition for implementation in subgame 
perfect equilibrium with multistage games. 

The main two general theorems about implementation via subgame perfect imple
mentation are the following. The proofs (Abreu and Sen, 1990) are long and tedious and 
are omitted, although an outline of the proof for the sufficiency result is given. Similar 
results, but slightly less general, can be found in Moore and Repullo (1988) . · 

Theorem 13 (necessity) If a social choice correspondence F is implementable via sub
game perfect Nash equilibrium, then F satisfies indirect monotonicity. 

Theorem 14 (sufficiency) If N � 3 and F satisfies NVP and indirect mon9tonicity, 
then F is implementable via subgame perfect Nash equilibrium. 

Proof : Since F satisfies indirect monotonicity, there exists the required set B and for any 
(R, R', a) such that a E F(R) and a tf. F(R') there exists an integer L and the required 
sequences {jk (R, R', a)} )k  = 0, 1, . . .  , Land {ak (R, R', a)h=o,1, ... ,L+l that satisfy (i)-(iv) 
of Definition 6 .  In the first stage of the mechanism, all agents announce a triple of the 
form (mi1, mi2 , mi3) where mi1 E R, mi2 E A,  and mi3 E {O, 1 ,  ... } . The first stage of

15 Abreu and Sen (1990) call it Condition a. 
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the game then conforms fairly closely to the agreement/integer mechanism, with a minor 
exception. If there is too much disagreement (there exist three or more agents whose 
reports are different) the outcome is determined by mi2 of the agent who announced 
the largest integer. If there is unanimous agreement in the first two components of the 
message, so all agent send some (R, a, zi) and a E F(R) , t hen the game is over and the 
outcome is a. The same is true if there is only one disagreeing report in the first two 
components, unless the dissenting report is sent by i0 (R, mi01 , a) , in which case the first
of a seq uence of at most L "binary" agreement/integer games is triggered in yv hich either 
some agent gets to choose his most preferred element of B or the next in the seq uence 
of binary agreement/integer games is triggered. If the gam e ever gets to the (L + 1)8t
stage, then the outcome is aL+l and the game ends. 

The rest of the proof follows the usual order. First one shows that for all R E R 
and for all a E F(R) there is a subgame perfect Nash eq uilibrium at R with a as the 
eq uilibrium outcome. Second one shows that for all R E  R and for all a � F(R) there is 
no subgame perfect Nash eq uilibrium at R with a as the eq uilibrium outcome. I

In spite of its formidable complexity, some progress has been made tracing out the 
implications of indirect monotonicity for two well-known classes of implementation prob
lems: exchange economies and voting. Moore and Repullo (1988) show that any selection 

f rom the Walrasian eq uilibrium correspondence satisfies indirect monotonicity, in spite 
of being nonmonotonic. There are also some results for the N = 2 case that can be 
found in Moore (1992) and Moore and Repullo (1988) which rely on sidepayments of a 
divisible private good. The case of voting-based social choice rules contrasts sharply with 
this. Abreu and Sen (1990) , Palf rey and Srivastava (199la) and Sen (1987) show that 
many voting rules fail to satisfy indirect monotonicity, as do most runoff procedures and 
"scoring rules" (such as the famous Borda rule) . However, a class of voting-based social 
choice correspondences, including the Copeland rule, is implementable via subgame per
fect Nash eq uilibrium (Sen 1987) . Some related findings are in Moulin (1979) , Dutta and 
Sen (1993) , and the references they cite. 

There are a n umber of applications that exploit the combined power of sidepayments 
and seq uential mechanisms. See Glazer and Ma (1989) , Varian (1993) , and Jackson and 
Moulin (1990) . Moore (1992) also gives some additional examples.  

2 .2 .2  Implementation by backward induction and voting trees 

In general, it is not possible to implement a social choice function via subgame perfect 
Nash eq uil ibrium wit hout resorting to games of imperf ect information. At some point, it 
is necessary to have a stage with simultaneous moves. Others have investigated the imple
mentation q uestion when mechanisms are restricted to be games of perfect information. 
In that case, the refinement implied by solving t he game in its last stage and working 
back to earlier moves, generates similar behavior as subgame perfect eq uilibrium. 16 Ex-

16In fact, it is exactly the same if players are assumed to have strict preferences. Much of the work in 
this area has evolved as a branch of social choice theory, where it is common to work with environments 
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ample 1 1 ,  above illustrates how it is possible for non.monotonic social choice functions to 
be implemented via backward induction. The work of Glazer and Ma (1989) illustrates 
how economic contracting and allocation problems similar in structure to example 7 
(King Solomon's Dilemma) can be solved with backward induction implementation if 
sidepayments are possible. Crawford's work (1977, 1979) on bargaining mechanisms17 
proves in fairly general bargaining setting that games of perfect information can be used 
to implement non.monotonic social choice functions that are fair. The general problem 
of implementation by backward induction has been studied by Hererra and Srivastava 
(1992) and Trick and Srivastava (1994) . The characterizations, unfortunately, are q uite 
cumbersome to deal with, and the necessary conditions for implementation via backward 
induction are virtually impossible to check in most settings. But some useful results have 
been found for certain domains. 

Closely related to the problem of implementation by backward induction is implemen
tation by voting trees, using the solution concept of sophisticated voting as developed by 
Farq uharson (1957 /69) . Sophisticated voting works in the following way. First, a binary 
:voting tree is defined, which consists of an initial pair of alternatives, which the individ
uals vote between. Depending on which outcome wins a majority of votes, 18 the process 
either ends or moves on to another, predetermined pair and another vote is taken. Usu
ally one of the alternatives in this new vote is the winner of the previous vote, but this 
is not a req uirement of voting trees. The tree is finite, so at some point the process ends 
regardless of which alternative wins. Sophisticated voting means that one starts at the 
end of the voting tree, and, for each "final" vote, determines who will win if everyone 
votes sincerely at that last stage. Then one moves back one step to examine every penul
timate vote, and voters vote taking account of how the final votes will be determined. 
Thus, as in subgame perfect Nash eq uilibrium, voters have perfect foresight about the 
outcomes of future votes, and vote accordingly. 

The problem of implementation by voting trees was first studied in depth by Moulin 
(1979) , using the concept of dominance solvability, which reduces to sophisticated voting 
(McKelvey and Niemi 1978) in binary voting trees. There are two distinct types of 
seq uential voting procedures that have been investigated in detail. The first type consists 
of binary amendment procedures. In a binary amendment procedure, all the alternatives 
(assumed to be finite) are place in a fixed order, say, (a1 , a2 ,  • • •  , alAI) · At stage 1 ,  the first
two alternatives are voted between. Then the winner goes against the next alternative 
in the list, and so forth. A major q uestion in social choice theory, and for that matter, 
in implementation theory, is to characterize the set of social choice functions · that are 
implementable by binary amendment procedures via sophisticated voting. This work 
is closely ·r-elated to work ·by Miller · (1977}, · Banks ·(1985) ,  and others, which explores 
general properties of the majority rule dominance relation, and following in the footsteps 
of Condorcet , looks at the implementability of social choice correspondences that satisfy 

where A is finite and preferences are linear orders on A (i .e., strict.) 
17This includes the divide-and-choose method and generalizations of it. 
18It is common to assume an odd number of voters for obvious reasons. Extensions to permit even 

numbers of voters are usually possible, but the occurrence of ties clutters up the analysis. 
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certain normative properties. Several results appear in Moulin (1986) , who identifies an 
"adjacency condition" that is necessary for implementation via binary voting trees. For 
more details, the reader is referred to the chapter of Social Choice Theory by Moulin 
(1993) in Volume 2 of this Handbook. 

More recent results on implementation via binary voting trees are found in Dutta 
and Sen ( 1993) . First , they show that implementability by sophisticated voting in bi
nary voting trees implies implementability in backward induction using games of perfect 
information. The also show that several well-known selections from the top-cycle set19 
are implementable, but that certain selections . that have appealing normative properties 
are not implementable. 

