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Nonconfocal  Multimode  Resonators for  Masers* 
R. F. SOOHOot, SENIOR MEMBER, IRE 

Summary-The case of a resonator composed of two concave 
spherical reflectors separated by  an  arbitrary distance is examined. 
The  general  problem of the electromagnetic field distribution  over 
the  nonconfocal  aperture is first  formulated by means of the Huygens 
principle.  The solution of the resulting integral  equation is obtained 
analytically in the  highly  nonconfocal limit. It was found that when 
the reflector spacing d is much larger than the radius of curvature b 
of the reflectors, the  aperture field distribution is in  the  form of 
traveling waves. 

For  arbitrary d / b ,  the eigenvalues and eigenfunctions of  the 
lowest order mode is obtained by numerical solution using the IBM 
7090 computer. The diffraction loss was found to increase rapidly 
when d+2b and a geometrical interpretation of this behavior is 
given. Furthermore,  it was found that as the  spacing  departs  from 
the  confocal value, the  apertures  are no longer surfaces of constant 
phase. The  optimum  spacing  for  maximum Q of the  resonator is 
also obtained. 

I .  INTRODUCTION 

A T ULTRAMICROM‘.\VE through  optical fre- 
quencies, the  wavelengths  are of the  order of 10-’ 
to  10-4cm.  Thus, in order  to  achieve  reasonable 

physical  dimensions  and  high Q, resonators for masers 
operating  at these  frequencies  must, of necessity,  be of 
the  multimode  type.  This is  in contrast  to  the  situation 
a t  microwave  frequencies (X-1 cm)  where cavities may 
be of such  convenient physical dimensions  as to  substain 
only  the  dominant mode. 

Schawlow and  Townes,l  Prokhorov,2  and Dicke3 have 
suggested the use of the  Fabry-Perot  interfer~meter,~ 
composed of two reflecting plates  separated  by  an  arbi- 
trary  distance,  as  resonator for infrared  and  optical 
masers.  Such  open structures  have two  sources of loss: 
diffraction loss due  to  the  escaping of energy out of the 
region between the  two  plates,  and  the losses due  to  ab- 
sorption in and  transmission  through  the reflectors. Al-  
though  the losses of a parallel plate  resonator  are  rea- 
sonably  small, its configuration is, however, not  one 
that yields the  highest possible Q. A resonator formed 
by  two  identical  spherical reflectors separated  by  their 
radius of curvature  has been  shown to give diffraction 
losses that  are  orders of magnitude lower than  that of the 
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parallel plane resonator.jS6 Since the focal length of a 
spherical reflector is one half its  radius of curvature,  the 
focal points of the  reflectors  are  coincident  and  the 
resonators  are  therefore  termed confocal. Intuitively, 
we might  think of the  shape of the  spherical  surfaces  as 
being  more effective in confining the  energy  between 
them  than  are  two  parallel  plates,  thus  giving rise to 
lower diffraction losses. The use of confocal  spherical 
reflectors as  an  interferometer  has been  described  by 
Connes.’ In  contrast  with  the case of the  ,Fabry-Perot 
interferometer, i t  has been  found that parallelism be- 
tween the  spherical reflectors is not  a  strict  requirement; 
the  only fine adjustment  required being the  spacing be- 
tween  the reflectors. 

In  this  paper, we shall  study  mathematically  and 
physically  the  behavior of the  resonator when its  spher- 
ical reflectors are  separated by an  arbitrary  distance. 
Such  analysis of the nonconfocal resonator would yield 
the  eigenvalues  and  eigenfunctions of the  resonator from 
which the  diffraction losses may  be  computed  as  a  func- 
tion of the  arbitrary reflector separation d. The  results 
of this  analysis would enable us to examine,  among 
other  things,  the effect upon the  behavior of a maser em- 
ploying  spherical reflectors due  to longitudinal misalign- 
ment between the reflectors ( ; .e . ,  due  to  slight  departure 
from  confocal spacing).  Furthermore, since the  diffrac- 
tion losses should increase with  increasing reflector 
separation  above  the confocal value while the Q due  to 
reflections may  be  expected to increase  with  increasing 
d for small  diffraction loss, i t  should  be possible to  de- 
termine  the  optimum  value of d for maximum Q from 
our anal>.sis. 

