
DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA 91125

COVERS

Scott E. Page

�
�
er
0 1891
I.I-
� /,..

v

SOCI AL SCIENCE WORKING PAPER 872

December 1993

COVERS

Scott E. Page

Abstract

This paper introduces the theory of covers for functions defined over binary variables.
Covers formalize the notion of decomposability. Large complex problems are decomposed
into subproblems each containing fewer variables, which can then be solved in parallel.
Practical applications of the benefits from decomposition include the parallel architecture

. of supercomputers , the divisionalization of firms, and the decentralization of economic
activity. In this introductory paper, we show how covers also shed light on the choice
among public projects with complementarities . Further, covers provide a measure of
complexity /decomposability with respect to contour sets, allowing for nonlinear effects
which occur near the optimum to receive more weight than nonlinear effects arbitrarily
located in the domain . Finally, as we demonstrate, covers can be used to analyze and to
calibrate search algorithms.

COVERS

Scott E. Page•

1 Introduction

This paper introduces the theory of covers for functions defined over binary variables.
Cover theory serves t hree purposes. First , covers formalize the familiar notion that com­
plex problems defined over many variables can be decomposed into simpler subproblems
each containing fewer variables. Each of the subproblems can t hen be solved in par­
allel, thereby decreasing computation time. Practical applications of the benefits from
decomposit ion i nclude the parallel archi tecture of supercomputers, the divisionalization
of firms, and the decentral ization of economic activity (Simon 1 969) . In this paper, we
show how covers also shed light on the multiple public projects problem.1 Second , covers
provide a measure of complexity /decomposability with respect to contour sets , allowing
for nonli near effects which occur near the optimum to receive more weight than nonlin­
ear effects arbitrarily located in the domain . Third, covers can be used to analyze t he
performance of and to optimize search algori thms.

Covers can be best explained through an example. Suppose that a city is considering
three' public projects: an ai rport (a), a botanical garden (b), and a cable car system (c).
Suppose that the city's value function is well-defined and denoted by V, where V maps
the power s<>t of { a,b,c} into the real numbers. Let the empty set, 0, denote the status quo
and kt "ab" denote the state of the world where the airport and the botanical garden
are provided , but the cable car system is not. Suppose that V satisfies the following
inequali ties:

\"(c) < l'(0) < V(bc) < V(h) < V(a) < V(ab) < V(ac) < V(abc)

If the ohj<>ctive function, F, is not known ex ante but is revealed through cost-benefit
analysis, a complete dPrnmposition of the three project decisions so that each decision is

·Division of 11 u rn anit ies and Social Sciences 228-77, California Institute of Technology, Pasadena CA
91125. The author would like to thank Stan Reiter, David Richardson, and JimJordan for their insights.

1See Page 19rl3 for a more complete analysis of the multiple public project problem.

1

made independently might not lead to the optimal choice of projects. In this scenario,
the decision on the cable car system is problematic: the cable car system should not be
built if the airport is not built:

V(c) < V(0) and V(bc) < V(b)

However, if the airport is built, then the cable car system should be built as well. It
follows that coordination on decisions is required to guarantee the optimal choice over
subsets of projects. Suppose that we decompose the set of projects into -the sets { a,c}
and {b} and make decisions on these two sets independently. Consider first the decision
on the botanical garden. The inequalities below follow from above:

V(0) < V(b) V(c) < V(bc) V(a) < V(ab) V(ac) < V(abc)

These inequali ties show that regardless of the decision on the other projects, the
botanical garden should always be provided . Consider second, the decision on the other
set of projects:

max{V(0), V(a), V(c)}-< V(ac)

max{V(bc), l'(ab), V(b)} < V(abc)

These two inequalities show that providing both the airport and the cable car system
is the preferred alternative, regardless of the decision on the botanical garden. Combining
the decisions on the subproblems { a,c} and { b} leads to the optimal decision over the
set of all projects, i .e. providing all three projects. A decomposition i nto subproblems
forms a cover if (i) each decision (variable) belongs to at least one subproblem and
(i i) the optimal decisions on the subproblems "agree" wi th t he optimal decision on the
larger problem. In the example, { a,c} and { b} form a cover and also partition the set of
decisions . The latter need not be true in general , the same variable may belong to more
than one subproblem�

This example also can be used to demonstrate how covers can measure complex­
ity/ decomposabil ity relative to the function's contour sets. Suppose that the airport's
value is known to be greater than the status quo value and that the airport's external
effect on the other two projects is thought to be posit ive. Suppose further that prelimi­
narily, the ai rport i s assumed to be provided so that the starting point for optimization
is "a." In this case, the problem can be decomposed into the sets { a}, { b}, and { c}. To
understand why. first consider the decision on the cable car system.

2

V(a) < V(ac)

V(ab) < V(abc)

The value of the airport together with the cable car system, V(ac) , exceeds the value
of the airport alone, V(a) . And the value of all three projects, V(abc) , exceeds the value of
the airport and the botanical garden, V(ab). It follows that, the optimal decision on the
subproblem { c} is to provide the cable car system. A similar argument establishes that
the optimal decision on the botanical garden is to provide that project as well. Finally,
the optimal decision on the airport is to not reverse the earlier decision. Regardless of
the decisions on the other two projects, the airport is always worth providing. Thus, we
say that the sets {a}, {b}, and { c} form a cover for V on the contour set above "a."

By starting optimization from a better initial set of projects (V(a) > V(0)), the cover
was simplified, in that the maximum number of decisions in any one subproblem was re­
duced fro� .two to one. In the formal model presented later in this paper, the size of a
cover equals the number of variables in the largest subproblem. Cover size measures the
complexity of the smallest subproblem remaining after maximal decomposition. Though
there are other possible measures of complexity, cover size is most relevant if the sub­
problems are to be solved in parallel: the time required to solve the problem equals the
time required to solve the largest subproblem. In the example, the cover size decreases
as the initial point of search improves. Interpreting cover size as a complexity measure,
we can say that the problem becomes less complex near the optimum. In the paper, we
show that complexity decreases as the initial point of search improves for any function
defined over binary strings.