2.2 .3 Normal form refinements 

There are some other refinements of Nash eq uilibrium that have been investigated for 
mechanisms in the Normal form. These fall into two categories. The first category relies 
on dominance (either strict or weak) to eliminate outcomes that are unwanted Nash eq ui
libria. This was first explored in Palfrey and Srivastava (1991a) where implementation 
via undominated Nash equilibrium is characterized. Subseq uent work that explores this 
and other variations of dominance-based implementation in the normal form includes 
Jackson (1992) , Jackson, Palfrey, and Srivastava (1994) , Sjostrom (1991a) ,  Tatamitami 
(1991) and Yamato (1993) . Using a somewhat different approach, Abreu and Matsushima 
(1990) obtain results for implementation in iteratively weakly undominated strategies, 
if randomized mechanisms can be used and small fines can be imposed out of eq uilib
rium. The work by Abreu and Matsushima (1992a, 1992b), Glazer and Rosenthal ( 1992) , 
and Duggan (1993) extends this line of exploiting strategic dominance relations to refine 
eq uilibria by looking at iterated elimination of strictly dominated strategies and also in
vestigating the use of these dominance arguments to design mechanisms that virt_ually 
implement (see Section 2.3 below) social choice functions. 

The second category of refinements looks at implementation via trembling hand per
fect Nash eq uilibrium. The main contribution here is the work of Sjostrom (1993) . 

The central finding of the work in implementation theory using normal form refine
ments is that essentially anything can be implemented; In particular, it is the case that 
dominance-based refinements are more powerful than refinements based on s�q uential 
rationality, at least in the context of implementation theory. A simple result is in Palfrey 
and Srivastava (1991a) ,  for the case of undominated Nash eq uilibrium. 

Definition 15 Consider a mechanism µ =< M, g > .  A message profile m* E M 
is called an undominated Nash eq uilibrium of µ at R if, for all i E J, for all mi E 
Mi , g(m*)�g(mi , m:_i) and there does not exist i EI and mi E M such that 

19The top cycle set at R is the minimal subset, TC, of A, with the property that for all a, b such that
a E TC and b </. TC, a majority strictly perfer a to b. This set has a very prominent role in the theory 
of voting and committees. 
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In other words, m* is an undominated Nash equilibrium at R if it is a Nash equilibrium 
and, for all i, mi is not weakly dominated. 

· 

Theorem 16 Suppose R contains no profile where some agent is indifferent between all 
elements of A. If N 2: 3 and F satisfies NVP, then F is implementable in undominated 
Nash equilibrium. 

Proof : The proof of this theorem is q uite involved. It uses a variation on the agree
ment/integer game, but the general construction of the mechanism uses an unusual tech
niq ue, called tailchasing. Consider the standard agreement/integer game, µ, used in the 
proof of Theorem 10. If m* is a Nash eq uilibrium of µ at R, but g(m*) </. f(R) , then 
one can make m* dominated at R by amending the game in a simple way. Take some 
player i and two alternatives x, y such that xPiY· Add a message mi for a player i and a 
message for each of the other players j =I i, mj , such that 

g(mi , m_i) 
g(mi , m'_i) 
g(m� , m'_i) 

g(m� , m_i) for all m_i =I m'_i 
y 

x 

Now strategy m* is dominated at R. Of course, this is not the end of the story, since 
it is now possible that (m'i , m�i) is a new undominated Nash eq uilibrium which still 
produces the undesired outcome a </. f(R) . To avoid this, we add can another message 
for i ,  m1 and another message for the other players j =I i ,  m'j and do the same thing . 
again. If we repeat this an infinite number of times, we have created an infinite seq uence 
of strategies for i, each one of which is dominated by the next one in the seq uence. 
The complication in the proof is to show that in the process of doing this, we have 
not disturbed the "good" undominated Nash eq uilibria at R and have not inadvertently 
added some new undominated Nash eq uilibria. I 

This kind of construction is illustrated in the following example. 

Example 17  .(.from P.alfrey . . and .. Srivastava�1991a, p. 4887"""89) 
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A = {a, b, c, d} N = 2, R = { R, R'} 

a 
b 

cd 

a 
b 
c 
d 

F(R) = {a, b} F(R') = {a} 

It is easy to show that there is no implementation with a finite mechanism, and any 
implementation must involve an infinite chain of dominated strategies for one ·player in
profile R' . One such mechanism is: 

Player 2 

M,l 
2 Mi M,3 2 M.42 

mi a c c c 

Player m2 1 c b d d 

1 mf c b c d 

mi c b c c 

Few would argue that mechanisms of this sort solve the implementation problem in 
a satisfactory manner.20 This concern motivated the work of Jackson (1992) who raises 
the issue of bounded mechanisms. 21 !::, 

20In fact, few would argue that any of the mechanisms used in the most general sufficiency theorems 
are particularly appealing. 

· 

21 Boundedness is not the first property of mechanisms that has been investigated. Hurwicz (1960) 
suggests a numher._of criteria for judging the .adequacy. ofa .mechanism . . .  Saijo (1988), McKelvey (1989), 
Dutta, Sen, and Vohra (1994), Reichelstein and Reiter (1988) and others have argued that message 
spaces should be as small as possible and have given results about how small the message spaces of 
implementing mechanisms can be. Abreu and Sen (1990) argue that mechanisms should have a best 
response property relative to the domain for which they are designed. Reichelstein (1984), Postlewaite 
and Wettstein (1989), and Wettstein (1992) analyze continuity of outcome functions as a property of 
implementing mechanisms. 
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Definition 18 A mechanism is bounded relative to R if, for all R E  R, and mi E Mi , if 
· mi is weakly dominated at R, then there exists an undominated {at R) message m� E Mi 
that weakly dominates mi at R. 

In other words, mechanisms that exploit infinite chains of dominated strategies, as 
occurs in tailchasing constructions, are ruled out. Note that, like the best response 
criterion, it is not just a property of the mechanism, but a joint restriction on the mech
anism and the domain,. Jackson22 (1992) shows that a weaker eq uilibrium notion than 
Nash eq uilibrium, called "undominated strategies" has a similar property to undominated 
Nash implementation, namely that essentially all social choice correspondences are imple
mentable. He shows that if mechanisms are req uired to be bounded, then very restrictive 
results reminiscent of the Gibbard-Satterthwaite theorem hold , so that almost no social 
choice function is implementable via undominated strategies with bounded mechanisms. 
However, these negative results do not carry over to undominated Nash implementation. 

Following the work of Jackson (1992) , Jackson, Palfrey, and Srivastava (1994) pro
vide a characterization of undominated Nash implementation using bounded mechanisms 
and req uiring the best response property. They find that the boundedness restriction, 
while ruling out some social choice correspondences, is actually q uite permissive. First 
of all, social choice correspondences that are Nash implementable are implementable 
by bounded mechanisms (see also Tatamatami (1991) and Yamato (1993)) .  Second, in 
economic environments with free disposal, any interior allocation rule is implementable. 
Furthermore, there are many allocation rules that fail to be subgame perfect Nash im
plementable that are implementable via undominated Nash eq uilibrium using bounded 
mechanisms. 

2.3 Virtual Implementation 

2 .3 .1  Virtual Nash implementation 

A mechanism virtually implements a social choice function23 if it can (exactly) implement 
arbitrarily close approximations of that social choice function.  The concept was first 
introduced by Matsushima (1988) . It is immediately obvious that, regardless of the 
domain and regardless of the eq uilibrium concept , the set of virtually implementable 
social choice functions contains the set of all implementable social choice functions. What 
is less obvious, is how much more is virtually implementable compared with what is 
exactly implementable. It turns out that it makes a big difference. 

22That is also the first paper to seriously raise the issue of mixed strategies. All of the results that 
have been described so far in this paper are for pure strategy implementation. Only very recently have 
results been appearing that explicitly address the mixed strategy problem. See for example the work by 
Abreu and Matsushima (1992a) on virtual implementation. 

23The work on virtual implementation limits attention to single valued social choice correspondences. 
Since the results in this area are so permissive (i.e., few social choice functions fail to be virtually 
implementable), this does not seem to be an important restriction. 
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One way to see why so much more is virtually implementable can be seen by referring 
back to Figure 3 .  That figure shows how the preferences R and R' must line up in order for 
monotonicity to have any bite in pure exchange economies. As can readily be seen, this is 
not a generic picture. Rather, Figure 4 shows the generic case, where monotonicity places 
no restrictions on the social choice at R' if a =  f (R) . Virtual implementation exploits the 
nongenericity of situations where monotonicity is binding.24 It does so by implementing 
lotteries that produce, in eq uilibrium at R, f (R) with very .high probability, and some 
other outcomes with very low probability. 

· 

In finite or countable economic environments, every social. choice. function is virtually 
implementable if individuals have preferences over lotteries that admit a von Neumann
Morgenstern representation and if there are at least three agents. 25 The result is proved 
in Abreu and Sen (1991) for the case of strict preferences and under a domain restriction 
that excludes unanimity among the preferences of the agents over pure alternatives. They 
also address the 2-agent case, where a nonempty lower intersection property is needed. 

