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Abstract 

We propose and implement a Bayesian optimal design procedure. Our procedure takes 
as its primitives a class of models, a class of experimental designs, and priors on the 
nuisance parameters of those models. We select the experimental design that maximizes 
the information (in the sense of Kullback-Liebler) from the experiment. We sequentially
sample with the given design and models until all but one of the models has viable 
posterior odds. A model which has low posterior odds in a small collection of models 
will have an even lower posterior odds when compared to a larger class, and hence we 
can dismiss it. The procedure can be used sequentially by introducing new models and 
comparing them to the models that survived earlier rounds of experiments. The emphasis 
is not on running as many experiments as possible, but rather on choosing experimental 
designs to distinguish between models in the shortest possible time period. The first 
stage of optimal design is illustrated with a simple experimental game with one-sided 
incomplete information. 

JEL classification numbers: 026,211,215 



Economical Experiments: 

Bayesian Efficient Experimental Design 

Mahmoud A. El-Gamal and Thomas R. Palfrey* 

1 Prologue

DeGroot: Let's talk a little bit about the current state of statistics. What areas do you 
think are particularly important these days? Where do you see the field going? 

Blackwell: I can tell you what I'd like to see happen. First, of course, I would like to 
see more emphasis on Bayesian statistics. Within that area it seems to me that 
one promising direction which hasn't been explored at all is Bayesian experimental 
design. In a way, Bayesian statistics is much simpler than classical statistics in 
that once you're given a sample, all you have to do are calculations based on the 
sample. Now, of course, I say "all you have to do" - sometimes those calculations 
can be horrible. But if you are trying to design an experiment, that's not all you 
have to do. In that case, you have to look at all the different samples you might 
get and evaluate every one of them in order to calculate an overall risk, to decide 
if the experiment is worth doing and to choose among the experiments. Except in 
very special situations, such as when to stop sampling, I don't think a lot of work 
has been done in this area. 

DeGroot: I think the reason there hasn't been very much done is because the problems 
are so hard. It's really hard to do explicitly the calculations that are required to 
find the optimal experiment. Do you think that perhaps the computing power that 
is now available would be helpful in this kind of problem? 

Blackwell: That's certainly going to make a difference . ... 

From: M. DeGroot (1986) "A Conversation with David Blackwell" , Statistical Sci­
ence, vol.l, no l., p.47. 

* We acknowledge the financial support from NSF grant #SES-9223701 to the California Institute

of Technology. We also acknowledge the research assistance of Eugene Grayver who wrote the software 

for the experiments. This paper was presented at the Stony Brook workshop of Experimental Game 
Theory, summer 1993. 
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2 Introduction 

One of the main goals of experimental economics is to distinguish models of choice that 
are in accordance with actual human behavior from those that are not. The method 
experimental economists have traditionally used to distinguish "good" (empirically jus­
tified) from "bad" (empirically rejected) models is classical hypothesis testing. Following 
in the tradition of the majority of econometric specification tests, one typically uses ex­
perimental data to estimate the nuisance parameters under a given theory, and uses an 
asymptotic approximation to log likelihood to test that the specified theory generated the 
observed data. This is a specification test with unspecified alternatives (e.g. McKelvey 
and Palfrey (1992), and others). Alternatively, one can specify a collection of potential 
models of behavior, estimate the nuisance parameters under each of the models, and then 
conducting a likelihood ratio test, with the asymptotic distribution of that test deter­
mining the significance level. This is a test with specified alternatives (e.g. Harless and
Camerer ( 1992)). 

. 

The emphasis of experimental studies of the type discussed above is orthogonal to 
the main theme of this paper. In traditional experimental economics, one decides ex 
ante (without any statistical analysis) what is an economically interesting experiment to 
run. One then attempts to collect as much data as financially feasible, non-statistically 
taking into consideration the importance of this experiment as a piece of a larger research 
agenda, how high the payoffs need to be to make the subjects interested in making optimal 
decisions, the length of time one can keep subjects in the laboratory, etc. After the data 
is collected, one approaches it in the same fashion an econometrician will apply any data 
set; hypothesizing the form of the data generating process (either structural or reduced 
form), and proceeding with the estimation and hypothesis testing. 

In El-Gamal et al. (1993), we took a different approach to the issue of model selection 
in experimental Economics. We started with a pre-specified pair of models of behavior 
in repeated games of incomplete information. One of our models was inspired that of 
McKelvey and Palfrey (1992) for a centipede game where it is common knowledge that 
some of the subjects are altruists, and both altruists and rationals can make errors. 
The McKelvey and Palfrey (1992) model assumed that the proportion of altruists in the 
population is common knowledge, and hence subject beliefs about it were degenerate at 
the true value. In El-Gamal et al. (1993), we allowed subjects to have different beliefs 
about the proportion of altruists in the population, and hence, they can potentially 
update those beliefs. One of our models allowed subject� to .llpdate. their beliefs about 
the proportion

. 
of altruists when they were done playing one subjects, and waited to be

matched with the next; and the other model assumed that they did not update those 
beliefs. Fixing a design (a three-move centipede game with given payoffs, and where each 
subject plays two other subjects), we employed methods of optimal sequential sampling 
to decide on a stopping rule. Using an asymptotic approximation of a Bayesian Sequential 
Probability Ratio Test (BSPRT) as the cost per experiment was very small compared to 
the cost of choosing the wrong model, we concluded that the fully Bayesian model where 
subjects updated their beliefs about the proportion of altruists is significantly more likely 
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than the myopic model where they do not. 