The remainder of this paper i s organized as follows. In Sections 2 and 3, we de­
fine covers for functions defined over binary strings and construct a complexity vector.
We also compare cover size with other measures of complexity and present data from
test functions . In Section 4, we use covers to select optimal parameters for a class of
hil lcl imbing algorithms and to offer an alternative explanation for the performance of
genetic algorithms . The latter discussion focuses on the "bu ilding block hypothesis" and
its interprf'tat ion through the lens of covers . In the conclusion, we discuss a more general
notion of CO\'ers mentioned by Richardson (1991) .

2 Binary Strings

A cover decomposes a problem into subproblems which can then be solved in parallel .
This decomposition is relative to the objective function's upper contour sets. We begin
with some basic definitions .

3

2.1 Preliminaries

We refer to each binary variable as a bit and to a decision on each binary variable as a
string.

The set of bits N = {1, 2, 3, . . , n}

The set of strings, S = {s: s = s1s2 .. sn with Si E {O, 1}}

We assume that we are trying to maximize V which belongs to F, the set of all
functions whose domain can be encoded as binary strings of length n and whose range is
the real numbers.

The set of objective functions, F = { V : V : S --+ �}

A class of subsets of N called hyperplanes play a prominent role in the analysis. A
hyperplane can by represented by a ternary string of length n over the set {0,1,*}.

The set of hyperplanes, H = {h: h = h1h2 .. hn with hi E {0,1,*}}

For ease of exposition, the ternary variables hi are also referred to as bits . A bit in a
hyperplane in defined if it takes either the valuf' 0 or 1.

The defined bits of h, d(h) = {i: hi E {0.1}}

A string l ies in a hyperplane if the string and the hyperplane have i dentical values on
the defi ne<l bi t s of the hyperplane.

A string s brlongs to h. s E h iff Si = hi Vi s .t. hi E {O, 1}

Example: 0*1* = {0010, 0011, 0110, 0111}

4

The size of h equals the number of defined bits of h.

The size of h, u(h) = I d (h) I

According to this measure, a hyperplane's size equals its co-dimension. A hyperplane
with a larger size contains fewer strings.

2.2 String Dominant Hyperplanes

The idea which underpins the definition of a cover is that "good" hyperplanes can be
combined to form good strings . This same idea is the basis for the Schema Theorem
which we describe in Section 4. We begin by defining the operator /\ which combines
hyperplanes .

/\ : H x H ---+ H according to the following rule: h /\ h = y, where

if hi=*
if hi .E {O, 1}

Example: O** /\ 1 *1 = O*l

The set of strings, S, is contained in H, therefore, /\ is also a map from the Cartesian
product of H and S into S. We can think of h /\ s as moving the string s into the
hyperplane h making the minimal number of changes in bit values .

Claim 2.1 ThE operator/\ is associative but not symmetric.

pf:·/\ associaf irc: h /\ (ii /\ h) = y where

Yi= { �:
h,

if h; = h; = *
if hi= *and hi E {0,1}
ifh; E{0, 1}

It is straight forward to show that y = (h /\ h)) /\ h, which completes the proof.

,5

/\ not symmetric: Let h = 00* and h = *h. h /\ h = 00*, hut h /\ h = Oh.

Recall that a motivation for covers is that "good" hyperplanes can be combined to
form "good" strings. A strong notion of "good" hyperplane is Greffenstette and Baker's
(1989) dominant hyperplane.

A hyperplane, h, is dominant for V iff Vs E h and Vs ¢ h, V (s) 2: V (s)

A hyperplane h is strictly dominant for V iff Vs E h and Vs¢ h, V(s) > V(s)

Claim 2.2 below states that given two strictly dominant hyperplanes, one must be a
subset of the other . This implies that strictly dominant hyperplanes cannot be combined.
They can only be extended.

Claim 2.2 For any h, h strictly dominant for V, s.t. h =/- h an d a (h) � a (h), {s : s E
h}c {s : s Eh}

pf. by contradiction. Suppose 3 s E h s.t. s r/. h. I� follows that 3s E h s.t. s ¢ h.
h strictly dominant for \I implies V(s) > V(s), and h strictly dominant for V i mplies
V(s) > \l (s), a contradiction .

A consequence of Claim 2.2 i s that i f h and h are dominant but not strictly dominant
hyperplanes for V, then the function \I must take an identical value for all strings that
belong to exactly one of the hyperplanes. It appears then, that requiring a hyperplane
to be dominant is too restrictive for our purposes. As an alternative to dominant hyper­
planes. we propose the weaker notion of string dominance, which i s sufficiently weak to
allow for hyperplanes to be combined but st rong enough to ensure that the hyperplanes
combine to form the optimal string. A hyperplane h is said to be string dominant on a
subset of strings, T. if the value of a string in T does not decrease when moved i nto the
hyperplane h by the operator /\. Formally,

A hyperplane. h. is sh·ing dominant for F on Tiff V(h /\ s) 2: V(s) Vs ET

A hyperplane h is sfrictly string dominant for \I on T iff V(h /\ s) > V(s) Vs E T\h,
whereT\h ={ s: s E T. s¢h}.

6

Claim 2.3 below states that the operator /\ preserves string dominance.

Claim 2.3 If h an d h are string dominant for V on T and h : T --+ T, then h /\ h is
string dominant on T.

pf. h string dominant for V on T implies V (h /\ s) � V (s) Vs E T. By assump­
tion h /\ s E T. Therefore, given that h is string dominant for V on T, it follows that
V(h /\ (h /\ s)) � V(h /\ s), which by the associativity of /\ implies V((h /\ (h) /\ s) � V(s),
which completes the proof.