A key difference between the virtual implementation construction and the Nash im
plementation construction has to do with the use of lotteries instead of pure alternatives 
in the test pairs. In particular, virtual implementation allows test pairs involving lotter
ies in the neighborhood (in lottery space) of f (R) rather than req uiring the test pairs to 
exactly involve f(R) . It turns out that by expanding the first allocation of the test pair 
to any neighborhood of f (R) , one can always find a test pair of the sort req uired in the 
definition of monotonicity. 

There are several ways to illustrate why this is so. Perhaps the simplest is to con
sider the case of von Neumann-Morgenstern preferences for lotteries. If an individual 
maximizes expected utility, then his indifference surfaces in lottery space are parallel 
hyperplanes. For the case of three pure alternatives, this is illustrated in Figure 6 below. 

[FIGURE 6 HERE] 

For this three alternative case, consider two preference profiles, R and R', which 
differ in some individual's von Neumann-Morgenstern utility function. This means that 
the slope of the indifference lines for this individual have changed. Accordingly, in every 
neighborhood of every interior lottery in Figure 6, there exists a test pair of lotteries such 
that this agent has a preference switch over the test pair of lotteries . Now consider a 
social choice function that assigns a pure allocation to each preference profile, but which 
fails to satisfy monotonicity. In other words, the social choice function assigns one of 
the vertices of the triang1e in Figure 6 to each profile. We can perturb this social choice 

24This fact that monotonicity holds generically is proved formally in Bergin and Sen (1992). They 
show for classical pure exchange environments with continuous, strictly monotone (but not necessarily 
convex) preferences there exists a dense subset of utility functions that always "cross" (i.e., there are 
never tangencies of the sort depicted in Figure 2) .  

25In fact, more general lottery preferences can be used, as long as they satisfy a condition that guaran
tees individuals prefer lotteries that place more probability weight on more-preferred pure alternatives. 
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function ever so slightly so that instead of assigning a vertex, it assigns an interior lottery, 
x, arbitrarily close to the vertex. This "approximation" of the social choice function 
satisfies monotonicity because there exists agent i (whose von Neumann-Morgenstern 
utilities have changed) , and a lottery y such that xR;,yP/x . In this way, every (interior) 
approximation of every pure social choice function in this simple example is monotonic 
and hence (if veto power problems are avoided) implementable. 

Abreu and Sen (1991) prove that this simple construction outlined above for the case 
of von Neumann-Morgenstern preferences and !Al = 3 is very general. The upshot ·of this 
is that moving from exact to virtual implementation completely eliminates the necessity 
of monotonicity. 

2.3.2 Virtual implementation in iterated removal of dominated strategies 

An even more powerful result is established in Abreu and Matsushima (1992a) . They 
show that by req uiring only virtual implementation, then in finite-profile environments 
·one can find mechanisms such that not only is there a uniq ue Nash eq uilibrium that
approximately yields the social choice function, but the Nash eq uilibrium is strictly dom
inance solvable. They exploit the fact that for each agent there is a function from his 
possible preferences to lottery space, h, such that if R;, -:/= R� , then h(R;,)P)ih(RD and 
h(RD P/h(R;,). The message space of agent i consists of a single report of i's own pref
erences and multiple (ordered) reports of the entire preference profile, with the final 
outcome patching together pieces of a lottery, each piece of which is determined by some 
portion of the reported profiles. The payoff function is then constructed so that falsely 
reporting one's own type as R' at R will lead to individual i receiving the g(R') lottery 
instead of the g(R) lottery with some probability, so this false report is a strictly dom
inated strategy. Incentives are provided so that subseq uent26 reports of the profile will 
"agree" .with earlier reports in a particular way. The first defection from agreement is 
punished severely enough to make it unprofitable to defect from the truthful self-reports 
of the first component of the message space. The degree of approximation can then be 
made as fine as one wishes simply by req uiring a very large number of reported profiles. 

Formally, a message for i ,  is a K + 1 vector mi = ( m? , mf , . . .  , mf) where the first
component is an element of i 's set of possible preferences and the other K components 
are each elements of the set of possible preference profiles. The outcome function is 
then pieced together in the following way. Let E be some small positive numb.er. With 
probability c/ I (where I is the number of players) ,  the outcome is based only on m? , 
and eq uals h(m?) so i is strictly better off reporting m? honestly. With probability c2 /I
agent i is rewarded if, for all k = 1 ,  . . . , K, mf = m0 whenever mj = m0 for all j J = i
for all h < k. That is, i gets a small reward (in expected terms) for honestly revealing 

26The term "subsequent" should not be interpreted as meaning that the profiles are reported se
quentially, since the game is simultaneous-move. Rather, the vector of reported profiles is ordered, so 
subsequent refers to reported profile with the next index number. Glazer and Rubinstein (1994) show 
that there is a similar sequential game that can be constructed which is dominance solvable following 
similar logic. 
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his preference, and then gets an order of magnitude smaller reward for always agreeing 
with the vector of first reports (including his own) . These are the only pieces of the 
outcome function that are affected by m0. Clearly for £ small enough the first order loss 
overwhelms any possible second order gain from falsely reporting m? . Thus messages
involving false reports of m? are strictly dominated.

The remaining pieces of the outcome function (each of which is used with probability 
(1 - c - £2) / K) correspond to the final K components of the messages, where each agent 
is reporting a preference profile. If everyone agrees on the kth profile, then that kth piece 
of the outcome function is simply the social choice function .at that commonly reported 
profile. For K large enough, the gain one can obtain from deviating and reporting 
mf =/:- m0 in the kth piece can be made arbitrarily small. But the penalty from being the
first to report mf =/:- m0 is constant with respect to K, so this penalty will exceed any gain
from deviating when K is large. Thus deviating h = k + 1 can be shown to be dominated 
once all strategies involving deviations at h < k + 1 have been eliminated. Variations on 
this "piecewise" approximation technique also appear in Abreu and Matsushima (1990) 
where the results are extended to incomplete information (see below) and Abreu and 
Matsushima (1994) where a similar technique is applied to exact implementation via 
iterated elimination of weakly dominated strategies. 27 

This kind of construction is quite a bit different from the usual Maskin-type of con
struction used elsewhere in the proofs of implementation theorems. It has a number of 
attractive features, one of which is the avoidance of any mixed strategy equilibria. In 
other constructions, mixed strategies are usually just ignored. This can be problematic 
as an example of Jackson (1992) shows that there are some Nash implementable social 
choice correspondences that are impossible to implement by a finite mechanism without 
introducing other mixed strategy equilibria. A second feature is that in finite domains 
one can implement using finite message spaces. While this is also true for Nash imple
mentation when the environment is finite, there are several examples that illustrate the 
impossibility of finite implementation in other settings. Palfrey and Srivastava (1991a) 
show that sometimes infinite constructions are needed for undominated Nash implemen
tation, and Dutta and Sen (1994b) show that Bayesian Nash implementation in finite 
environments can require infinite message spaces. 

Glazer and Rosenthal (1992) raise the issue that in spite of the obvious virtues of the 
implementing mechanism used in the Abreu and Matsushima (1992a) proof, there are 
other drawbacks. In particular, Glazer and Rosenthal (1992) argue that the kind of game 
that is implied by the mechanism is precisely the same kind of game that game theorists 
have argue.d . .as heing.iragile, in the ,sense that the . predictions .of Nash equilibrium are 
not a priori plausible. Abreu and Matsushima (1992b) respond that they believe iterated 
strict dominance is a good solution concept for predictive28 purposes, especially in the 

27 Glazer and Perry (1992) show that this mechanism can be reconstructed as a multistage mechanism 
which can be solved by backward induction. Glazer and Rubinstein (1993) propose that this reduces 
the computational burden on the players. 

28In implementation theory, it is the predictive value of the solution concept that matters. One can 
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context of their construction. However, preliminary experimental findings (Sefton and 
Yavas, 1993) indicate that in some environments the Abreu-Matsushima mechanisms 
perform poorly. 

This is part of an ongoing debate in implementation theory about the "desirabi.lity" of 
mechanisms and/ or solution concepts in the constructive existence proofs that are used 
to establish implementation results. The arguments by critics are based on two premises: 
1) equilibrium concepts, or at · least the ones that have been explored, do not predict
equally well for all mechanisms; and 2) the quality of the existence result is diminished 
if the construction uses a mechanism that seems unattractive. Both premises . suggest 
interesting avenues of future research. 