In the BSPRT procedure used in El-Gamal et al. (1993), the primitives are the cost 
of collecting an extra data point, the loss for making the wrong decision, and the prior 
odds on the competing models. The family of Wald SPRT's to which this procedure 
belongs has the remarkable property that it minimizes the number of data points needed 
to reach a decision, for a given type I and type II error. The emphasis in this sequential 
sampling approach to experimental economics is thus shifted from ex post data analysis 
to ex ante assessment of the informativeness of the experiment, and the relative losses 
to obtaining data and making a decision. Thi� helps deal with the problem: when do 
we know when we are done running this experiment? It does not deal with the problem: 
which experiment should we run. In the prologue to this paper, Blackwell implied that 
the problem of "look[ing] at all the different samples you might get and evaluat[ing] every 
one of them in order to calculate an overall risk, to decide if the experiment is worth 
doing and to choose among the experiments" is more important than the problem of 
"when to stop sampling" . In this paper, we propose a procedure for "choosing among 
experiments" and apply it to the same class of problems addressed in El-Gamal et al. 
(1993); namely, whether subjects in experimental games with incomplete information are 
Bayesians. 

The remainder of this paper will proceed as follows. Section 3 will define what we 
mean by optimal statistical design of an experiment, and discuss its relation to classical 
hypothesis testing. In section 4, we introduce a simple game of one-sided incomplete 
information, and derive the equilibrium for that game under our rival models. In section 
5, we report the optimal design calculations for that game, and report the results that 
we obtained using the optimal design. In section 6 we discuss the general framework of
sequential model selection which we are advocating, and section 7 concludes the paper. 

3 The problem of optimal statistical design

The main primitives of our procedure will be a class of experiments and a class of models 
of subject behavior in those experiments. The class of experiments is indexed by the 
"design parameters" () E 8. For example, in a market experiment, () will be a vector 
determining the number of subjects, the number of markets, the length of each trading 
period, the redemption values of the tokens endowed to the subjects, etc. In a game 

. experiment, .. the�dasign....parameters�will ·bedthe�nurnber,,of"S'ub-jeets�·"the··number of moves 
available to each subject, the information structure, randomization devices, payoff tables, 
etc. The class of models of behavior may contain models implied by economic theory, 
psychological models, reduced form functional relationships, etc. 

To make the problem tractable, we start by selecting a finite dimensional vector of 
design parameters () E e, and a finite number of classes of models n. Typically, a class 
of models will have a number of nuisance parameters (e.g. utility function parameters, 
subject-specific beliefs, error rates, etc.), and hence each of those classes actually encom-
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passes an infinite number of models. Our optimal statistical design problem now becomes 
choosing the "best" experimental design from the selected class of designs to discriminate 
among the selected classes of models. Let X be the space of all possible data sets under 
all of our designs. Denote a typical data set by x. Let the likelihoods of a given data set 
x E X  under design(} for each of our n competing models be li(x; (}), . . .  , ln(x; e).1 Given
a collection of priors on models 1, . . .  , n, say p1, • . .  , pn, we can define for each model 
the Kullback-Liebler information number measuring how informative a given design is 
expected to be if that model were correct. For example, the information number for 
model 1 under design (} is simply: 

The design which maximizes our expected separation between model 1 and the other 
n - 1 models, if model 1 were indeed the correct model, is (}t = maXBE8 J(l; (}). In
standard hypothesis testing procedures, we would pick one of the models to be our null 
hypothesis, and perform a test of a particular size under that null. An equivalent bias of 
giving one model as good a chance as possible to win if it is indeed the correct model, 
we choose in this paper to treat one model as the primary candidate by choosing the 
design that maximizes the informativeness of the experiment if it were indeed the correct 
model. In all other aspects, however, the models can start on the same footing by letting 
Pi = l/n; Vi.2 

One point must be made clear. After selecting a design, obtaining the data, and 
"selecting a model" from the chosen class, we are not actually "accepting" this model as 
the correct one in the classical sense of the term. As is the case with classical statistics, 
one cannot "accept" a model. We can reject models if the probability that the data 
we observe comes from those models is too small (tradition after Fisher (1950) dictates 
treating probabilities less than 1 % or 5% as sufficiently close to zero; hence using those 
magic numbers as sizes for hypothesis test). Since we employ a Bayesian posterior that 
provides posterior odds on the selected (finite) class of models, those posteriors have to 
add up to unity. Hence, if there are say two models, and one of them has a very low 
posterior probability, then the other must have a very high posterior probability. Tha� is 
not to say that we accept the model with the high posterior as the true model. We know 
that the posterior probability of the less likely model within the given finite class is an 
upper bound on its posterior probability if we considered all potential models. Hence, 
if a model is discarded by our procedure due to having too low a posterior probability, 
that result can be accepted regai·dless of the class of mode1s we started with. However, 
the fact that one of our models performs well is not an indication that it will continue to 

1 In our Bayesian design framework, each of the models will also have nuisance parameters. As 
shown below, the likelihood functions will then be computed by assessing our priors on those nuisance 
parameters, and integrating them out. 