11. FORMULATION OF PROBLEM 
Consider  the  resonator  configuration  as shown in Fig. 

1. Assuming that  the  square  aperture  dimension 2a and 
reflector separation d are  all small  compared  with  the 
wavelength X, we may use the  Huygens-Fresnel  princi- 
ple  in the zero wavelength  limit.  The  analysis using this 
principle yields an expression for E ,  by  summing  con- 
tributions from all the  differential  Huygens  sources  dis- 
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Fig.  I-Nonconfocal  resonator  with  spherical  reflectors. 

tributed  over  the left  reflector  surface S’:* 

ik(1 + cos0) 

= s,. 4uR 
e-akREofm(x’)gn(y’)ds’ (1) 

where k = 2 a / X  is the wave  number  and 6 is the  angle 
between the surface  normal n and R. Since a/d<<l, 
8+0 and cos 6 approaches  unity. Eof,(x’)g,(y’) repre- 
sents  the  electric field a t  r’ on the left  reflector surface 
S’ and  is  assumed  to be linearly  polarized in the  y-direc- 
tion. I t  may be noted that ei(wl-kR)/4aR represents  the 
familiar  amplitude  and  phase  dependence on t and R of 
a radiation field emanating  from a  dipole. 

The eigenfunctions of the nonconfocal resonator  can 
be obtained  by  solving (1) with E,=Elf , (x)g,(y)  thus 
requiring that  the field distribution  over x’y’ reproduce 
itself over  the xy aperture  within a constant. I t  follows 
from (1) that 

cmrnfm(x>gn(Y) 

= J:J-* ik  
- e-ikR”f,(x’)gn(y’)dx’dy’ ( 2 )  
27rR 

where umun = E1/Eo is the eigenvalue  belonging to  the 
eigenfunction fm(x)gn(y) and is in general  complex. Thus 
fm(x)gn(y)  represents  the  electromagnetic field distribu- 
tion  over the xy aperture while umun is related to  the 
phase  shift  and  diffraction loss of the normal  mode mn. 
Note  that if it were not for  diffraction losses, the  ampli- 
tude of the reflected  wave  from the  right  surface S(EJ 
would be exactly  equal to +EO or -EO making umun 
= - +l. 

Now, let 4‘ and 4 be the angle  between x’ and r’ and 
between x and I ,  respectively. Then,  it  follows from the 
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geometrical  configuration of Fig. 1 that 

R = d d 1 2  + r2 + r f2  - 2rr’ cos (4 - 4’) (3) 

and 

- I” 

2b 
A’ = b - dbZ - 7’2 - 

d l = d - A - A ‘  (6)  
( 5 )  

where b is the  radius of curvature of the reflectors.  Com- 
bining (4)-(6), we have  an expression  for dl in  terms of 
d, b, r ,  and r’. Substituting  this expression for dl into (3) 
and  keeping  in mind that a/d<<l, we find by  the bino- 
mial expansion the  approximate expression  for R as 

XX’ + yy’ d - b 
R E d  - 

d’ 2bd 
-- (x’ + x’2 + y’ + y‘”. ( 7 )  

Since a/d<<l, we may  replace R by d in (1) except in the 
exponential  phase  term e--i)R where we  would  use ex- 
pression (7) for R. Thus, (1) becomes 

r m r n F n ( X ) G n (  Y )  

(X2 + X”) dX’ 1 

[ 2 b  (Up + Y”)]  dY’ (8) eexp [ i ~  Y’] exp i - 
d - b  

where we have  introduced the dimensionless  variables 
similar to those used by Boyd and  Gordon5 in their 
analysis of the confocal resonator 

azk a2 

d 
27r - 

dA 

x=- y = - .  

c = - =  

Y &  X d Z  (9) 

a a 

When d = b, Boyd and  Gordon  point  out  that (8) is a 
homogeneous Fredholm  equation of the second  kind 
with ex=‘ as  the kernel and its solution  has  been  consid- 
ered  by  Flammer,g  Slepian  and Pollak.’” In  the general 
nonconfocal  case  considered  here, the kernel 
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is more  complicated  and we shall  resort to  both  analyti- 
cal and numerical  solution as discussed  in the following 
sections. 

111. ANALYTICAL SOLCTION 

Eq. (8) may  be written  as  a  pair of equations 

( X 2  + X12) dX’ (10) 1 

Y* + d Y ’  (11) 1 
where xnxn =aman/ie-ikd. Since (10) and (1 1) are  identi- 
cal in form, we need henceforth  consider  one of them, 
say (lo), only. 

The  exact  solution of (10) is rather  complicated. 
Therefore,  before we discuss its general  solution  using 
numerical  methods in Section IV, i t  would be instruc- 
tive to consider its  solution in some  limiting  cases. The 
two  limiting  cases of obvious  interest  are: 1) the  exactly 
confocal  case (d  = b)  and 2) the highly  nonconfocal  case 
(d>>b). 