3 Covers and Complexity

3.1 Covers

In this section we formally define a cover. Before doing so, we need to define the contour
sets for the objective function, V. To simplify the analysis, we assume that no two strings
have the same value under V. This assumption allows us to ordinally define the upper
contour sets. The extension to cardinal characterization of the upper contour sets, and
non-injective objective functions, is straightforward.

Assumption 1: Vs, s ES, s .t . s -:j:. s, V(s) -:j:. V(s)

Given Assumption 1 , the strings can be ordered from 1 to 2n according to their value
under V.

S ordered by l'= {s1, .. s20} where V(si) > F(si+I) for i = 1 to 2n -1

The upprr ronlour set inrluding s0, T(o) ={so: f3:::; a}

Claim 3.1 hdow states that string dominant hyperplanes map an upper contour set
i n t o i t se If.

Claim 3.1 h siring dominant for V on T(o) implies h /\ s E T(a) Vs E T(cx)

7

pf: h string dominant for V on T(a) - implies V(h /\ s) � V(s) Vs E T(a) . It follows
that h /\ s E T(a) .

Corollary 3.1 below follows directly from Claim 2.3 and Claim 3.1.

Corollary 3.1 For any h, h string dominant for V on T(a), h /\ h is string dominant
for V on T(o:) .

pf . follows directly.

We can now define a cover for V. A cover is a finite set of string dominant hyperplanes,
the union of whose defining bits contains all variables.

The collection of hyperplanes, C = {h1, h2, .. hm}, forms a cover for V on Tiff (i) and (ii)
hold:

(i) hi is string dominant for V on T Vi

This definition allows for two hyperplanes in a cover to be defined on the same bit.
The example below shows that a cover does not have to be a partition.

Example: n=3 and V(s) = 3s1 + s2 + s3 - 2s1s2 - 2s1s3. It is straightforward to show
that C = { 1 1*, 1 * 1} is a cover for Von S .

I t can be shown given Assumption 1 that two hyperplanes i n a cover must agree on
any bits which are defined for both hyperplanes. Another consequence of this definition
is that if C is a cover for Von T(a), then it is also a cover for Von T(f3) for f3 <a.

Claim 3.2 !JC is a cover for Von T(a) then C is a cover for V on T(/3) V f3:::; a.

pf: If hi is string dominant for V on T(a), then hi is also string dominant for V on
T(/3) V (3 ::; a. which completes the proof.

8

Claim 3.3 below states that any string belonging to every hyperplane in a cover for V
must optimize V. In other words, the optimal string can be located by forming a cover
for V. A consequence of Claim 3.3 is that the order in which the hyperplanes comprising
a cover are located is irrelevant.

Claim 3.3 If C = {h1, h2, .. hm} is a cover for V on T(a) and r E �' the permutation
group on m elements, then h7(l) /\ (h7(2) /\ (... h7(m) /\ (s) ..)) = s1 Vs E S.

pf. By Claim 3.2, C is a cover for V-on -T(l) = {s1 }. By Corollary 3.11·hi.string dominant
for V on T(a) implies V(h7(l) /\ (h7(2) /\ (... h7(m) /\ (s1) ..))) = V(s1). It follows that:

hT(l) /\ (h7(2) /\ (... hT(m) /\ (s1) ..) = sl

Therefore, by (ii) in the definition of a cover:

h7(l) /\ (h7(2) /\ (.. . h7(m) /\ (s) . .) = h7(l) /\ (h7(2) /\ (... h7(m) /\ (s1) ..) Vs E S

which completes the proof.

A cover should be easy to find (and therefore the optimum easy to find) if the hy­
perplanes which compose it are defined on a small number of bits . For example, if all of
the hyperplanes in a cover on S are of size one, then each bit value can be determined
in isolation , and the problem can be solved quickly. If, on the other hand, several hy­
perplanes in a cover have a large number of defined bits, then the time required to solve
the subproblems may be significant. In order to capture the intuition that a problem is
as difficult as its largest subproblem, we define a cover's size to be the maximal number
of defined bits in any hyperplane which belongs to the cover.

The si::e of a cover, C = {hl,h2, . . hm }, for Von S, Z(C) = m.axi{o-(hi)}.

Example: C = { 1 * **· *00*. * * 01} is a cover of size 2.

We let oj(\/) equal the number of strings in the largest upper contour set which has a
cover of size j . Each o(·) can be thought of as a functional which maps functions defined
over binary strings into the set {1, . . , 2" }.

Dj(\l) = ma:r{o: :JC. a cover for Von T(o), s .t . Z(C)::; j }

9

Example: a1(V) = 2<n-t) implies there exists a cover of size 1 for V on the upper contour
set consisting of all strings with function values above the median.

Claim 3.4 states that for any function V E F , a;(V) is weakly increasing in j. In other
words, as the function value improves, the amount of relevant complexity, as measured
by cover size, decreases.

Claim 3.4 V V E F , the follow ing hol d:

{i) a;+1(V) � a;(V)

{ii } O'n(V) = 2n

pf. (i) Let C be a cover for V of size j on T(a;(V)) . Trivially, Z(C) � j + 1. The result
follows.

(ii) C = {s1} is a cover of size non T(2n) .

An implication of Claim 3.4 i s that covers distinguish between potential nonl inear i n­
teractions, those that may affect optimization , and relevant nonl inear interactions, those
that do. A similar distinction between potential and relevant nonl inearities has been
made in economics by Buchanan and Stubblebine (1962). If an encoded nonl inear ef­
fect does not create problems for optimization, then heuristics, optimization techniques,
mechanisms, and algorithms developed to overcome the nonlinear effect may be i neffi­
cient.

