A Caltech Library Service

The 3d Stress-Tensor Bootstrap

Dymarsky, Anatoly and Kos, Filip and Kravchuk, Petr and Poland, David and Simmons-Duffin, David (2018) The 3d Stress-Tensor Bootstrap. Journal of High Energy Physics, 2018 (2). Art. No. 164. ISSN 1126-6708. doi:10.1007/JHEP02(2018)164.

[img] PDF - Published Version
Creative Commons Attribution.

[img] PDF - Submitted Version
See Usage Policy.


Use this Persistent URL to link to this item:


We study the conformal bootstrap for 4-point functions of stress tensors in parity-preserving 3d CFTs. To set up the bootstrap equations, we analyze the constraints of conformal symmetry, permutation symmetry, and conservation on the stress-tensor 4-point function and identify a non-redundant set of crossing equations. Studying these equations numerically using semidefinite optimization, we compute bounds on the central charge as a function of the independent coefficient in the stress-tensor 3-point function. With no additional assumptions, these bounds numerically reproduce the conformal collider bounds and give a general lower bound on the central charge. We also study the effect of gaps in the scalar, spin-2, and spin-4 spectra on the central charge bound. We find general upper bounds on these gaps as well as tighter restrictions on the stress-tensor 3-point function coefficients for theories with moderate gaps. When the gap for the leading scalar or spin-2 operator is sufficiently large to exclude large N theories, we also obtain upper bounds on the central charge, thus finding compact allowed regions. Finally, assuming the known low-lying spectrum and central charge of the critical 3d Ising model, we determine its stress-tensor 3-point function and derive a bound on its leading parity-odd scalar.

Item Type:Article
Related URLs:
URLURL TypeDescription Paper
Dymarsky, Anatoly0000-0001-5762-6774
Kos, Filip0000-0001-7332-1655
Kravchuk, Petr0000-0003-0977-3686
Poland, David0000-0003-3854-2430
Simmons-Duffin, David0000-0002-2937-9515
Additional Information:© 2018 The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. Article funded by SCOAP3. Received: December 8, 2017; Accepted: February 11, 2018; Published: February 27, 2018. We are grateful to Clay Córdova, Daliang Li, David Meltzer, João Penedones, Eric Perlmutter, Slava Rychkov, Marco Serone, Emilio Trevisani, Alessandro Vichi, and Alexander Zhiboedov for discussions. We also thank Revant Nayar for collaboration in the initial stages of this work. Many thanks to the organizers and participants of the bootstrap collaboration workshops at Yale, Princeton, and ICTP São Paulo where part of this work was completed. AD is supported by NSF grant PHY-1720374. DSD is supported by DOE grant DE-SC0009988, a William D. Loughlin Membership at the Institute for Advanced Study, and Simons Foundation grant 488657 (Simons Collaboration on the Nonperturbative Bootstrap). PK is supported by DOE grant DE-SC0011632. DP is supported by NSF grant PHY-1350180 and Simons Foundation grant 488651. The computations in this paper were run on the Omega and Grace computing clusters supported by the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center, on the Hyperion computing cluster supported by the School of Natural Sciences Computing Staff at the Institute for Advanced Study and on the computing clusters of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Group:Walter Burke Institute for Theoretical Physics
Funding AgencyGrant Number
Department of Energy (DOE)DE-SC0009988
Institute for Advanced StudyUNSPECIFIED
Simons Foundation488657
Department of Energy (DOE)DE-SC0011632
Simons Foundation488651
Department of Energy (DOE)DE-AC02-05CH11231
Subject Keywords:Conformal Field Theory; AdS-CFT Correspondence; Conformal and W Symmetry; Field Theories in Higher Dimensions
Other Numbering System:
Other Numbering System NameOther Numbering System ID
Issue or Number:2
Record Number:CaltechAUTHORS:20170824-150317944
Persistent URL:
Official Citation:Dymarsky, A., Kos, F., Kravchuk, P. et al. J. High Energ. Phys. (2018) 2018: 164.
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:80773
Deposited By: Joy Painter
Deposited On:24 Aug 2017 23:15
Last Modified:15 Nov 2021 19:38

Repository Staff Only: item control page