First,  let us consider the confocal  case. In this  limit, 
(10) becomes 

1 P +4c 

The  eigenfunctions  and  eigenvalues of (12) have been 
shown to be,*OJ 

Fm(c, t l )dom(c,  tl) (13) 

xn = d: i*R~,,,(’)(c, 1) m = 0, 1, 2, (14) 

where SO,,,(C, 7) and Rom(l)(c,  1) are,  respectively,  the 
angular  and  radial wave  functions  in  prolate  spheroidal 
coordinates  as  defined  by Flarnmer,S and where 
T = X / & = x / a .  For  a  given  value of c, the eigenfunc- 
tion Fm(c, 7) may be plotted  as  a  function of 1) and  the 
eigenvalue of F,,, may likewise be evaluated. In  Fig. 2, 
Fo(c ,  T), the electric field distribution of the lowest  order 
mode,  has  been  plotted as  a  function of 7 for c = S .  I t  is 
seen that  the field decays in amplitude  as we move away 
from the  center of the  aperture. Since the  eigenfunctions 
Fm(c, 7) are  real,  the  aperture  represents a surface of 
constant phase [see Fig. 31. As c increases, Fo(c, 7) de- 
cays  even more rapidly  with increasing 7.5 

T- 
Fig.  2-Relative  electric  field  amplitude vs normalized  spacing  from 

center  of  aperture for (a)  d / h = 1 ,  (b)  d / b = 2 ,  and (c) d/b>>l. 

J 
/ 

1 

Fig.  &Relative  phase of the  electric  field vs normalized  spacing 
from  center of aperture for (a) d / b  = 1, (b) d / b  = 2 ,  and (c) d/b>>l. 

Next,  let us consider  the highly  nonconfocal  case 
where the  ratio d / b  is sufficiently  large so that 

d - b  
2b (X2 + X’Z) >> XX’  

and eax’ is close to  unity for  all  possible  values of X’. 
Then, (10) becomes 
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Since the  integrand in the  last expression of (16) is inde- 
pendent of X as Frn(X’) is independent of X, the  inte- 
gral must  integrate to some  constant  independent of X 
which could only influence the eigenvalue xm but  not 
F,(X). By examining  the  factor e i (d /B)X2  in (16), we con- 
clude that 

F,(X) % ei(d/2b)X2 (1 7) 

when d is sufficiently large. The form (17) implies an 
inward traveling  wave at  the  aperture  and is plotted 
in Figs. 2 and 3 as a function of q. 

Putting expression (17) into (16), we easily evaluate 
the definite integral  as c+m or X+O giving the eigen- 
value xrn as 

or equal  to  1 - ( b / 2 d ) 2 .  Actually, (16) could be evaluated 
when d is large for any  value of c by  the  method of sta- 
tionary phase (see Appendix)  giving the  same  result for 
Xrn as (18). 

I t  is instructive  to reconsider the  limit (15). We find 
by simple algebraic  manipulation that 

d > > b +  
2b 

x , X’ -+- X‘ x 
Since the  minimum  value of X / X ’ + X ’ / X  occurs when 
X= + X f ,  we find (20) implies that  the  point 

d = 2b 

is a transition  point of interest.  This  situation  may be 
subjected  to a  geometrical interpretation  as  depicted in 
Fig. 4. 

Consider  Fig. 4(a) where we have  depicted  the  path 
of the  light  rays for the highly nonconfocal resonator. 
Light  rays a’ and a’’ parallel to  the  resonator axis inci- 
dent upon the  left reflector will be reflected and con- 
verge on the focal point of the  left  reflector. Of course, 
due  to  diffraction,  the  light  beam will actually  spread 
somewhat as i t  is reflected from the  left reflector and 
travels  toward  the  right. I t  is seen from Fig. 4 that  en- 
ergy reflected from the surface s’ will  be captured  by 
the  right side reflector while energy reflected from the 
surface  outside S’ will not be intercepted  by it. From 
energy  balance  considerations, we easily see that: 

Energy Loss Energy Confined 
Total Energy Total Energy 

UD = = I -  * (21)  

----- 
3 

’ +  3 

(b)  
Fig. 4-Geometrical  interpretation of diffraction loss for (a)  d/b>>l 

(highly  nonconfocal)  and (b )  d-b. 

For d>>2b, we have from Fig. 4(a) : 

But, 8=2a/d when d>>b. Thus Eq. ( 2 2 )  becomes 

which is identical to (19) obtained  by a  more  sophisti- 
cated  mathematical procedure. 