An initial response to 1) is that these are empirical issues that require serious study, 
not mere introspection. The obvious implication is that experimental29 work in game 
theory will be crucial to generating useful predictive models of behavior in games. This 
in turn may require a redirection of effort in implementation theory. For example, from 
the game theory experiments that have been conducted to date, it is clear that limited 
rationality considerations will need to be incorporated into the equilibrium concepts, as 
will statistical (as opposed to deterministic) theories of behavior.30 

Possible responses to 2) are more complicated. The cheap response is that the imple
menting mechanisms used in the proofs are not meant to be representative of mechanisms 
that would actually be used in "real" situations that have a lot of structure. These are 
merely mathematical techniques, and any mechanism used in a "real" situation should 
exploit the special structure of the situation. Since the class of environments to which 
the theorems apply is usually very broad, the implementing mechanisms used in the 
constructive proofs must work for almost any imaginable setting. The question this 
response begs is: for a specific problem of interest, can a "reasonable " mechanism be 
found? The existence theorems do not · answer this question, nor are they intended to. 
That is a question of specific application . So far, even with the alternative mechanisms of . 
Abreu-Matsushima, the mechanisms used in general constructive existence theorems are 
impractical. However, some nice results for familiar environments exist (e.g. , Crawford 
1979, Moulin 1984, Jackson and Moulin 1990) that suggest we can be optimistic about 
finding practical mechanisms for implementation in some common economic settings. 

think of the solution concept as the planner's model for predicting outcomes that will arise under different 
mechanism and in different environments. If the model predicts inaccurately, then a mechanism will fail 
to implement the planner's targeted social choice function. 

29The use of controlled experimentation in settling these empirical questions is urged in Abreu and 
Matsushima's (1992b) response to Glazer and Rosenthal (1992) . 
· 30See, for example, McKelvey and Palfrey (1993).
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3 Implementation with Incomplete Information 

This section looks at the extension of the results of section 3 to the case of incomplete 
information. Just as most of the results above are organized around Nash equilibrium 
and refinements, the same is done in this section, except the baseline equilibrium concept 
is Harsanyi's (1967-68) Bayesian equilibrium.31 

3 .1 The Type Representation 

The main difference in the model structure with incomplete information is that a domain 
specifies not only the set of possible preference profiles, but also the information each 
agent has about the preference profile and about the other agents' information. We 
adopt the "type representation" that is familiar to literature on Bayesian mechanism 
design (see, e.g. , Myerson 1985) .  

An incomplete information domain32 consists of a set, I, of n agents, a set, A, of
feasible alternatives, a set of types, Ti, for each agent i E J, a von Neumann Morgenstern 
utility function for each agent, ui : T x A -t n, and a collection of conditional probability 
distributions {qi(t-ilti) , for each i E I  and for each ti E Ti,. There are a variety of familiar 
domain restrictions that will be referred to, when necessary, as follows: 

1 .  Finite types: 
2. Diffuse priors:

3 .  Private values:33 
4. Independent types:
5. Value-distinguished types:

ITil < 00 
qi(Lilti) > 0, for all i E J, for all ti E Ti, 
and for all Li E T _i 
ui(ti, Li, a) = ui(ti, t'_i, a) for all i, ti, Li, t'_i, a 
qi(Lilti) = qi(LiltD for all i ,  ti, t'_i, Li, a 
For all i ,  ti, t� E Ti,, ti =/= t� , :la, b such that 
Ui (ti, Li, a) > ui (ti, Li, b) 
and ui(t� , Li, b) > ui(t� , Li, a) 
for all Li E T-i· 

A social choice function (or allocation rule) f :  TA assigns a unique outcome to each 
type profile. A social choice correspondence, F, is a collection of social choice functions. 
The set of all allocation rules in the domain is denoted by X, so in general, we have 
f E F � X. A mechanism µ =< M, g > is defined as· before. A strategy for i is a 
function mapping Ti into Mi, denoted CJi : Ti -t Mi. We also denote type ti of player i 's 
interim utility of an allocation rule x E X by: 

31This should come as no surprise to the reader, since Bayesian equilibrium is simply a version of Nash 
equilibrium, adapted to deal with asymmetries of information. 

32Myerson (1985) calls this a Bayesian Collective Decision Problem. 
33In this case, we simply write u i(ti ,  a) , since i's utility depends only on his own type. 
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where Et is the expectation over t. Similarly, given a strategy profile a in a mechanism 
· µ, we denote type ti of player i 's interim utility of strategy a in µ by: 

3.2 Bayesian Nash Implementation 

Bayesian Nash implementation, like Nash implementation has two components, incentive 
compatibility and uniqueness. The main difference is that incentive compatibility imposes 
genuine restrictions on social choice functions, unlike the case of complete information. 
When players have private information, the planner must provide the individual with 
incentives to reveal that information, in contrast to the complete information case, where 
an individual's report of his information could be checked against another individual's 
report of that information. Thus, while the constructions with complete information 
rely heavily on mutual auditing schemes that we called "agreement mechanisms," the 
constructions with incomplete information do not.34 

Definition 19 A strategy a is a Bayesian equilibrium of µ if, for all i and for all ti E Ti 

Definition 20 A social choice function f : T --+ A (or allocation rule x : T --+ A) is 
Bayesian implementable if there is a mechanism µ = <  M, g > such that there exists a 
Bayesian equilibrium of µ and, for every Bayesian equilibrium, a, of M, f(t) = g(a(t)) 
for all t E T. 

Implementable social choice sets are defined analogously. 

For the rest of this section, we restrict attention to the simpler case of diffuse types, 
defined above. Later in the chapter, the extension of these results to more general 
information structures will be explained. 

Incentive Compatibility and the Bayesian Revelation Principle 

Paralleling the definition for complete information, a social choice function (or al
location rule) is called · (Bayesian) incentive compatible if and only if it can arise as a 

34There are special exceptions where mutual auditing schemes can be used, which include domains 
in which there is enough redundancy of information in the group so that an individual's report of the 
state may be checked against the joint report of the other individuals. This requires a condition called 
Non-Exclusive Information (NEI) . See Postlewaite and Schmeidler, 1986 or Palfrey and Srivastava, 1986. 
Complete information is the extreme form of NEI. 
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Bayesian equilibrium of some mechanism. The revelation principle (Myerson 1979, Har
ris and Townsend 1981) is the simple proposition that an allocation rule x can arise as the 
Bayesian equilibrium to some mechanism if and only if truth is a Bayesian equilibrium 
of the direct35 mechanism, µ =< T, x > .  Thus, we state the following. 

Definition 21  An allocation rule x is incentive compatible if, for all i and for all ti , t� E 
Ti 

Uniqueness 

Just as the multiple equilibrium problem can arise with complete information, the 
same can happen with incomplete information. In particular, direct mechanisms often 
have this problem (as was the case with the "agreement" direct mechanism in the com
plete information case) . Consider the following example. 

Example 22 (an allocation rule investigated in Holmstrom and Myerson (1983)) 

There are two agents, each of whom has two types. Types are equally likely and 
statistically independent and individuals have private values. The alternative set is A = 

{a ,  b, c } . Utility functions are given by ( Uij denotes the utility to type j of player i) :  

u11 (a) = 2u11 (b) = lu11 (c) = 0 u12 (a) = Ou12 (b) = 4u12 (c) = 9 

The following social choice function, f, is incentive compatible and efficient (where 
/ij denotes the outcome when player 1 is type i and player 2 is type j) :  

f 1 1  = a f 12 = b /21 = c /22 = b. 

It is easy to check that for the direct revelation mechanism < T, f >, there is a 
"truthful" Bayesian equilibrium where both players adopt strategies of reporting their 
actual type, Le. , , fis incentive compatible.' · However, there , is another equilibrium of 
< T, f > ,  where both players always report type 2 and the outcome is always b. We call 
such strategies in the direct mechanism deceptions, since such strategies involve falsely 
reported types. Denoting this deceptive strategy profile as a, it defines a new social choice 
function which we call fo: defined by fo: (t)f(a(t) )t. This illustrates that this particular 
allocation rule is not Bayesian Nash implementable by the direct mechanism. However, 

35 A mechanism is direct if Mi = T1 for all i E J. 
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it turns out to be possible to add messages, augmenting36 the direct mechanism into 
an "indirect" mechanism that implements f.  One way to do this is by giving player 1 
another pair of messages, call them "truth" and "lie" one of which must be sent along 
with the report of his type. The outcome function is then defined so that g(m) = f (t) if 
the vector of reported types is t and player one says "truth." If player 1 says "lie,'' then 
g(m) = f(ti , t� ) where t1 is player l 's reported type and t� is the opposite of player 2 's 
reported type. This is illustrated in Figure 7 below. 