20ne could alternatively make the problem completely symmetric by maximizing i:?=l Pil(i; B) in­
stead of any one of the given I(i, B) 's. We chose in this paper to follow the procedure of highlighting 
one model as the benchmark to beat since that is closer in spirit to the more familiar hypothesis testing 
framework. 

· 
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do so when compared to other models. The process for selecting "the best" model can 
never terminate since there is an infinite number of eligible classes of models, and we can 
only analyze a finite number of such classes at a time. 

An alternative criterion for optimizing the design can be intuited from the above 
mentioned classical hypothesis testing point of view. In the classical hypothesis testing 
framework as culminated in Lehmann (1959), the emphasis is on choosing a point on the 
indifference curves of "size" (probability of rejecting a model when it is true) and "1-
power" (probability of accepting a model when it is false). This would suggest choosing a 
design to minimize our expected loss (as a function of accepting a false ��d�l �r r�jecting 
a true one) subject to some budget constraint. We do not take this approach due to the 
well known shorcomings of the classical hypothesis testing approach, most notable of 
which is that "classical statistics tends to divert attention from (the likelihood ratio) to 
the two conditional probabilities of making errors" Edwards et al. (1963), resulting in 
the well known Jeffrey's / Lindley's paradox Lindley (1957) that given any significance 
level, and any posterior odds in favor of the null hypothesis, there exists a datum which 
produces that posterior odds, and is rejected at the given significant level. By defining 
our "utility" function in terms of likelihood ratios, and therefore defining expected utility 
(our objective function, the Kullback-Liebler information number) as the expectation of 
that utility function under the null hypothesis, we avoid those problems. For any given 
dollar value of the experiment, we simply maximize its informativeness under then null 
hypothesis. 

In this paper, we perform the first step of this infinite sequential procedure of select­
ing a class of models, deciding on the design, sampling until one model gets very high 
posterior odds within the class, then add more models, and repeat the whole process. 
This paper takes that first step by choosing a class of games of one-sided incomplete 
information that are parametrized by a two-dimensional design vector. We start with 
three models of behavior that differ in their assumptions about how agents learn. The 
first model (which we choose as the benchmark) is that subjects play the Bayes-Nash 
equilibrium of the game. The second model postulates that subjects play a version of 
the Bayes-Nash equilibrium without Bayesian updating (the uninformed players do not 
use the information implicit in their opponents' actions to update about the state of na­
ture). The third model is that subjects myopically choose moves to maximize expected 
payoff given beliefs on their opponents' moves that are updated using the fictitious play 
heuristic. In all three models, subjects will be allowed to have errors in beliefs (their 
perception of probabilities of moves by nature may be erroneous), and errors in actions 
(they may tremble and cboose an action that does not agree with their strategy). In the 
following section, we shall introduce the game and the three models of behavior that we 
wish to compare. 
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4 The Game of Stop-Go:

We use for our experimental study a game which, for lack of a better name, we call 
"stop-go" . There are two possible states of nature "a" , and "b" . Nature chooses state 
"a" with probability 7r, and state "b" with probability (1- 7r ) . There are two players "1" 
and "2". Player 1 is informed of the state of nature, but player 2 is not. In both states 
of nature, player 1 has an outside option stop which guarantees both players a payoff of 
1. If player 1 does not choose stop and decides to choose go, then player 2 gets to choose
right or left, and the payoffs are�shown in the gameJree in .. Eigure 1, .where the .. payoff 
A is assumed to be strictly greater than 2. 

Nature 

1t (l-1t) 

la lb 

Stop Stop 

(1, 1) 
2 

{l,l) 

Left Right Left Right 

(0,2) {A,O) (2,0) {O,A) 

Figure 1: The Game of Stop-Go (A> 2) 

This game is as simple a game of incomplete information as we could construct while 
still maintaining the main features that we need. The first and most important of those 
features is that the Bayesian updating needed to play the Bayes-Nash equilibrium of the 
game is quite simple (given 1 goes, what is the probability that the state of nature is 
"a"). Another useful characteristic is that except for a very small set of designs (which 
we avoid), the game has a unique Bayes-Nash equilibrium, which is easy to find as a 
function of 7r and A. This in turn makes the calculation of the likelihood of various 
data sets under the model (after introducing .the errors in. actions and errors in beliefs) 
rather straightforward, which is needed for calculating the above described information 
numbers for various design parameters () = ( 7r, A). The game also has the advantage of 
having a very simple structure which is very easy to explain to subjects, and it mimics a 
variety of confrontation games with an outside option that makes it easy for subjects to 
understand. 
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4.1 Perturbing the Game: Errors in actions and errors in be­