When d is not much  larger than b, we cannot consider 
the  light source as located a t  infinity  producing  rays a’ 
and a’’ parallel to  the axis. We then  have  the  situation 
in Fig. 4(b) where light  rays a’ and a” originate from 
some point 0 on the  axis. We can  similarly show that 
I Y D  = 1 - (Sz/d -SJ2.  Xoting that S I  = Sz for symmetrical 
case and l/f = 2 / b =  l/S,+l/S2 where f is the focal 
length, we find that CYD is zero up  to d = 2b where it be- 
gins to increase abruptly.  Thus,  this idealized geo- 
metrical analysis  indicates that  d = 2 b  is a transition 
point of interest  consistent  with  the  limit ( 2 0 )  previ- 
ously  found. 
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is a homogeneous  Fredholm equation of the second  kind 
with  the kernel 

K ( X ,  X’)  = e””e’‘””/z~(X*+X~*). 

Letting F,C= Frn(Xi )  and Kij = K ( X , ,  X;), ( 2 4 )  can be 
approximated  by 

h n  F mt - - ( A j K i j F m j )  ( 2 5 )  
x r n d 2 ~  J=O 

where we have  divided  the  interval - d / c < X <  +v’z 
into n equal  parts  by  the  points 

xi = - d F + j h  j = 0, 1 ,  2 * * VZ. (26 )  

The weights A will depend on the  particular  quadrature 
formula used. For the most  widely used Simpson’s  rule 

1 4 2 4 2   4 1  
3 3  

A . = - - ,  -, - 1  - 
‘ 3 3 3 3 3  

-, -, . .  . - f  - ,  

letting Hij=hi l jKi j ,  ( 2 5 )  represent  a  set of linear  equa- 
tions 

1 ”  
Fmi = - - (RijFrnj) (2 7)  

x m d 2 ~  j=o 

where (27 )  is a finite difference approximation  to  the 
integral  operation of ( 2 4 ) .  

If  we consider the  numbers Fmi as  components of the 
vector Fmi,  the  set of equations ( 2 4 )  can  be  written  con- 
cisely in the form 

4% xmFm = HF,,, (28)  

where H =  1 Hij)  is a  matrix  with  components i, j .  Eq. 
(28) is thus,  just  the  familiar  eigenvalue  equation. Nu- 
merical methods may be  used to solve ( 2 8 )  for the eigen- 
function Fm and  the  eigenvalue xrn by iteration.” This 
has  been  done by the I B l I  7090 computer  and  the  re- 
sults  are  presented in the next  section. 

Iv. S U M E R I C A L  RESCLTS 
As enumerated in Section 111, the  fractional  energy 

loss per reflection due  to  diffraction effects is given by 

O D  = 1 - I UmUn l 2  = 1 - I X m X n  I *  (29)  

with umu,, =XmX,Iie-zkd. The  values of (YD obtained by the 
numerical  solution of (28 )  is plotted  as  a  function of d / b  
for the  lowest-order  mode (m = n  = 0 )  with c = S / ( d / b ) .  
I t  is seen that  the diffraction loss remains  quite low 
until d-2b where it begins to increase rather  rapidly 
toward  the final value of unity  as d / b +  a. This behavior 
is consistent  with  the  results of the section on analytical 

l1 J. N. Franklin,  “Computation of Eigenvalues by the  Method of 
Iteration,” Calif. Inst.  Tech.,  Pasadena, Calif., Computing  Center 
Tech.  Rept. No. 111; Oct., 1957. 

solution.  Thus,  as d departs from the confocal value  and 
increases without  limit, we  find from Figs. 2 and 3 that 
the  normal modes of the  resonator  change  from  a  stand- 
ing-wave distribution  across  the  reflector  aperture with 
most of the  energy confined  between them in the  man- 
ner of a closed resonator to  an inward  traveling  wave 
a t  the  aperture.  This  traveling  wave  carries  most of the 
energy  away  from  the  resonator  giving rise to high  dif- 
fraction loss as  evidenced by Fig. 4(a). Since the eigen- 
function in the  limiting case of d / b - m  is given by 
ei(d’2b’fX2+y*) according to ( 1 7 ) ,  contours of constant 
phase  are circles centered  about  the  axis of the  aperture. 