[FIGURE 7 HERE] 

It is easy to check that if the players use the a deception above, then player 1 will 
announce "lie,'' which is not an equilibrium since player 2 would be better off always 
responding by announcing type 1 .  In fact, simple inspection shows that there are no 
longer any Bayesian equilibria that lead to social choice functions different from f, and 
(truth, "truth" ) is a Bayesian equilibrium37 that leads to f.  

Given that t�e incentive compatibility condition holds, the implementation problem 
boils down to determining for which social choice functions it is possible to augment the 
direct mechanism as in the example above, to eliminate unwanted Bayesian equilibria. 
This is the so-called method of selective elimination (Mookherjee and Reichelstein 1990) 
that is used in most of the constructive sufficiency proofs in implementation theory. 
Again paralleling the complete information case, there is a simple necessary condition 
for this to be possible, which is an "interim" version of Maskin's monotonicity condition 
(definition 6) , called Bayesian monotonicity. 6. 

Definition 23 A social choice correspondence F is Bayesian monotonic if, for every 
f E F and for every joint deception a : T -+  T such that fa (j. F, 3i E I, ti E Ti, and an 
allocation rule y : T -+  A such that Ui (f a ,  ti) < Ui(Ya , ti) and, for all t� E Ti , Ui(f, tD 2: 
Ui (Y, tD . . 

The intuition behind this condition is simpler than it looks. In particular, think of 
the relationship between f and fa being roughly the same in the above definition as the 
relationship between R and R', the difference being that with asymmetric information, 
we need to consider changes in the entire social choice function f, rather than limiting 
attention to the particular change in type profile from R to R' (or t to t' ,  in the type 
notation) . So, if fa (j. F (analogous to a (j. F(R') in the complete information. formula
tion) ,  we need a test agent, i ,  and a test allocation rule y (analogous to test allocation, 
in monotonicity . .definition) ,  such that i's ·(interim) -preference between f and y is the re
verse of his preference between fa and Ya (with the appropriate quantifiers and qualifiers 
included) . Thus the basic idea is the same, and involves a test agent and a test allocation 
rule. 

36The terminology "augmented" mechanism is due to Mookherjee and Reichelstein (1990) . 
37There is another Bayesian equilibrium that also leads to f .  See Palfrey and Srivastava (1993) .  
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3.3 Necessary Condition for Bayesian Implementation 

We are now ready to state the main result regarding necessary conditions38 for Bayesian 
implementation. 

Theorem 24 If F is Bayesian Nash implementable, then F is Bayesian monotonic, and 
every f E F is incentive compatible. 

Proof : The necessity of incentive compatibility is obvious. The proof for necessity of 
Bayesian monotonicity follows the same logic as the proof. for necessity of monotonicity 
with complete information (see Theorem 8) . I

3.4 Sufficiency Theorems 

As with complete information, sufficient conditions generally require an allocation rule 
to be in the social choice correspondence if there is nearly unanimous agreement among 
the individuals about the "best" allocation rule. This is the role of NVP in the original 
Maskin sufficiency theorem. There are two ways to guarantee this . . The first way (and 
by far the simplest) is to make a domain assumption that avoids the problem by ruling 
out preference profiles where there is nearly unanimous agreement. The prototypical 
example of such a domain is a pure exchange economy. In that case, there is a great 
deal of conflict across agents, as each agent's most preferred outcome is to be allocated 
the entire societal endowment, and this most preferred outcome is the same regardless 
of the agent 's type. Another related example includes the class of environments with 
sidepayments using a divisible private good that everyone values positively, the best 
known case being quasi-linear utility. We present two sufficiency results, one for the case 
of pure exchange economies, and the second for a generalization. We assume throughout 
that information is diffuse and n 2: 3. 

· Consider a pure exchange economy with asymmetric information, E, with L goods 
and n individuals, where the societal endowment39 is given by w = (w1 , . . .  , wL) · The 
alternative set, A, is the set of all nonnegative allocations of w across the n agents.40 
The set of feasible allocation rules mapping T into A are denoted X .  

38There are other necessary conditions. For example, F must be closed with respect to common 
knowledge concatenations. See Postlewaite and Schmeidler (1986) or Palfrey and Srivastava. (1993) for 
details. 

39We will not be addressing questions of individual rationality, so the initial allocation of the endow
ment is left tiusp-ecified. 

400ne could permit free disposal as well, but this is not needed for the implementation result. The 
constructions by Postlewaite and Schmeidler (1986) and Palfrey and Srivastava (1989a) assume free 
disposal. We do not assume it here, but do assume diffuse information. Free disposability simplifies the 
constructions when information is not diffuse, by permitting destruction of the entire endowment (i.e. , 
all agents receive 0) when the joint reported type profile is not consistent with any type profile in T. 
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Theorem 25 Assume n ;::: 3 and information is diffuse .  A social choice function x E X 
is Bayesian Nash implementable if and only if it satisfies incentive compatibility and 
Bayesian monotonicity. 

Proof : Only if follows from Theorem 24. It is only slightly more difficult . Once again, we 
use a variation on the agreement/integer game, adapted to the incomplete information 
framework. Notice, however, that there is always "agreement" with diffuse types, since 
each player is submitting a different component of the type profile, and all reported type 
profiles are possible. Each player is asked to report a type and either an allocation rule 
that is constant in his own type (but can depend on other players' types) or a nonnegative 

. integer. Thus: 

Where X_i denotes the set of allocation rules that are constant with respect to ti . The 
agreement region is the set of message profiles where each player sends a reported type 
and "O." The unilateral disagreement region is the set of message profiles where exactly 
one agent reports a type and something other than "O." Finally, the disagreement region 
is the set of all message profiles with at least two agents failing to report "O. "  In the 
agreement region, the outcome is just x(t) , where t is the reported type profile. In the 
unilateral disagreement region the outcome is also just x(t) , unless the disagreeing agent, 
i ,  sends y E x_i with the property that Ui(x, tD ;::: Ui (Y, tD for all t� E Ti. In that 
case, the outcome is y(t) . In the disagreement region, the agent who submits the highest 
integer41 is allocated w and everyone else is allocated 0. 

Notice how the mechanism parallels very closely the complete information mechanism. 
The structure of the unilateral disagreement region is such that if all individuals are 
reporting truthfully, no. player can unilaterally falsely report and or disagree and be 
better off. By incentive compatibility it does not pay to announce a false type. The fact 
that y does not depend on the disagreer's types implies that it doesn't pay to report y 
and a false (or true) type. Therefore, there is a Bayesian equilibrium in the agreement 
region, where all players truthfully report their types. There can be no equilibrium 
outside the agreement region,. because there would be at least two agents each of whom 
could unilaterally change their message and receive w. Thus the only possible other 
equilibria that might arise would be in the agreement region, where agents are using 
a joint deception a. But the Bayesian monotonicity condition (which f satisfies by 
assumption) says that either Xa = x or there exists a y, and i, and a ti , such that 
Ui (x , tD ;::: Ui (Y, tD for all t� E Ti but Ui (Ya , ti) > Ui (Xm ti) · Since it is easy to project 
y onto X_i (see Palfrey and Srivastava 1993) and preserve these inequalities,  it follows 
that i is better off deviating unilaterally and reporting y instead of "O." I 

4 1 In this region, if a player sends an allocation instead of an integer, this is counted as "O." Ties are
broken in favor of the agent with the lowest index. 
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The extension of the above result to more general environments is simple, as long as 
individuals have different "best elements" that do not depend on their type.  For each i ,  
suppose that there exists an alternative bi such that Ui(bi , t) 2:: Ui(a, t )  for all a E A  and 
t E T, and further suppose that for all i, j it is the case that Ui(bi , t) > Ui (bj , t) for all 
t E T. If this condition holds, we say players have distinct best elements. 

Theorem 26 If n 2:: 3, information is diffuse and players have distinct best elements, 
then f is Bayesian implementable if and only if f is incentive compatible and Bayesian 
monotonic. 