liefs 

A generic problem in using standard economic models to study experimental data is 
the so called zero likelihood problem. We have characterized this problem in previous 
work (e.g. Boylan and El-Gamal (1993), El-Gamal et al. (1993), El-Gamal and Palfrey 
( 1994)) and proposed a number of methods of introducing errors in actions to make every 
observable data set a positive-likelihood set under all models under consideration. In this 
paper, we follow the same approach- by letting every-agent at every .. deci.sion node-have
a probability c of trembling and making their choice by flipping a fair coin (i.e. if player 
1 trembles, he "stops" with probability 1/2 and "goes with probability one-half, and if 
player 2 trembles, he chooses right with probability 1/2 and left with probability 1/2). 
For reasons of parsimony we assume that the probability of tremble c is the same for all 
decisions and all players (see McKelvey and Palfrey (1993) for an alternative specification 
where the probability of errors depends on potential payoff loss), but that there is learning 
by doing which forces Et to decline exponentially int, where t indexes the number of times 
the subject has played that particular game before. Therefore, if model i states that a 
player should choose some action with probability Pi, then we append to it this error 
probability and say that he chooses that action with probability (1- ct/2)pi + ct/2 at the
tth round (where Et = c0e-at, co is the baseline error rate, and a is the learning by doing
rate). The nuisance parameters co and a, will therefore be parameters that all three of 
our models described below will contain. 

We add a third nuisance parameter to all of our models by recognizing the fact that 
due to perceptive limitations, subjects tend not to fully understand probabilities, and 
hence it is very difficult to induce the correct priors in an experimental setting. At 
best, there will be a distribution of priors that different subjects will actually hold when 
they are given the same set of experimental instructions. We model this by making the 
perceived prior 7r per uniformly distributed over ( 7r - 8, 7r + 8), where 7r is the induced
prior. In other words, we assume that when we announce to the subjects that state of 
nature "a" will be drawn with probability 7r, they draw a 'lrper rv U(7r - 8, 7r + 8). We can
again make the distribution of perceived priors more sophisticated, but we choose this 
parsimonious specification which still allows us to estimate a perception error nuisance 
parameter 8. The randomly drawn 'lrper is assumed to be common knowledge to the
subjects, but unknown to us. 

4.2 Models of Behavior 

We specify three models of behavior that could potentially describe the behavior of the 
subjects in this game. In this section we shall state the predicted behavior under each of 
the models as a function of 7r per A, and c. When finally calculating the likelihoods below,
we shall integrate out the nuisance parameters 8 (implicitly defining the distribution of
'lrper ) , co, and a with respect to our priors.
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Model I: Each individual i plays the Bayes Nash Equilibrium of the game, defined by 
(1rpen A, t:). 

Model II: Player 2 does not update 1fper following go, and this is common knowledge.

Model III: Individuals use fictitious play to construct beliefs about opponents' play. 

The most difficult model to solve is the Bayes-Nash.equilibrium, where E, the tremble 
rate is common knowledge, and all players take.into.consideration._that .. they,as .well as 
their opponents will tremble with probability E, and that that is common knowledge. 
The equilibrium strategies will be calculated by enumerating five different cases. There 
are two main features of this (unique) equilibrium: 

1. For E sufficiently large, there is a pure strategy equilibrium.

2. For all cases, at most one type of player 1 mixes.

4.3 Predicted behavior under Model I: 

For model I, Pa is the probability that player 1 chooses go if the state of nature is "a" ,
Pb is the probability that player 1 chooses go if the state of nature is "b" , and q is the
probability that player 2 will choose left (if given the chance to move), provided that 
they do not tremble. In other words, the actual probability of a player 1 choosing go
in state "a" is (1 -t:/2)Pa + t:/2, the actual probability of choosing go in state "b" is
(1 -t:/2)pb + t:/2, and the actual probability of player 2 choosing left is (1 -t:/2)q + t:/2. 

A A 
1fper = 2 + A

C A' " < 21l'per(l-1l'per) d < 2, ase . 1fper > 1fperi E _ • + 2• an E _ A-. 1f'per 1rper- 1rper1rper 

I A(l -1fper) [(A + 2)1fper -A]t:/2
Pa= -21fper (1 -t:)21fper

I Pb= 1
r 1 [A-1 l 

q = -- ---E/2 1-E A 

C B " 21l'per(l-1l'per) d < 1.,ase : 1f per > 1f per' E > A + 2 A 
an E A . 

'll'per 'll'per- 1l'per1l'per -
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C C < ,. < 211"per(l-11-per) ase : 'Trper -'Trper, f, - • + 2· :1f'per 1rper- 1rper11"per 

P! = 1 

I 2'Trper [(A + 2)1rper -A)c/2 
Pb = + -------A(l -'Trper) (1 -c)A(l -'Trper) 

I 1 
q = -2

C D < ,. 
.... 211"per(l-=.11"per) ase : 'Trper -'Trper, f, > . + 2· :1rper 1rper- 11"per1rper 

Case E: 'Tr per > it per: 

P! = 1 -pf = 1 -l = 1

I I I 1Pa= Pb= q = 

4.4 Behavior Under Model II: 

Case AA: 2'Trper > A(l -'Tr per) 

{ 1 if cA/2 > 1 
P!I = 0.5 if cA/2 = 1

0 if cA/2 < 1 

{ 1 if 2(1 -c/2) > 1 
pf I = 0.5 if 2(1 -c/2) = 1

0 if 2(1 -c/2) < 1 
qII = 1

Case BB: 2'Trper < A(l -'Tr per) : 