The fol lowing claim addresses the simplest cover:

Claim 3.5 n1(l') 2n i.ff :JC {h1.h2 ... ,hn} forming a cover for V on S, which
satisfies:

(i) h: E {O. l}

(ii) hi = * for i =f j

pf. Supposf' oi(\/) = 2n . Let C = {h1J2, • • ,hn} form a cover of s ize one for V on S.
Choos_e TE <l>. the permutation group on m elements, s .t . h;(i) E {O, 1} It fol lows that
C=C.

The other direction fol lows immediately from the definition.

1 0

Claim 3.5 can be interpreted as a decentralization (or parallel processing) result.
Beginning with any string, maximizing each bit with respect to that string leads to the
optimal string. Decisions as to which values to assign to bits need not be coordinated.
This does not mean that V contains no nonlinear effects. In the next section, we construct
functions with nonlinear terms which nonetheless satisfy the assumptions of Claim 3.5.
Such functions have been characterized by Liepins and Vose (1990) as e asy.

The a;(·)'s can be combined to form the complexity ve ctor. The complexity vector
measures the size of the upper contour sets which have covers of various sizes.

The comple xity ve ctor a(V) = (a1 (V), a2(V), ... , an (V))

The complexity vector, a(V), can be considered as a functional mapping the set of
all functions defined on S into integer valued vectors of length n. Functions mapped to
complexity vectors with larger values are less complex, as measured by cover size, than
those mapped to vectors with smaller values. Some simple examples demonstrate how
a(V) measures complexity.

Examples:

a(V1) = (4, 1 6, 1 6 , 1 6)

a(Vi!) = (2, 2, 1 6. 1 6)

o(i�) = (5, 5, 1 6, 1 6)

Four f<'atures merit attention. First , Vi has a cover o f size two on all of S whil e
the other t wo funct ions have covers of size three on S. Thus, at least according to this
measure. \ ' 1 appears least complex or most decomposable. Second, the function Vi has
a cover of size one on a larger upper contour set than either V2 or Vi, which implies that
as the function value improves , Vi becomes easiest. Third, while Vi has a unique cover
of size 3 on S, \.3 has mult iple covers of size 3. Finally, although the vector a (·) does not
create a complete ordering of functions, a function V might be said to be less complex

1 1

than a function V if ai (V) � ai (V) , for i = 1 to n. According
,,
tot.his criterion, Vi and

Va could he said to he less complex than \'2, but no comparison can 'b'e made between Vi
and Va.

3.2 Measuring Complexity

Covers differ from other measures of complexity by focusing on a function's upper contour
sets. Standard nonlinearity/ complexity measures count the number and size of encoded
nonlinear effects (Kauffman 1989, Liepins and Vose 1990). We refer to these measures as
domain based. In this section, we show that domain based measures can he misleading.
On the one hand, simple nonlinear interactions can combine to form complex problems,
On the other hand, complicated nonlinear interactions can collapse.to form easy prob­
lems.Decomposition size is perhaps the simplest domain based ·complexity measure for
functions defined over binary strings. Before we define decomposition size, we need to
introduce .the decomposition basis coefficients, which attach a value to each subset of N
(Liepins and Vose 1991). If O(s) equals the subset of bits ins which"have the value 1,
then the value of a string equals the sum of the values of the subsets contained in 0(s).

Given V E F, the decomposition basis coefficients (f3v,0, .. (3v,r, .. fiv,NJ E �n satisfy :

v (s) = I: f3v,T
/CO(s)

where O(s) = {i: Si = 1}

The decomposition size equals the size of the largest subset I �hich has a nonzero
coefficient.

The dccomposil ion si=e of V, sized(F) =max {I I I: f3i1,1 =f. 0}

using decomposition size as a measure of complexity, it is possible for simple·nonl i n­
ear effects to combine to form problems of extreme complexity. In the example below,
we construct a function with decomposition size equal to two which forms a problem
with a co\'er of size n. This example can be understood in the context of a multiple
public projects model (Page 1993). Suppose there are n potential public projects and
that project values are interdependent a.c;; in the introductory example with the airport,
botan ical garden, and cable car system. Decisions on public projects can be modelled
as di screte choices, where "yes" is denoted hy 1 and "no" is denoted by 0. If we let Si
repres<'nt t II<' decision on project i, then a st.ring represents a decision on each project.

In the example below, each individual project has a negative i solated value and each
pair of projects has a positive complementari ty. It can be shown that the decomposition

12

size of this problem equals two. However, only when all n projects are undertaken does
the combined value of the complementarities outweigh the negative project values, i.e.
the problem has a cover of size n.

Example: Assume n > 2, and choose the decomposition basis coefficients as follows:

f3v,r = -1 if I I I= 1
if I I I= 2
if I I I> 2

a _ 1 + 1 PV,1 - n-1 n-2
f3v,r = 0

Choose s E S s. t. s · s = k < n. It is straightforward to show:

V(s) = -n + k·(k-1) . _1_ + _1_
2 n-1 n-2

< -n + (n-1)-(n-2) , _1_ + _1_ - 2 n-1 n-2

= -n + n-2 + n-1
2 2

Choose s E S s.t. s · s = n, 1.e. Si = 1 Vi. It is straightforward to show:

V(s) = -n + n·(n-1) • _1_ + _1_
2 n-1 n-2

= -n + !!. + !!. + _1_·
2 2 2 n-4

n
2n-4

>0

Therefore. t he highest valued string of projects equals the set of al l projects, and the
second highest valued string of projects equals the set of no projects. It fol lows that n
equals the minimal cover size for any upper contour set containing more than two strings.
Along simi lar l ines, Goldberg (1990) has shown that complex problems can arise from
simple interactions. Using the Walsh Basis , Goldberg combines nonlinear interactions
of decomposition size two and three to form problems which are deceptive for genetic
algorithms. Roughly speaking, a problem is deceptive if hyperplanes whose strings have
above average value do not contain the optimal string.