Proof : Identical to the proof of Theorem 25, except in the disagreement reg10n the 
outcome is bi , where i is winner of the integer game. I 

Jackson (1991) and Matsushima (1990) show that the condition of distinct best el
ements can be further weakened, and their result is summarized in Palfrey and Srivas
tava (1993, p. 35) . An even more general version, that considers nondiffuse as well as 
diffuse information structures is in Jackson (1991) . That paper identifies a condition 
that is a hybrid between Bayesian monotonicity and an interim version of NVP, called 
monotonicity-no-veto (MNV) . The earlier papers by Postlewaite and Schmeidler (1986) 
and Palfrey and Srivastava (1987, 1989a) also consider nondiffuse information structures. 

Dutta and Sen (1991 b) provide a sufficient condition for Bayesian implementation, 
when n 2:: 3 and information is diffuse, that is even weaker than the MNV condition of 
Jackson (1991) . They call this condition extended unanimity, and it , like MNV, incor
porates Bayesian monotonicity. They also prove that when this condition holds and T 
is finite, then any incentive compatible social choice function can be implemented using 
a finite mechanism. They do this using a variation on the integer game, called a modulo 
game,42 which accomplishes the same thing as an integer game but only requires using 
the first n positive integers. 

Dutta and Sen (1994b) raise an interesting point about the size of the message space 
that may be required for implementation of a social choice function. They present an 
example of a social choice function that fails their sufficiency condition (it violates una
nimity and there are only two agents) , but is nonetheless implementable via Bayesian 
equilibrium. But they are able to show that the only implementing mechanisms use 
infinite message spaces, in spite of the fact that both A and T are finite. 

Dutta and Sen (1994a) extend their general characterization of Bayesian implementable 
social choice correspondences when n 2:: 3 to the n = 2 case, using an interim ver
sion of the nonempty lower intersection property that they used in their n = 2 char
acterization with complete information (Dutta and Sen, 1991a) . This complements 
some earlier work on characterizing implementable social choice functions by Mookher
jee and Reichelstein (1990) . Dutta and Sen (1994a) extend these results to characterize 

42The modulo game is due to Saijo (1988) and is also used in McKelvey (1989) and elsewhere. A 
potential weakness of a modulo. game is that it typically introduces unwanted mixed strategy equilibria 
that could be avoided by the familiar greatest-integer game. 
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Bayesian implementable social choice correspondences for the n = 2 case, for "economic 
·environments. " 43

All of the results described above are restricted (either explicitly or implicitly) to 
finite sets of player types. Obviously for many applications in economics this is a strong 
requirement. Duggan (1994b) provides a rigorous treatment of the many difficult tech
nical problems that can arise when the space of types is uncountable. He extends the 
results of Jackson (1991) to very general environments, and identifies some new, more 
inclusive conditions that replace previous assumptions about best elements, private val
ues, and economic environments. The key assumption he uses is called interiority, which 
is satisfied in most applications. 

3.5 Implementation using refinements of Bayesian equilibrium 

Just as in the case of complete information, refinements permit a wider class of social 
choice functions to be implemented. These fall into two classes: dominance based refine
ments using simultaneous-move mechanisms, and sequential rationality refinements using 
sequential mechanisms. In both cases, the results and proof techniques have similarities 
to the complete information case. 

3.5 .1  Undominated Bayesian equilibrium 

The results for implementation using dominance refinements in the normal form are lim
ited to undominated Bayesian implementation, where a nearly complete characterization 
is given in Palfrey and Srivastava (1989b) . An undominated Bayesian equilibrium is a 
Bayesian equilibrium where no player is using a weakly dominated strategy. There are 
several results, some positive and some negative. First, in private value environments 
with diffuse types and value-distinguished types, any incentive compatible allocation rule 
satisfying no veto power is implementable via undominated Bayesian equilibrium. The 
proof assumes the existence of best and worst elements44 for each type of �ach agent, 
but does not require No Veto Power. They also show that with non-private values, some 
additional very strong restrictions are needed, and, moreover, the assumption of value 
distinction is critical. 45 

43The term economic is vague. "Informally speaking, an economic environment is one where it is 
possible to make some individual strictly better off from any given allocation in a manner which is 
independent of her type. This hypothesis, while strong, will be satisfied if there is a transferable private 
good in which the utilities-ofboth individuals ·are-strictly increasing." (Dutta and Sen, 1994a, p .  52.

44Notice that if A is finite or more generally if A is compact and preferences are continuous, then best 
and worst elements exist. The proof can be extended to cover some special environments where best 
elements do not exist, such as the quasi-linear utility case. 

45The assumption of value distinction is stronger than might appear. It rules out environments where 
two types of an agent differ only in their beliefs about the other agents. One can imagine some natural 
environments where value distinction might be violated, such as financial trading environments, where 
a key feature of the information structure involves what agents know about what other agents know. 
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Two simple voting public goods examples illustrate both the power and the limitations 
(with common values) of the undominated refinement. 

Example 27 There are three agents, two feasible outcomes, A =  {a, b } ,  private values, 
independent types, and each player can be one of two types. Type a strictly prefers a to 
b and type {3 strictly prefers b to a, and the probability of being type a is q, with q2 >= � ·  
The "best solution" according to almost any set of reasonable normative criteria is  to 
chose a if and only if at least two agents are type a. Surprisingly, this "majoritarian" 
solution, while incentive compatible, is not implementable via Bayesian equilibrium. It 
is fairly easy to show that for any mechanism that produces .the majoritarian . solution as 
a Bayesian equilibrium that mechanism will have another equilibrium in which outcome 
b is produced at every type profile. However, it is easy to see that the majoritarian 
solution is implementable via undominated Bayesian equilibrium, since it is the unique 
undominated Bayesian equilibrium46 outcome in the direct mechanism. 6 

Example 28 This is the same as Example 27 (two feasible outcomes, three agents, two 
independent types and type a occurs with probability q2 > � .}, except there are common
values.47 The common preferences are such that if a majority of agents are type a, then 
everyone prefers a to b, and if a majority of agents are type {3, then everyone prefers b to a. 
We call these "majoritarian preferences." Obviously, there is a unique best social choice 
function for essentially any non-malevolent welfare criterion, which is the majoritarian 
(and unanimous, as well! ! )  solution: choose a if and only if at least two agents are type 
a .  

First observe that because of the common values feature of this example, players no 
longer have a dominant strategy in the direct game for agents to honestly report their true 
type. (Of course, truth is still a Bayesian equilibrium of the direct game.) One can show 
(Palfrey and Srivastava 1989b) that this social choice function is not even implementable 
in undominated Bayesian equilibrium. In particular, any mechanism which produces 
the majoritarian solution as an undominated Bayesian equilibrium always has another 
undominated Bayesian equilibrium where the outcome is always b. 6 

The point of Example 28 is to illustrate that with common values, using refinements 
may have only limited usefulness in a Bayesian framework. We know from the work in 
complete information that implementation requires the existence of test agents and test 
pairs of allocations that involve (often delicate) patterns of preference reversal between 
preference profiles. Analogously, in the Bayesian setting such preference reversals must 
occur across type profiles. With private values, such preference reversals are easy to find . 
With common values and/or non-value..:distinguished types, such preference reversals 
often simply do not exist, even in very natural examples of social choice functions that 

46Notice that it is actually a dominant strategy equilibrium of the direct mechanism. This example 
illustrates how it is possible for an allocation rule to be dominant strategy implementable (and strategy 
proof) ,  but not Bayesian Nash implementable. 

47By common values we mean that every agent has the same type-contingent preferences. A related 
mechanism design problem is explored in mo�e depth by Glazer and Rubinstein (1994). 
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satisfy No Veto Power and N > 2 .  We turn next48 to the question of implementation 
using sequential rationality refinements, where results parallel (to an extent) the results 
for subgame perfect implementation. 

For virtual implementation, Abreu and Matsushima have an extension of their com
plete information paper on the use of iterated elimination of strictly dominated strategies 
(Abreu and Matsushima 1990) for implementation in incomplete information environ
ments. They show that, under a condition they call measurability and some additional 
minor restrictions on the domain, any incentive compatible social choice function de
fined on finite domains can be virtually implemented by iterated elimination of strictly 
dominated strategies. They conjecture in Abreu and Matsushima (1994) that with some 
additional assumptions (such as the ability to use small monetary transfers)' one can 
obtain exact implementation via iterated elimination of weakly dominated strategies in 
finite incomplete information domains. 