{ 1 i f  (1 -c/2)A > 1 
P!1 =

0
0.5 if (1 -c/2)A = 1 

if (1 -c/2)A < 1 

Case CC: 21rper = A(l -'Trper: 

pfI = qII = 0

P!1= 1

pf I= 0.5

qII = 0.5 
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4.5 Behavior Under Model III: 

Player 1 starts with a belief that probability of player 2 choosing left is 1/2, and player 2 
starts with beliefs that probability of player 1 going when it is game a is 1/2, and when it 
is game b is 1/2. Both players play optimal responses to their beliefs, and update them 
using :fictitious play. In other words, initializing emp1 = 0.5, empa1 = 0.5, empb1 = 0.5, 
the agents are assumed to use :fictitious play to obtain player l's belief empt about the 
proportion of the time player 2's choose left, and player 2's beliefs (em pat, empbt) about 
the proportion of time player l's choose go when _game a or b is draw]l (respectively) , 
such that in round t, 

emp + #{leftlgo}empt= #{go}+ 1 

em pa + #{golgamea}empat = #{gamea} + 1 

b empb + #{golgameb}emp t = #{gameb} + 1 

where {leftlgo} is the event that an opponent (player 2) in some previous round chose 
left (they have to be given the chance to move first) , {golgamex} is the event that 
an opponent (player 1 ) in some previous round chose go when the state of nature was 
x E {a, b }, {go} is the event that player 1 chooses go, {gamex} is the event that the 
state of nature in a previous round was x, and # {.} is the number of times the event has 
occurred so far. 

Using those definitions, we can now define player 2's updated empirical belief at round 
t (via :fictitious play) that game a is being played conditional on go, which we call emp7rt:

empat 1fper emp7rt = --------­empat 1f per + empbt 1f per

With these definition, we can define the predicted strategy in round t when a player does 
not tremble as follows (again the actual likelihoods of moves under the model will take 
into consideration the probability of trembles, replacing O's by t/2's and l's by 1 - E2 's. 

{ 1 if (1 - empt)A > 1 
p��I = 0.5 if (1 - empt)A = 1' 

0 _ if (L� emp.t)A < 1

{ 1 if 2 empt > 1 
pg1 = 0.5 if 2 empt = 1 

0 if 2 empt< 1 

{ 1 if 2emp7rt > (1 - emp7rt) A q{II =
0
0.5 if 2emp7rt = (1 - emp7rt) A 

if 2emp7rt < (1 - emp7rt) A 
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4.6 Likelihood Functions 

Now that we have defined the strategy profiles (Pa, Pb, q) for players who do not tremble
under each of our three models, we can define the likelihoods of a particular move by 
defining (for M E {I, I I , I  I I}): 

obsp� = (1 -Et)P� + Et/2,

obsp� = (1 -Et)P� + t:t/2, 

obsq:1 = (1 -Et)q:1 + t:t/2. 
The likelihood function under model M is now: 

11"+8 T n 

like!/ = j j j j ( IJ p like( action�IM; Eo, a, 7r per)) d7r per prior( dt:o, da, db)
€Q OI 8 11"-8 t=1 i=1 

Where like(action�IM; t:0, a, 'lrper) is the likelihood under model M, with agents' perceived 
prior being 'lrper, that agent i (with his observed history) in round t, with tremble rate
t:0e-Olt chooses action�. If agent i is a player 1, then this contribution the overall likelihood
is obsp� of obs pf:{ if the action was go and the draw of nature was a or b respectively, and
it is ob;qff if th� agent is a player 2 and chose left (all computed with the appropriate
Et= Eoe-Olt, and 'lrper) · Now, for a given number of rounds and number of players, we can
calculate the Kullback-Liebler information numbers defined in section 2 by calculating 
the likelihoods of the models under all possible data sets (i.e. all possible collections of 
actions�; i = 1 ,  ... , n; t = 1, ... T), and choose the optimal design.

5 The Experimental Design:

In this section, we shall discuss a number of practical design issues that we have so far 
ignored. It must be apparent to the reader that the problem of choosing the optimal 
design is not well posed. There are too many parameters over which to optimize (the 
class of all possible games, the number of rounds, the number of individuals, etc. ) . In the 
general discussion of section 2, we assumed that we limited our attention to a class of ex­
perimental designs parametrized by a finite dimensional vector() E 8. The optimization 
of the design was then reduced to a problem of choosing the value of() that maximizes a 
Kull back-Liebler.informatiGn ,number,,, By· limiting.-atteRirion«to"t.he elass ·of games defined
above by the game of stop-go, and parametrized by (7r E (0, 1 ) , A  > 2), we made the 
information number of the experiment a function of ( 7r, A) , i.e. we generate a two dimen­
sional information surface whose peak we seek. Now, we have to take into consideration 
relevant issues of perception of payoff differentials (e.g. an A = 2.01 cannot be assumed 
clearly distinguishable from 2.0, and a 7r = 0.401 cannot be assumed distinguishable from 
0.4). We also need to take into consideration issues of not having too few a number of 
people (to avoid reputation effects and the possibility of guessing who one is paired with) 
or too many (collecting too much data all at once without getting a chance to analyze 
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it and see if we have all the information we need). We cannot have too few rounds (not 
allowing fictitious play types to update), or too many (inducing subject boredom and/or 
making the payoff per decision insignificant). Moreover, there are technical constraints 
to the calculation of the information, since each information number calculation requires 
looping over all possible data sets (whose number grows exponentially in the number of 
rounds, and geometrically in the number of subjects). 