Measuring complexity by encoded effects may also overstate the amount of relevant
complexity. In the decomposition basis , maximum complexity occurs when the coefficient

13

of the subset of all variables has a positive coefficient, i.e. sized(V) = n. The example
below is a function of decomposition size n which has a cover of size 1 .

Example: Choose V E F s.t. f3v,r > 0 VJ C N. It is straightforward to show that
sized(V) = n but that V has a cover of size 1.

3.3 Test Functions

In this section, we report data from numerical simulations on test functions. We created
two classes of test functions each with a decomposition size of two and also looked at
functions with random values. We then measured the cover size of randomly drawn
functions from the three classes of functions. The first two classes of functions have the
same functional form. The difference is in the relative size of the nonlinear effects. Note
that with probability one, any function drawn from either class has a decomposition size
of two. In the first class of test functions, the nonlinear terms are half as large as the
linear terms:

n n n

Vi (s) = L f3i . Sj + L L f3ij . Sj • s j
i=l i=l i=l

f3i E [-2, 2], f3ii E [-1 , 1]

In the simulations both f3i and f3ii were uniformly distributed. We varied n, the number
of bits, and found that cover size tended to increase with n. The table below shows that
for n = 6 that only 1 0% of the randomly generated functions of type Vi had a. cover size
of six or greater, but that for n = 1 0 , 88% of the functions had a cover size of six or
greater. This occurs because the number of nonlinear effects increases more than linearly
with n. The data from one hundred simulations are given below:

% of functions of type V1

#Bits Cover Size
n 1 2 3 4 5 �6
5 I 25 34 30 1 0 0
6 1 1 1 25 31 22 1 0
7 0 2 1 0 27 34 27
8 0 0 3 24 29 44
9 0 0 2 8 9 8 1
1 0 0 0 2 2 8 88

100 trials in each cell

1 4

In the second class of functions, the nonlinear terms are only one fourth as large as
the linear terms:

n n n
\!2(s)=l: f3i'Si +LL f3ij'Si·s; f3i E [-4, 4], f3i; E [-1, 1]

i=l i=l j=l

As before, f3i and f3i; are uniformly distributed. The data from test functions randomly
drawn: from the second class of function are given below:

% of functions of type l'2

#Bits Cove r Size
n 1 2 3 4 5 �6
5 13 37 27 17 6 0
6 4 33 33 17 12 1
7 2 16 19 30 21 12
8 0 7 27 25 20 21
9 0 2 11 24 24 39

10 0 2 4 7 30 57

100 trials in each cell

As might be expected, the smaller nonl inear effects result i n smaller cover sizes and
as before, the probabi lity of the cover size being greater than or equal to six i ncreases
with the number of bits . Two hypothesis may be formu lated from these data. First, we
see that decomposition size and cover size may differ substantial ly. Second, for a fixed n,
functions drawn from the same class have simi lar cover sizes . Late we discuss how these
s imi larities may be exploited .

Final ly, we briefly consider functions whose values are randomly determined. We let
Vr (s) = /3. where f3s was randomly drawn from the uniform distribution on [O, 1]. The
data below suggest that cover size is nearly equal to string length.

% of functions of type i�.

#Bits Cover Size
11 1 2 3 4 ,5 � 6
4 0 0 18 82 0 0
5 0 0 1 6 93 0
6 0 0 0 0 0 100
7 0 0 0 0 0 100

100 trials in each cell

15

4 Covers and Optimization Theory

In this section, we show how covers can be used to select optimal parameters for a class of
hillclimbing algorithms. We also provide an alternative explanation for the performance
of genetic algorithms in terms of covers.

4.1 ALGO(r,p)'s

In this section, we define a class of hillclimbing algorithms called ALGO(r,p) where r
equals the maximum number of bits selected in one iteration and p equals the probability
that each bit is switched. The term ALGO is borrowed from the work of Reiter and
Sherman (1965). The algorithms used here differ slightly from their algorithms which
learned regions of the domain from which to select initial strings. In our formulation,
ALGO(r , p) begins with a randomly generated string.

The search algorithm ALGO(r,p) is defined as follows:

Step 1 :
Step 2:
Step 3:

Step 4:
Step 5:

Choose sA ES
Randomly select I C N s.t. I I I= r
Create st as follows:

S� =SA I I

s� = (1 - s�)
s� = s� I I

If f(st) > f(sa) then sA = s1
Goto Step 2

if i f/. I
with probability p if i E I
with probability (1 - p) if i EI

ALGO(r,p) compares the current hest st ring, sA, to a chosen string, st, which differs
by at most r bits. A strings· belongs to t he set of local optima w.r.t. ALGO(r,p) if any
string which differs by r bits or fewer has a strictly lower value under f.2

A string s· bf'longs t .o the set of local optimum w .r.t ALGO(r,p) , LO{r,p) iff Vs s .t .
I {i: S j -:f $n I:::; r, F(s) < \'(s•)

Claim 4.1 helow provides a sufficient condition for an A LGO{r,p) to locate a string
dominant hyperplane.

2Recall that we assume that no two strings have the same value.

16

Claim 4.1 V h E H s.t . a (h) :'.S; r and h is string dominant for V onS, it follows that
s* Eh Vs* E LO(r,p).

pf. a(h) :'.S; r implies { i : h A Si :f:. s i} :'.S; r. By assumption, if h A s * :f:. S *, then
V(h As*)> V(s*), which completes the proof.

A corollary of Claim 4 . 1 i s that ALGO(r,p) locates any cover of size less than or
equal to r.