The  phase  shift between two confocal reflectors equals 
the  phase  angle of umun as  the reflectors are  then  surfaces 
of constant phase  since the  eigenfunctions  are  real. 
Under  this  condition,  the  round  trip  phase  shift of the 
electromagnetic field must be equal  to  an  integer q times 
27r for resonance to occur. Thus ,  the  normal  modes of 
the  resonator  are composed of a  triply  infinite  set  each 
designated  by  the  integer  numbers m, n, q. As the  sep- 
aration between the  reflectors d departs from the  con- 
focal value b, however,  the  eigenfunctions  become  com- 
plex and  the  apertures  are  no longer  surfaces of con- 
stant phase. This is illustrated in Figs. 2 and 3 where we 
have  plotted  the  amplitude  and  phase of Fm(X)  as  a 
function of 9 for d / b  = 2 for comparison  with  those of the 
confocal and highly  nonconfocal cases. 

V. DISCVSSION 
I t  has been  shown that  as  the  separation between re- 

flectors d departs from the confocal value b, there will be 
a finite phase  shift  across  the  aperture.  This in turn im- 
plies that  the resonances for different  normal  modes of 
the  resonator  are no  longer  infinitely sharp  even for per- 
fectly  conducting reflectors assumed in this  paper. 
However,  as  illustrated in Fig. 5 the  phase  shift  across 
the  aperture is small until  d-2b. Thus, so long as d is 
sufficiently less than 2b, the line broadening  due  to  the 
phase  shift  across  the  aperture  should  not  severely influ- 
ence the  behavior of a maser  using this  type of resonator. 

Since the  diffraction loss is seen to be extremely low a t  
confocal  spacing (about 2 X from Fig. 6 ) ,  it may be 
possible to increase the Q of the  resonator by  increasing 
the  separation d beyond the confocal  value as  the Q due 
to reflector losses should  increase with increasing d for 
small  diffraction loss. The  maximum Q should  occur for 
the  value of d giving  approximately  equal reflection and 
diffraction losses. Thus, for the case in point, ie., 
c = S / ( d / b ) ,  the  optimum d / b  for maximum Q should be 
about 1.5 according to Fig. 6 for a reflection loss of 1 
per cent.  Indeed, we would expect  the  optimum  value 
of d / b  be between 1 and 2 for any reasonable  value of c. 

Neither  the  diffraction loss nor  the  phase  shift  across 
the  aperture  changes  rapidly  about  the position d / b  = 1 
according to Figs. 4 and 6 .  Thus,  slight  longitudinal mis- 
alignment of the reflectors should  not  have  a  critical ef- 
fect upon  maser operation. 
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dlb 

Fig. 5-Maximum  phase shift across  reflector  aperture vs d l b .  

d/b 

Fig. &Diffraction loss of nonconfocal  resonator vs d / b .  

APPENDIX 

With F,,,(X’) =ei(d/26)X’e, Eq. (16) becomes: 

In the  limit where c + a ,  the  integral  may  be  easily 
evaluated  as  indicated in the  text.  However, if t is finite 
as is always  the  case,  the  integral could still be evaluated 
to  an  accuracy of the  order of ( b / d )  by  the  method of sta- 
tionary  phase.I2  The  method is based  upon  recognizing 

Physics,” Cambridge University Press,  Cambridge,  England,  2nd ed., 
H .  Jeffreys and B. S. Jeffreys, “Methods of Mathematical 

pp. 505-406; 1950. 

the  fact  that in a  wave  problem of this  kind,  the  con- 
tributions  from  parts of the  range of integration  near  a 
point of stationary  phase will  be nearly in phase  and  add 
up,  whereas  those from other  parts will interfere.  Let 
J/(X’)  = X ’ 2  =e, then (30) becomes 

xmFm(X) = e’(d/b)8d8. (31) 

According to (31), the  saddle  point of J / (X’) ,  namely, 
the  point  about which we have  the  most  contribution  to 
the  integral is 

$’(X’) = 2X’ = 0. (32) 

Consider now the  integral  from (0-6) to (0+6), letting 

+(X/) - +(O) = 242 = ++”(O,(X’ - 0)Z. (33) 

We have 

e i ( d / ? b ) X 2  X’-+6 I - --! - 1 2ue”d/b)I$(0)+u51du. (34) 
6 -  

d2T X’--6 +’(X/) 

Let A0 = [2u/$’(X’) ]x)--o, then 

It  can be shown that  the  magnitude of the second part 
of the  integral is of the  order b/d.12 Thus, 

where we have  evaluated Ao. The  integral is a Frensnel 
integral of complex argument  and is equal  to 

Combining (30) and (36), we easily find the  eigenvalue 
X m  as 

which is identical  with that given  by (18) in the  text, 
obtained in the  limit where c+m. 
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