We decided on running experimental sessions with 10  subjects (5 player l's and 5 
player 2's), which lasts for three rounds, yielding "batches" of data, 15 games at a ti�e.3 
The experiment was conducted at the social science experimental laboratory at Caltech, 
and as subjects entered the lab, they were randomly assigned a role as player 1, or 
player 2, and their role as player 1 or 2 remained the same throughout the experiment. 
Then, the instructions (reproduced in Appendix B) were read aloud to the subjects. 
Subjects were told that they will each play three rounds of the game of stop-go described 
above, and that they were never going to be paired with the same opponent twice. This 
specification (the number of subjects n = 1 0, and the number of rounds T = 3) was
at the limit of our computational abilities, and as will be seen below, they were enough 
to very strongly distinguish among our three models. The generation of this Bayesian 
information surface required (as discussed in section 2) the integration out of the nuisance 
parameters ( c:0, a, 8) parametrizing the errors in actions and errors in beliefs in all three
models. We used independent priors on the three parameters with the prior on Eo and a 
being U[O, 1], and the prior on 8 being U[O, 0.2]. For that design with n = 1 0, T = 3 and
the priors specified above, we computed the information surface under the assumption 
that model 1 is the true model. This information surface is shown in Figure 2, and its 
contours are shown in Figure 3. 

3 As it turned out, we only needed one batch of data. 
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Information surface: 

6 

0.8 

0.61

��� 0.4 

0.4 

Figure 2: Information as a function of 7r and A 

Contours: 

0.4 0.5 0.6 0.7 0.8 0.9 

Figure 3: Contours of the information surface 
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A blind maximization of the information surface would drive us all the way to A = 2, 
which is not allowed. Hence, a true maximum with A > 2 does not exist. Moreover, 
we wish to choose a point that is clearly distinct from 2.0 to minimize the possibility 
that subjects do not find A and 2.0 distinguishable. If we look for an interior point very 
close to the optimum, we get (A = 3.33, ?r = 0.6) (inside the "bulb" in Figure 3). Since 
probability 0.6 is relatively hard to explain to subjects, and since the surface drops rather 
slowly in the direction of lower ?r's, we selected the nearby design 

?l" = 0.5 A= 3.33 

We chose payoffs of $6.00 and $10.00 (for 2 and A, respectively). 

6 Results

We ran an experimental session with 10  subjects playing three rounds each as described 
above. The raw data collected from that experimental session is shown in Table 1. 

/ R-ID I B-ID I R-Mv I B-Mv / R-Pay / B-Pay I Game I 
1 1 G 1 0 6 a 
2 2 G 1 6 0 b 
3 3 G R 0 10  b 
4 4 G R 1 0  0 a 
5 5 G 1 6 0 b 
1 2 G R 0 10  b 
2 3 G R 0 1 0  b 
3 4 G R 0 10  b 
4 5 G 1 6 0 b 
5 1 G 1 0 6 a 
1 3 G 1 0 6 a 
2 4 G 1 6 0 b 
3 5 G R 10  0 a 
4 1 G R 0 1 0  b 
5 2 G 1 6 0 b 

·Table 1:  Raw Data

Analysis of this data results in the likelihoods of the three models shown on the first 
line of Table 2. Since we start with priors 1/3 on each of the models, the posterior odds 
on the three models shown on the second line of Table 2 are easily calculated by just 
dividing the likelihood of each of the models by the sum of all three likelihoods. The 
result is very strong, with the posterior odds on model I (the Bayes-Nash equilibiurm 
prediction) being higher than 99.9%. 
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likelihoods 
post. odds 

Model I 1 3.527 X 1 0-·r 
0.99943 

Model II Model III 
9.655 x 10-11 1.042 x 10-10 

0.00027 0.00030 

Table 2: Likelihoods and Posterior Odds 

The story behind the performance of the three models can be seen by looking at the 
posteriors on the nuisance parameters. Since it is not easy to portray four-dimensional 
figures, we show in Appendix A the marginals of our posteriors_ ur1der tJ:ie three modeJs .. 
We first note that the posterior under model I (the strong winner) puts a lot of mass 
on high levels of a (learning by doing), and low levels of 8 (errors in beliefs), whereas
the two losing models do the exact opposite. Models I and II both predict high levels 
of Eo (initial tremble rates), but model I, with a significantly higher a predicts much 
lower values of Er. The interpretation one would give is that the two losing models II 
and III are trying to get a better fit to the data by increasing the persistence in the 
error probabilities, as well as increasing the probability of large errors in beliefs. A safe 
conclusion seems to be that the Bayes-Nash model very significantly outperforms the 
other two, and in future investigations, when we choose future designs, we need not 
take those other two models into consideration. Of course, after getting the data from 
the next round of experiments, we can still evaluate the likelihoods of those abandoned 
models, and they may get resurrected if their performance puts back into contention. At 
this point, however, our prior belief that these models can be resurrected is very low. 
Without any need for explicitly introducing a penalty function for selecting the wrong 
model (as in El-Gamal et al. (1993)), we note that any sequential sampling procedure 
with a reasonable loss function will stop with posterior odds higher than 1000:1.  