Corollary 4.1 If sA E T(aj(V)) an d r � j, then s* E LO(r,p) optimizes V.

pf. Supposes * E LO(r,p). By definition, of T(aJ(V)), 3 C, a cover for Von T(aJ(V))
s.t. Z(C) :'.S; j. By assumption , sA E T(aj(V)), therefore, s* E T(aj(V)). By Claim 4.1 ,
V h E C, s* Eh.

From Corollary 4. 1 we see that the vector a(V) reveals i nformation about how r should
be chosen. A function Vi which satisfies o1(Vi) = 2n can be solved with ALGO(l,p) for
any posit ive p . A lternatively, a function l/2, such that a20(V) = 1 probably woul d not
be optimized by ALGO(r,p) for r smal l .

An impl ication of Corollary 4. 1 is that i f the distribution of cover sizes for a parti cular
c lass of functions is known or approximated, then o(V) can be used to compute the prob­
abi l i ty that a local optimum is global . In the previous section, the data suggested that
99% of functions of type Vi have covers of size 5 or less. Suppose further that 99% of the
functions of type Vi satisfy a2(V) > JPo. A search algori thm which randomly generates
thirty strings and appl ies ALG0(2, p), where r > 0 to the string with the h ighest val ue
would yield a global optimum with a probabi l ity strictly greater than (. 99)y[l-(.9)30]
= . 9-18. This lower bound is strict gi ven that each new local optima moves the search
to a higher contour set and increases the probabi l i ty that ALG0(2, r) finds the global
optimum.

Cover size may help to explain why simple algorithms are often effective at finding
solutions. For example, finding an optimal tour for a travell i ng salesperson problem
(TS P) is NP hard . Reiter and Sherman (1 965) and Kauffman and Levin (1 987) attempted
to solve TSPs using algorithms simi lar to our ALGO's. Their algorithms switch cities
within a tour. Both studies found that increasing the number of cities switched in a given
iteration improved performance but that these improvements dropped off sharply. For
instance, l\:auff man and Levin showed for TSPs that a variant of ALG0(3, 1) performed
almost as wel l as a variant of ALGO(4, 1). In other words, their TSPs may have had
covers of size 3 for large portions of the domain.

1 7

The performance of an ALGO(r,p) depends both on the parameter p and on r, the
maximal number of bits switched. The following example shows how changing r changes
the probability of locating a particular hyperplane.

Example: Let n = 5, and h = 11 * **, be string dominant for V on S, and sA = 00000.
Consider the performances of the following two ALGO(r,p)'s:

ALG0(3,!):

In Step 2, prob{ d(h) C /} = 0.3

In Step 3, prob{s� = 1 <:? i E d(h)} = 0.25

Therefore, after Step 3, prob{ s� E h} = 0.075

ALG0(2,!):
In Step 2, prob{d(h) C /} = 0. 1

In Step 3, prob{sl = 1 <:? i E d(h)} = 0.25

Therefore, after Step 3, prob{ sl E h} = 0.02.5

Claim 4.3 states a more general result. The idea of the claim is that to maximize
the probabi lity of switching bit values on a given subset of size k, that the optimal r
for a given ALCO(·,p) varies directly with k and inversely with p. We first define the
probabi l ity of switch ing a given subset using ALGO(r,p).

The probability of switching h in ALGO(r, p),
pr(h.ALGO(r,p)) =prob{ d(h) = {i: s11 -::J sA;}: A LGO(r,p)}

Claim 4.2 If a(h) =/,· and r �A'., then pr(h.ALGO(r,p)) =pk· (1 - Pt-k · :'!t=z\:

pf. In S tep 2 of ALGO(r,p):

rob{a(h) c /}= r!·(n-r)!·(n-k)!p n!·(n-r)!·(r-k)!

1 8

_ rf.(n-k)!
-n!·(r-k)!

In Step 3 of ALGO(r,p): prob{s� =sf # i E d(h)} =pk· (1-p)(r-k), which completes
the proof.

Claim 4.3 If u(h) = k, then argmax pr(h,ALGO(·,p)) = Lk/pJ, where LaJ equals the
greatest integer less than or equal to a.

pf: From Claim 4.2, pr(h,ALGO(r,p)) =pk. (1 -py-k. :';.\;:!�:
Let g(r,k,p) =pk· (1-py-k · (r:!k)!'

I t follows that pr(h,ALGO (r,p))= g(r,k,p). Cn-,k)! n.

Therefore,·)t suffices to maximize g(r, k, p) with respect to r.

Let G(r) = g(r,k,p) = r . .!.=£.g(r-1,k,p) r-k

Therefore, G(r) 2: 1 <=? r :s; ; , and further, G'(r) < 0, which completes the proof.

Note that in the special case where p = 1 /2, Claim 4.3 states that ALG0(2k, 1/2)
maximizes the probability of switching a hyperplane of size k. Claim 4.3 provides a h int
as to how r should be chosen in ALGO(r, p) to find a cover of a given size. Suppose
that a function V has a. cover on S of size 8, but it has a cover on T(2n-2) of size
4. Initially, r should be large to find the hyperplanes of larger size, but once these
hyperplanes are located and the function value has improved, r should be decreased.
The Corollary below states that p should be set equal to one and r equal to a (h) to
maximize pr(h,ALGO(r,p)).

Corollary 4.2 If u(h) = k, then pr(h, ALGO(k, 1)) 2: pr(h,ALGO(r,p)) for all r EN
and p E [O. l].

pf: From Claim 4 .3 , pr (h ,ALGO(r,p))= g(r,k,p)·(n-,
k)!

n.

where g(r.l•,p) = l · (l -pr-k · (r�'
k)!'

Note that g(r. k, p) = t · f(k : r, p) , where J(k : r, p) is the standard binomial d istribution.
It follows immediately that r = 1..� and p = 1 maximizes f, which completes the proof.