Duggan (1994a, 1995a) looks at the related issue of virtual implementation in Bayesian 
equilibrium (rather than iterated elimination of dominated strategies) . He shows that 
the measurabil!ty of Abreu and Matsushima (1990) is not necessary for virtual Bayesian 
implementation. With a mild domain restriction,49 Bayesian incentive compatibility is 
necessary and sufficient in environments where there exists some uniquely50 Bayesian 
incentive compatible allocation rule. An analogous result is established for dominant 
strategy implementation, using a similar proof technique. 

3.5 .2  Implementation via sequential equilibrium 

There are two papers that partially charaderize the set of implementable social choice 
functions for incomplete information environments using the equilibrium refinement of 
sequential equilibrium. The main idea behind these characterizations is the same as the 
ideas behind the results for subgame perfect equilibrium implementation under conditions 
of complete information. Instead of requiring a test pair involving the social choice 
function, x, as is required in Bayesian monotonicity, all that is needed is some (interim) 
preference reversal between some pair of allocation rules, plus an appropriate sequence 
of allocation rules that indirectly connect x with the test pair of allocation rules. 

The details of the conditions analogous to indirect monotonicity for incomplete in
formation are messy to state, because of quantifiers and qualifiers that relate to the 
posterior beliefs an agent could have at different stages of an extensive form game in 

48There is -a second approach to using dominance based refinements in games of incomplete infor
mation, which is virtual implementation via iterated elimination of dominated strategies (Abreu and 
Matsushima 1990) . Results parallel their findings for complete information, and the differences are dis
cussed in the Palfrey and Srivastava (1993) monograph. Duggan (1994a) has extended those results to 
allow for continuous types. 

49The restriction on the environment is that there must exist some Bayesian incentive compatible 
allocation rule whose associated direct mechanism has a unique equilibrium. 

50That is, truth is the unique equilibrium of the allocation rule's direct mechanism. 
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which different players are adopting different deceptions. However, the intuition behind 
the condition is similar to the intuition behind Condition a in Abreu and Sen (1990) . 

As with the necessary and sufficient results for Bayesian implementation, results are 
easiest to state and prove for the special case of economic environments, where No Veto 
Power problems are assumed away and where there are at least three agents. 

Bergin and Sen (1993) have some results for this case. They identify a condition 
which is sufficient for implementation by sequential equilibrium in a two-stage game. 
That paper also makes the point that with incomplete information there exist social 
choice functions that are implementable sequentially, but are not implementable via 
undominated Bayesian equilibrium (or via iterated dominance) , and are not even virtually 
implementable. This contrasts with the complete information case, where that any social 
choice function in economic environments is implementable via subgame perfect Nash 
equilibrium is also implementable via undominated Nash equilibrium. They are able to 
obtain these very strong results by showing that the "consistent beliefs" condition of 
sequential equilibrium can be exploited to place restrictions on equilibrium play in the 
second stage of the mechanism. 

Baliga (1993) also looks at implementation via sequential equilibrium, limited to 
finite stage extensive games. His paper makes additional restrictions of private values 
and independent types, which lead to a significant simplification of the analysis. 

A more general approach is taken in Brusco (1993) who does not limit himself to stage 
games nor to economic environments. He looks at implementation via perfect Bayesian 
equilibrium and obtains the incomplete information equivalent to indirect monotonicity 
which he calls "Condition (3+." This condition is then combined with No Veto Power in a 
manner similar to Jackson's (1991) monotonicity-no-veto condition to produce sequential 
monotonicity-no-veto. His main theorem51 is that any incentive compatible social choice 
function satisfying SMNV is implementable in perfect Bayesian equilibrium. He · also 
identifies a weaker conditi�m than (3+ (called condition (3) , which he proves is necessary 
for implementation in perfect Bayesian equilibrium. However, Brusco's (1993) results 
are weaker than Bergin-Sen (1993) because his conditions on the requisite sequence of 
test allocations include a universal quantifier on beliefs that makes it much more difficult 
to guarantee existence of the sequence. Bergin-Sen show that the very tight condition 
of belief consistency can replace the universal quantifier. Loosely speaking, Brusco's 
results exploit only the sequential rationality part of sequential equilibrium, while Bergin
Sen exploit both sequential rationality and belief consistency. This seemingly minor 
distinction actually makes quite a difference in proving what can be implemented. 

Duggan (1995b) focuses on sequentially rational implementation52 in quasi-linear en-

51The main theorem is stated more generally. In particular he allows for social choice correspondences, 
which means that the additional restriction of closure under the common knowledge concatenation is 
required. 

52Duggan (1995b) defines sequentially rational implementation as implementation simultaneously in 
Perfect Bayesian Equilibrium and Sequential Equilibrium. 

· 
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vironments where the outcomes are lotteries over a finite set of public projects (and trans
fers) . He shows that any incentive compatible social choice function is implementable in 
private values environments with diffuse priors over a finite type space if there are three 
or more agents. He also shows that these results can be extended, with some modifica
tions, in a number of directions: two agents; the domain of exchange economies; infinite 
type spaces; bounded transfers; nondiffuse priors; and social choice correspondences. He 
also shows how a "belief revelation mechanism" can be used if the planner does not know 
the agents prior beliefs, as long as these prior beliefs are common knowledge among the 
agents. 

4 Open Issues 

Open problems in implementation theory abound. Several issues have been explored at 
only a superficial level, and others have not been studied at all. Some of these have been 
mentioned in passing in the previous sections. There are also numerous untied loose 
ends having to do with completing full characterizations of implementability under the 
solution concepts discussed above. 

Implementation using perfect information extensive forms and voting trees 

Among these uncompleted problems is implementation via backward induction and 
the closely related problem of implementing using voting trees. If this class of implemen
tation problems has a shortcoming, it is that extensions to the more challenging problem 
of implementation in incomplete information environments are limited. The structure of 
the arguments for backward induction implementation fails to extend nicely to incom
plete information environments, as we know from the literature on sophisticated voting 
with incomplete information (e.g. , Ordeshook and Palfrey 1988) .  

Renegotiation and information leakage 

Many of the above constructions have the feature that undesirable (e.g . ,  Pareto ineffi
cient, grossly inequitable, or individually irrational) allocations are used in the mechanism 
to break unwanted equilibria. The simplest examples arise when there exists a universally 
bad outcome that is reverted too in the event of disagreement. This is not necessarily a 
problem in some settings, where the planner's objective function may conflict with Pareto 
optimality irom .. the_point . of .view .of the. agents . (as in many principal-agent problems) . 
However,. in some settings, most obviously exchange environments, one usually thinks 
of the mechanism as being something that the players themselves construct in order to 
achieve efficient allocations. In this case, one would expect agents to renegotiate out
comes that are commonly known among themselves to be Pareto dominated. 53 Maskin 

530ne doesn't have to look very hard to find counterexamples to this in the real world. Institutional 
structures (such as courts) are widely used to enforce ex post inefficient allocations in order to provide 
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and Moore (1989) examine the implications of requiring that the outcomes always to be 
Pareto optimal. This approach has the virtue of avoiding mixed strategy equilibria and 
also avoiding implausibly bad outcomes off the the equilibrium path. It has the defect of 
implicitly permitting the outcome function of the mechanism to depend on the preference 
profile, which makes the specification of renegotiation somewhat arbitrary. Ideally, one 
would wish to specify a bargaining game that would arise in the event that an outcome is 
reached which is inefficient.54 But then the bargaining game itself should be considered 
part of the mechanism, which leads to an infinite regress problem. 

More generally, the planner may be viewed directly. as a player, who has state
contingent preferences over outcomes, just as the other players do. The planner has 
prior beliefs over the states or preference profiles (even if the players themselves have 
complete information) . Given these priors, the planner has induced preferences over the 
allocations. This presents a commitment problem for the planner, since the outcome 
function must adhere to these preferences. This places restrictions both on the mecha
nism that can be used and also on the social choice functions that can be implemented. 
Several papers have been written recently on this subject, which vary in the assumptions 
they make about the extent to which the planner can commit to a mechanism, the extent 
to which the planner may update his priors after observing the reported messages, and 
the extent to which the planner participates directly in the mechanism. The first paper 
on this subject is by Chakravorti, Corchon, and Wilkie (1994) and assumes that the 
social choice function must be consistent with some prior the planner might have over 
the states, which implies that the outcome function is restricted to the range of the social 
choice function. The planner is not an active participant and does not update beliefs 
based on the messages of the players, nor does he choose an outcome that is optimal 
given his beliefs . Baliga, Corchon, and Sjostrom (1995) obtain results with an actively 
participating planner,55 who acts optimally, given the messages of the players and can
not commit ex ante to an outcome function. Thus, the mechanism consists of a message 
space for the players and a planner's strategy of how to assign messages to outcomes. 
This strategy replaces the familiar outcome function, but is required to be sequentially 
rational. Thus, the mechanism is really a two-stage (signalling) game, and an equilib
rium of the mechanism must satisfy the the conditions of Perfect Bayesian Equilibrium. 
Baliga and Sjostrom (1995) obtain further results on interactive implementation with an 
uninformed planner who can commit to an outcome function, and who also participates 
in the message-sending stage. 