We can (with perfect hindsight) see in the data why the performance of models II and 
III was so much inferior to the performance of model I. At the aggregate level, the data 
looks like player l's always choosing go, and player 2's choosing left with probability 
1/2. Under model II, this can best be explained by high Et and low a (which always drive 
observable proportions of left towards 1/2), as well as 1fper = 5/8, which has probability 
zero of occuring, this explains why the contribution of player 2's to the likelihood of model 
II will be low. As for player l's, if they think that player 2's will always be choosing left 
with probability 1/2, they will always go when game a is drawn, and be indifferent when 
game bis drawn. Since we model indifference via choosing go with probability 1/2, that 
also makes player l's contribution to the likelihood of model II rather low. For model 
III, as player 2's update their beliefs to player l's choosing go all the. time, the model 
reduces to model II, and therefore will run into the same fow likelihood of generating the 
given data. Moreover, in the first round, player 2's should, under model III, choose right 
all the time. We can therefore see why models II and III perform poorly. 
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7 Concluding Remarks

It is clear from our experimental results how choosing a design to maximize the separation 
between our models (in terms of a Kullback-Liebler information number) subject to 
some common sense constraints (making probabilities and payoffs easily recognizable by 
subjects) can yield very strong results from very small data sets. Since given any class 
of models, the stage of distinguishing the most viable among them is only one of many 
stages towards improving our understanding of behavior .subjects in .similar experimental 
settings, we wish to minimize the time we spend on-that. stage.and .move.on to the next 
stage. In the following stage, we would introduce a large class of models, and use some 
data mining procedure (e.g. El-Gamal and Grether (1993)) to decide on a small subclass 
of models with sufficiently high likelihood to carry out the next stage of optimizing the 
design and running new experiments to choose the best within the current class of models, 
and so on. We should not worry too much about models that are currently ignored due 
to their low posterior odds being permanently rejected. In future data mining phases of 
the sequential procedure, those models could be resurrected and taken into consideration 
in future designs. At the point of optimal design, however, the expected utility of taking 
those models into consideration is too low to justify the computational and modeling 
effort. 
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Appendix A 
Marginals of the posterior under model I 
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Figure 4: Marginal posterior on Eo under model I 
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Figure 5: Marginal posterior on a under model I 
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Figure 6: Marginal posterior on {) under model I 
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Marginals of the posterior under model II 
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Figure 7: Marginal posterior on Eo under model II 
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Figure 8: Marginal posterior on a under model II 
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Figure 9: Marginal posterior on /) under model II 
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Marginals of the posterior under model III 
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Figure 10: Marginal posterior on co under model III 
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Figure 11:  Marginal posterior on a under model III 
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Figure 12: Marginal posterior on 8 under model III
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Appendix B 
June 18, 1993 (STOP-GO) 

Decision-Making Experiment

This session is part of a laboratory study in decision making. You will be paid IN 
CASH at the end of the session. The amount of money you earn will depend upon the 
decisions you make and on the decisions other people make. We ask that you do not talk 
or otherwise attempt to communicate with the other subjects except according to the 
specific rules below. If you have a question, feel free to raise your hand. One of us will 
come over to where you are sitting and answer your question in private. 

This session you are participating in is broken down into a sequence of 3 separate 
rounds called MATCHES. At the end of the last match, you will be paid the total 
amount you have earned during the course of all 3 matches. Everyone will be paid in 
private and you do not have to tell anyone how much you earned. Half of you have been 
assigned to be "red" players and half of you have been assigned to be "blue" players. 
This assignment will stay the same in all 3 matches. 

[Make sure red players are the ones sitting closest to the wall.) 
Each of the 3 matches goes as follows. Each red player is randomly and anonymously 

matched with a blue player. This divides the N? of you in this room into N /2? pairs. You 
will never find out whom you were matched with in any of the matches. You will always 
be rematched with a completely different player at the beginning of the next match. 
After you have been matched with a player, you will never again be matched with them 
for the rest of the session. We next describe how each match proceeds for a given pair. 
Every pair follows the same instructions. The computer first chooses for that pair either 
payoff table I or payoff table II, in a random way, so that for any given pair, there is 
a 50/50 chance that table I is chosen and a 50/50 chance that table II is chosen. The 
easiest way to think about this random device is that it is exactly like tossing a fair coin 
several times, once for each pair. A HEAD means that pair will use table I and a TAIL 
means that pair will use table II. For each pair in each match the computer randomly 
selects I or II as if it is tossing another fair coin. Therefore, no matter how many times 
you ended up with table I in previous matches, there is always a 50/50 chance of ending 
up with table II in the current match. Furthermore, different pairs in the same match 
might have different payoff tables. After the computer has determined which payoff table 
your pair uses in the current match, ONLY THE RED PLAYER IS TOLD WHICH IT 
IS. Blue player.s.:will.not .be.-told.which.payoffwtable is,..being-u_.sed-•tintiljt.hat match is over. 
The red player moves first in the match and has two choices, called STOP and GO. If 
the red player chooses STOP, the match is over for that pair. When this happens, red 
and blue each receives a STOP payoff of $3.00. When this happens, both player's screens 
will highlight the STOP move. If the red player chooses GO, it is the blue player's trun 
to choose LEFT or RIGHT. After Blue chooses, Red is told Blue's choice and the match 
ends. No on is told what happens to the other pairs. The payoffs in this case depend on 
whether that pair uses payoff table I or payoff table II. The payoffs for this pair are not 
affected by what happens to the other pairs in this match. 
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Payoff Table I: 