19

4.2 Genetic Algorithms

A Genetic Algorithm (hereafter GA) is a constant-size population based search algorithm
(Holland 1975, Goldberg 1989) . Recently, GAs have been used in economics (Arifovic
1989, Marimon, McGrattan, and Sargent 1990, Holland and Miller 1991), political sci­
ence (Kollman, Miller, and Page 1992), and in the study of inductive learning (Holland,
Holyoak, Nisbett, and Thagard 1989). In this section, we provide a brief introduction into
GAs and use cover theory to develop an alternative explanation for their performance.

A GA begins with an population of M strings which it transforms into a new pop­
ulation. Each iteration of a GA is called a generation. We .denote the population in
generation t by Pt· The transition from Pt to Pt+i occurs in three stages: reproduction,
crossover, and mutation. Reproduction chooses a new population of M strings from the
existing population according to the function values of the strings.· The idea is that bet­
ter (more "fit") strings are reproduced with greater frequency, thus increasing the fitness
of the population. Let Pi be the population after reproduction. The reproduction we
describe relies on a tournament to select strings.

Tournament Selection: A! pairs of strings from Pt are randomly created. The higher
valued of the two strings i n each pair belongs to Pi·

A crossover operator creates new strings by "crossing" strings from among those
reproduced . The analogy to be kept in mind is genetic recombination with the bit
values thought of as alleles . The bi t value of a string created during crossover may
come from ei ther parent. Crossover randomly creates M pairs of strings, and each pair
independently crosses bits with probabil i ty p (typically p E [.25, .75)) . The crossi ng or
exchanging of bit values occurs on a subset of the positions. The positions which cross
bit values can be chosen in many ways. Three typical crossover rules appl ied to strings
s and t are one point, two point, and uniform crossover. In the tests described later in
th i s section, we employ uniform crossover. There are two reasons for th i s decision . First,
with one or two point crossover, hyperplanes with large distances between defined bits are
more l ikely to get destroyed, making the distance between defined bits a more natural
defini tion of hyperplane size. With uniform crossover, i t can be shown that the more
defined bits i n a hyperplane, the measure used in cover size, the greater the probabil ity
that the hyperplane is destroyed during crossover. Second, uniform crossover treats all
bits symmetrical ly, one and two-point crossover have endpoint bias effects .

Uniform crossover: A ''swi tching rule", x, is created by selecting a string from the set S.
I f Xi = L then the strings s and t swi tch thei r i th bit values . I f Xi = 0 , then the strings
s and t do not swi tch their ith bit values.

Bit:

20

Switching rule:
news
newt

0 1 1 0
St t2 t3 Sn

t1 S2 S3 tn

Crossover can "destroy" hyperplanes. A hyperplane h is destroyed during crossover,
if one of the strings belonged to h prior to crossover, but neither string belongs to h after
crossover.

Example: Suppose h = *O * 1. Let s = 0011 and t = 0110. It follows that s E h and
t ¢ h. Suppose that s and t are uniformly crossed using the switching rule 1100. Neither
resulting string, s = 0010 or i = 0111 belongs to h .

Finally, mutation may occur at the bit level or the string level. Bit mutation switches
the value of each bit of each string with a very small probability (p < 0.1). Bit mutation
is an analogous to biological mutation. Bit mutation creates both short and long term
effects. In the short term, a mutant represents a single random search for a better string.
In the long term, a bit mutation may spread through the population and slow the rate
of convergence of bit values . In contrast to the milder bit mutation, string mutation
creates an entirely random string. Typically, the probability of string mutation is also
small (p < 0.05) . String mutation allows for random searches i n entirely different regions
of the domain, which can enable the GA to avoid getting stuck at a local peak . After
mutation, the new population , p1+1, i s completed; reproduction, crossover, and mutation
are reapplied to create Pt+2. The randomness created in the mutation stage guarantees
that the population never converges to a single string replicated M times.

The performance of GAs has been the focus of a great deal of research in recent years.
To date, the most important result in the theory of GA performance is the Schema The­
orem (Holland 1 975) , which says that hyperplanes whose strings consistently have higher
than average function values will increase in number in the population proportionate
to their fitness advantage in the population. Decreasing a hyperplane's size (or defin­
ing length for one and two-point crossover) increases the probability that a hyperplane
survives crossover .

One interpretation of the Schema Theorem is the "building block" hypothesis, which
says that GAs increase the-number of hyperplanes of small size whose strings have above
average val ue and combine them to form above average strings . These hyperplanes
commonly are referred to as "building blocks ." A hyperplane is above average if the
strings in the population whi ch lie in the hyperplane have, on average, higher value than
the strings not in the hyperplane.

Greffenst.ette and Baker (1 989), among others, criticize the Schema Theorem. They
argue that GA performance can be altered drastically by monotonically transforming the

21

objective function V. In contrast, the ALGO(r,p)'s described in the previous section
depend only upon ordinal rankings of strings. A monotonic transformation of V would
have no impact

"
on the performance of an ALGO(r,p).

Covers offer an alternative perspective on GA performance. Claim 4.3 states that
to maximize the probability of switching all of the bits in a hyperplane h , the optimal
size of r ALGO(r,p) depends upon the number of defined bits of h . Claim 3.4 states
that for any function, the cover size decreases as the function value improves. Taken
together these two claims suggest that a good search algorithm should switch many bits
early to avoid local optima and, as the search moves up the contour sets and the cover
size decreases, switch fewer bits. This is a defining principle of another search procedure
known as simulated annealing (Davis 1988).

Ideally, a search algorithm would adapt the number of bits that it switches as a
function of its climb up the contour sets. Optimal adaptation to a function requires
information about the function's contour sets. In a crude way, a GA learns the function's
contour sets and adapts the number of bits it switches. If the same hyperplanes of small
size consis�ently obtain above average values, i .e. if building blocks are consistent, then
the population converges quickly. If the best hyperplanes vary between generations, a
GA 's population converges slowly. A function with a cover of small size is likely to have
cons istent building blocks during the search . A function with a large cover size is l ikely
to have i nconsistent building blocks.