Another sort of renegotiation arises in incomplete information settings if the social 
choice function calls for allocations that are known by at least some of the players to 
be ineffident. ln ·"Particular, for certain· type·realizations;· ·some players may be able 
to propose to replace the mechanism with a new one that all other types of all other 
players would unanimously prefer to the outcome of the social choice function. This 

salient incentives. Some forms of criminal punishments, such as incarceration and physical abuse, fall 
into this category. 

54See, for example, Aghl.on, Dewatripont, and Rey (1994) or Rubinstein and Wolinsky (1991) .  
55That is,  the planner also submits messages. They call this "interactive implementation." 
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problem of lack of durability56 (Holmstrom and Myerson 1983) opens up another kind of 
renegotiation problem, which may involve the potential leakage of information between 
agents in the renegotiation process. This has been addressed to some extent in principal
agent settings by Maskin and Tirole (1992) and in exchange economies by Palfrey and 
Srivastava (1993) . 

Also related to this kind of renegotiation is the problem of preplay communication 
among the agents. It is well known that preplay communication can expand the set of 
equilibria of a game, and a similar thing can happen in mechanism design. This can· occur 
because information can be transmitted by preplay communication and because. commu
nication opens up possibilities for coordination that were impossible to achieve with 
independent actions. In nearly all of the implementation theory research, it is assumed 
that preplay communication is impossible (i.e . ,  the message space of the mechanism spec
ifies all possible communication) . An exception is Palfrey and Srivastava ( 1991b), which 
explicitly looks at designing mechanisms that are "communication proof," in the sense 
that the equilibria with arbitrary kinds of preplay communication are interim-payoff
equivalent to the equilibria without preplay communication. They show that for a wide 
range of economic environments one can construct communication proof mechanisms to 
implement any interim efficient, incentive compatible allocation rule. 

Implementation in dynamic environments 

Many mechanism design problems and allocation problems involve intertemporal al
locations. One obvious example is bargaining when delay is costly. In that case both 
the split of the pie and the time of agreement are economically important components of 
the final allocation. Recently, Rubinstein and Wolinsky (1991) look at the renegotiation 
proof problem in implementation theory by appending an infinite horizon bargaining 
game with discounting to the end of each inefficient terminal node. This is an alterna
tive approach to the same renegotiation problem that Maskin and Moore (1989) were 
concerned about. However, like the rest of implementation theory, their interest is in im
plementing static allocation rules (i.e . ,  no delay) in environments that are (except for the 
final bargaining stages) static. This is true for all the other sequential game constructions 
in implementation theory: time stands still while the mechanism is played out. 

· Intertemporal implementation raises additional issues. Consider, for example, a set
ting in which every day the same set of agents is confronted with the next in a series 
of connected allocation problems, and there is discounting. A preference profile is not 
an infinite sequence of "one shot" profiles corresponding with each time period. A so
cial choice function is a mapping from the set of these profile sequences into allocation 
sequences. Renegotiation proofness would impose a natural time consistency constraint 
that the social choice function would have to satisfy from time t onward, for each t .  With 
this kind of structure one could begin to look at a broader set of economic issues related 
to growth, savings, intertemporal consumption, and so forth. 

56Closely related to this are the notions of ratifiability and secure allocations (Cramton and Palfrey 
1994) and stable allocations (Legros 1990). 
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There are some very simple intertemporal allocation problems that could be investi
gated as a first step. One example is the one-sector growth model of Boylan et al. (1990) 
which compares different political mechanisms for deciding on investments. As a sec
ond example, Bliss and Nalebuff (1984) look at an intertemporal public goods problem. 
There is a single indivisible public good which can be produced once-and-for-all at any 
date t = 1 ,  2, 3 . . .  , and preferences are quasilinear with discounting. The production 
technology requires a unit of private good for the public good to be provided. Thus, 
an allocation is a time at which the public good is produced and an infinite stream of 
taxes for each individual, as a function of the profile of preferences for the public good. 
Bliss and Nalebuff (1984) look at the equilibrium of a specific mechanism, the voluntary 
contribution mechanism. At each point in time an individual must decide whether or not 
to privately pay for the public good, depending on their type. The unique equilibrium is 
for types that prefer the public good more strongly to pay earlier. Thus the public good 
is always produced by having the individual with the strongest preference for the public 
good paying for it , and the time of delay before production depends on what the highest 
valuation is and on the distribution of types. One could generalize this as a dynamic
implementation problem, which would raise some interesting ·questions: What other al
location rules are implementable in this setting? Is the Bliss-Nalebuff (1984) equilibrium 
allocation rule interim incentive efficient?57 

Robustness of the mechanism 

Implementation theory (even the relaxed problem of virtual implementation) so far 
has investigated special deterministic models of individual behavior. The key assumption 
for obtaining results is that the equilibrium model that is assumed to govern individual 
behavior under any mechanism is exactly correct. Many of the mechanisms have no room 
for error. One would generally think of such fragile mechanisms as being nonrobust. 
Similarly (especially in the Bayesian environments) the details of the environment, such 
as the common knowledge priors of the players and the distribution of types, are known 
to the planner precisely. Often mechanisms rely on this exact knowledge. It should be 
the case that if the model of behavior or the model of the environment is not completely 
accurate, the equilibrium behavior of the agents does not lead to outcomes too far from 
the social choice function one is trying to implement . 

This problem suggests a need to investigate mechanisms that either do not make 
special use of detailed information about the environment (such as the distribution of 
types) or else look at models that permit statistical deviation from the behavior that 
is predicted under the equilibrium model. In the latter case, it may be more natural 
to think of social choice functions as type-contingent random variables rather than as 
deterministic functions of the type profile. Related to the problem of robustness of 
the mechanisms and the possible use of statistical notions of equilibrium is bounded 
rationality. The usual rationale for purely rational modelling in economics is that it is 
a good first cut on the problem and may often capture much of the reality of a given 

57Notice that it is not ex post efficient sinc!'l there is always delay in producing the public good. 
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economic situation. In any case, most economists regard the fully rational equilibrium 
as an appropriate benchmark in most situations. Unfortunately, since implementation 
theorists and mechanism designers get to choose the economic game in very special ways, 
this rationale loses much of its punch. It may well be that the games where rational 
models predict poorly are precisely those games that implementation theorist are prone 
to designing. Integer games, modulo games, "grand lottery" games like those used in 
virtual implementation proofs, and the enormous message spaces endemic to all the 
general constructions would seem for the most part to be games that would challenge the 
limits of even the most brilliant and experienced game player. If such constructions are 
unavoidable we really need to start to look beyond models of perfectly rational behavior. 
Even if such constructions are avoidable, we have to be asking more questions about the 
match (or mismatch) between equilibrium concepts as predictive tools and limitations 
on the rationality of the players. 
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Player 1 
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R R' 

R J(R) C(R', R) 
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Figure 2. (Weak) Nonempty Lower Intersection: 
J(R)R'C(R, R') , J(R')R�C(R, R') 

and 
J(R')R�C(R', R) , J(R)R2C(R' , R) 

=? f(R) E N E(R) , f (R') E N E(R') 
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Agent 1 

Figure 3. Illustration of monotonicity: 
x E F(R) => x E F(R') 
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Figure 4. Illustration of test agent and test allocation: 
xR1aP{x 
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Outcome = b 

a c 

Outcome = a Outcome = c

Figure 5 .  Game tree for example 2. 
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a b 

Figure 6. Vertices a, b, and c represent pure alternatives, with all other points 
representing lotteries over those alternatives. The indifference curves passing 
through lottery x for agent i under two Von Neumann-Morgenstern utility 
functions are lablled � and RL with the direction of preference marked with 
arrows. Lottery y satisfies x�yPf x. 
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Figure 7. Implementing mechanism for Holmstrom-Myerson example 
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