Left Right 
Red gets $0.00 Red gets $10.00 
Blue gets $6.00 Blue gets $0.00 

Payoff Table II: 

Left Right 
Red gets $6.00 Red gets $0.00 
Blue gets $0.00 Blue gets $10.00 

Notice that which payoff table was selected matters only if the red player has chosen 
GO. If the red player chooses STOP, the match ends and payoffs are $3.00 for each player 
in the pair. We also ask blue players to do one additional thing. If the red player you are 
paired with chooses STOP, please enter a decision (either LEFT or RIGHT) anyway. It
makes absolutely no difference at all which decision you enter after red has chosen STOP, 
since the match is automatically over already. Let me emphasize this fact. This choice 
of yours after red has already ended the match by choosing STOP will not affect your 
payoffs in any way whatsoever. Since it has no effect on payoffs, the red player you are 
matched with is not told which decision you entered in this case. At the end of a match, 
each BLUE player is then told which payoff table their pair was using (recall that the
RED players already had been told this at the beginning of the match). Your payoffs
for that match are then displayed and highlighted on your screen. For those pairs in 
which . .red selected "GO", Blue's choice of LEFT or RIGHT is then highlighted on the 
screen of the red player in that pair to plainly see. After all of this has happened you 
will be prompted to record on your record sheet the match number, Red's move, Blue's 
move, which payoff table was used, and what your payoff was for that match. Please do 
not record anything on your record sheet until you are prompted by the computer to do 
so. When everyone in the room has finished recording and is ready to begin the next 
match, we will then assign new pairings for everone, and the computer will randomly 
select a payoff table for each pair. Remember that table I is always selected with 50/50 
chance and II is selected with 50/50 chance, and which tables you have used in previous 
matches have ·no-bea1'ing at all··on-which-table "the"'Computer 1rappens 'to select for you
in this match. Also remember that as soon as a payoff table has been selected for your 
pair, the red player is told which one it is, but the blue player is not told until the end 
of the match. 

This procedure will continue for a total of 3 matches. After the last match, add up 
your earnings for all 3 matches, and record this amount at the bottom of your record 
sheet. As a double check, the computer will also calculate your total earnings and display 
it on the screen. The experimenter will pay you this amount in cash, one at a time, in 
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the next room. Please bring all forms and personal effects with you when it is your turn 
to be paid. You will exit by the door in the other room. Are there any questions? 

We will now explain how to enter your decisions into the computer, and how to read 
the information on the screen. Please do not press any keys on your keyboard unless 
prompted to enter specific information. 

[Start Practice Rounds] 

Please enter your name when the screen prompts you to do so. Then -type in your 
color asssignment (r or b) when prompted. Remember that you will have this color for 
the entire session of 3 matches. Please do not talk and do not press any keys. Is everyone 
ready to begin a practice match?? You will not be paid for the practice match 

[Hand out "practice record sheet" , but remind them that no payments will be made 
for the practice match.] 

[Practice match begins. The experimenter then explains what is on the screen. Blue 
players walk over to see what the red players' screens look like, and vice versa, to em­
phasize that red players are informed which payoff table it is, and blue players are not 
so informed.] 

[Practice match 1 begins. All red players are asked to play Go and all Blue players 
are asked to play Left. The experimenter then explains where the opponent's move is 
listed on the screen, where the payoff is listed, and makes sure everyone understands this. 
Everyone records this information.] 

[Experimenter then marches through what would have happened if the other table 
had been chosen and the same move had been made.] 

[Practice match 2 starts. All red players are asked to play Stop and blue players are 
asked to play whatever they wish. Everyone records the information.] 

[Experimenter then marches through what would have happened if the other table 
had been chosen and the same move had been made. No difference in this case.] 

[In practice match 3, all red players are asked to play Go and blue players are asked 
to play Right. Experimenter then marches through what would have happened if the 

. ·.other table-had· been· chosen·, an cl ·the<sameKrnove-had •been· made.] 
[The practice experiment is over and subjects are reminded to record everything.] 

Are there any questions? [Answer questions] 

We will now hand out a short quiz to make sure that everyone understands the 
details of what we will be doing in these 3 matches. Please raise your hand when you 
have completed the quiz, so one of us can come by and check your answers. 

22 



[Restart experiment and begin real payoffs] 
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