To test this hypothesis , we experimented on two functions with a GA with tournament
selection uniform crossover, and bit mutation . We ran the GA one hundred times on each
function . The first function was l inear in the bits:

Vi(s)=s1 + s2 + ... + s-n

Its bui lding blocks should be consistent . The second function was constant:

Vi(s)=lO

The second function should not have consistent bui ld ing blocks. Table 1 shows the
average number of bits changed per crossover . As the theory above suggests , the crossover
operator switched more bits for the constant function than for the l inear function. The
results described in Table 1 capture a basic relationship between the size of a GA search
and the vector a(V) . In future research , we hope to identify more subtle effects of a(V)
on GA search.

22

5 Discussion

Covers formalize the idea that large complex functions can be decomposed into simpler
subproblems which then can be solved in parallel . Covers can be used to construct a
complexity vector which measures a function's complexity relative to its contour sets.
Finally, covers can be used in the development and evaluation of search algorithms.

As an extension of covers, Richardson (1991) has advanced the idea off-covers, a less
restrictive construction, which allows the theory to accept anomalous function values.
An f-cover consists of "almost" string dominant hyperplanes - hyperplanes which are
string dominant except on a small subset. To formalize this notion,

·
define h as f-string

dominant on T(a) if the proportion of strings in T(&) that satisfy V (h A s) ;:::: V (s)
is greater than (1 -f) , where & :::; a. An f-cover is a collection of f-string dominant
hyperplanes the union of whose defined bit is N. A consequence of this definition is that
the number of strings for which an t:-string dominant hyperplane is not string dominant
must decrease as the search moves to higher contours .

23

References

J. Arifovic, "Learning by Genetic Algorithms in Economic Environments," Santa Fe
Institute. Working Paper 90-001 (1989).

A . Bethke, "Genetic Algorithms as Function Optimizers," (Doctoral Dissertation, The
University of Michigan) Dissertation Abstracts International 4 1(9) 3503B (1988) .

J. Buchanan, and C. Stubblebine, "Externality," Economica, (Nov. 1962) 371-384

D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, (Ad­
dison Wesley, Reading M A 1 989) .

D . Goldberg, "Construction of High-order Deceptive Functions Using Low-order Walsh
Coefficients," (IlliGAL Report no. 90002, Department of General Engineering, Universi ty
of Illinois 1 990) .

·

J. Greffenstette, and J. Baker, "How Genetic Algorithms Work: A Cri t ical Look at
Implicit Parallel ism," in Proceedings of the Third International Conference on Genetic
Algorithms edited by J. Schaffer, (Morgan Kauffman 1 989)

J. Hol land , Adaptation in Natural and Artificial Systems, (University of Michigan Press,
Ann Arbor, MI 1 975) .

J . Hol land. and J . l\1i l ler, "Artificial Adaptive Agents i n Economic Theory" , (Proceedings
of the American Economic Association 1 991)

J. Hol land. K. Holyoak, R . Nisbett, and P. Thagard, Induction: Processes of Inference,
Learning. and Discovery, (MIT Press 1 989)

S. Kauffman, "Adaptation on Rugged Fitness Landscapes," pp 527-61 9, in Lectures i n
the Sciences o f Complexity, (Addison Wesley, Reading MA. 1 989)

2·1

S. Kauffman, and S . Levin , "Towards a General Theory of Adaptive Walks on Rugged
Landscapes," Journal of Theoretical Biology, 1987 128 (1 1) .

K . Kollman, J. Miller, and S . Page, "Adaptive Parties in Spatial Elections" , American
Political Science Review, forthcoming.

G. Liepins, and M. Vose, "Representational Issues in Genetic Optimization," Journal of
Experimental and Theoretical Artificial Intelligence, 1990 2(2) , 4-30.

G . Liepins, and M. Vose, "Polynomials, Basis Sets, and Deceptiveness in Genetic A lgo­
rithms," Complex Systems , 1 991 5 (1) , 45-62.

R. Marimon , E. McGrattan, and T. Sargent , "Money as a Medium of Exchange in an
Economy with Art ificially Intelligent Agents," Journal of Economic Dynamics and Con­
trol (1 990) .

S . Page, and D . Richardson , "Walsh Functions and Schema Variance," Complex Systems,
forthcoming.

S. Page, "Publ ic ProjectS ," mimeo Cal i fornia Institute of Technology, 1 993.

S . Reiter and G. Sherman , "Discrete Optimi z ing," Journal of the Society of Industrial
and Appl ied Mathematics, 1 965 1 3 (3) .

D . Richardson , private communication 1 99 1 .

H. Simon, "The Sciences of the Artificial ," M IT Press, Cambridge M A 1 969.

2.5

Table 1
Average Number of Bits Switched

100 Trials

Genetic Algorithm with Uniform Crossover and Tournament Selection

VJ. (s) = s1 + s2 + . . Sn V2(s) = 10
Number of Number of

Generation Bits Switched Bits Switched
1 6 .89 7 .09
2 5.96 6 .72
3 5.23 6.28
4 3.91 6 .55
5 2.78 6 . 18
6 1 . 75 6 .01
7 1 .02 5.82
8 0 .80 5.51
9 0 .74 5.56
1 0 0 .76 4 .95
1 1 0 .62 5 . 18
12 0 .60 4 .70
1 3 0 .51 4 .88
14 0.52 4 .61
15 0 .54 4 .05
16 0 .64 4 .55
1 7 0 .62 4 .50
1 8 0.4.5 4 . 35
19 0 .43 3 .85
20 o . . 52 3 .94

pmut = 0 .05 pcross = 0 . . 5

26

