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Singular value decomposition of the velocity-reflector
depth tradeoff, Part 1: Introduction using a two-parameter model

Christof Stork*

ABSTRACT

A singular value decomposition (SVD) of a two-
parameter model serves to introduce several charac-
teristics of a raypath inversion of the standard reflec-
tion seismology recording geometry. Two important
families of eigenvectors consist of constructive inter-
ference and destructive interference of velocity and
reflector depth. The eigenvalue that corresponds to the
velocity-reflector depth destructive interference is
very sensitive to the maximum ray angle in the data.
For a cable length equal to twice the reflector depth,
the theoretical linear resolution is quite high. The
relative weighting between velocity and reflector
depth is not critical so long as the weight is near 1.0.

INTRODUCTION

The accurate resolution of reflector depth is an important
objective of seismic data processing. Relative depths help
geoscientists map structural shapes and determine optimum
well locations. Absolute depths aid engineers in the drilling
of wells.

Determining reflector depths from seismic data requires
that the reflection time be converted to depth using the
seismic wave velocity of the subsurface. In the absence of
sufficient velocity information from nearby well measure-
ments or geologic data, seismic data are used to determine
the velocities.

A common practice for determining velocities from seis-
mic data is common mid-point (CMP) stacking semblance
analysis (Taner and Kohler, 1969). This approach is valid
when the velocity field is laterally invariant over the width of
the CMP gather.

Velocity analysis methods that address laterally variable
velocity fields are currently under development (Bishop et
al., 1985; Tarantola, 1986; Bording et al., 1987; Mora, 1987;

Kennett et al., 1988; Stork and Clayton, 1991; Williamson,
1986; Sword, 1987; Fowler, 1988; Van Trier, 1990; Biondi,
1990; Etgen, 1990; van der Made, 1988; Sherwood et al.,
1986; Julien et al., 1988). These procedures generally involve
unraveling the signature from the velocity variations in data
collected from different view angles through the field of
interest. The unraveling is an inversion process that is
sometimes called tomography.

A singular value decomposition (SVD) of the seismic
reflection experiment can give insight into the resolution
characteristics of the linear aspects of velocity analysis
methods and the corresponding reflector resolution. SVDs
with this objective are performed by Bube and Resnik
(1984), Bishop et al. (1985). and in Part 2 of this paper. A
similar approach was taken in Wiggins, Larner, and Wisecup
(1976) to analyze the resolution of surface consistent reflec-
tion statics. Bickel (1990) and Toldi (1985) analyze the
ambiguity between reflector depth and velocity for stacking
velocities in the presence of velocity variations.

In this paper, I analyze the SVD of only a two-parameter
model. This model, shown in Figure 1, contains a constant
velocity and a flat reflector. It is illuminated by one CMP
gather. The analysis of this model serves to introduce the
SVD method, demonstrate two types of eigenvectors that
represent important families of the more general multiparam-
eter SVD, and describe relative weighting of parameters
with different dimensionality.

We are especially interested in the ambiguity between
velocity and reflector depth variations. With only vertical
raypaths, velocity can be adjusted to compensate for a
change of reflector depth. As a result, there is no net effect
on the data and a complete ambiguity between velocity and
reflector depth exists. However, with additional rays at
different azimuths, this ambiguity becomes resolvable.

The results show, for a maximum offset equal to twice the
reflector depth (maximum ray angle = 45 degrees), the
velocity reflector depth ambiguity corresponds to an eigen-
value of 0.10. This value indicates that the theoretical
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reflector depth resolution is approximately one tenth the
resolution of the data times the square root of the data
redundancy.

SETTING UP THE MATRIX FOR SVD

For the two-parameter model shown in Figure 1, consist-
ing of a slowness variation As and reflector depth variation
Ad the traveltime deviation of the kth ray At, is expressed
as:

d
Atg =As 2 ——

+ Ad-2-cos (0;) s
cos (04) (80)

+ O(As - Ad, As?, Ad%, -+ 9), (1a)

where

d = the depth of the reflector, and
0, = the angle from vertical of the kth ray.

We analyze only the linear problem and thus ignore the
higher order terms of As and Ad. Equation (1a) is rewritten

sAd
Aty =cos (8,) 7" (2-dAs) +cos (8g)+w-|2-—],
w

(1b)

where w is a weighting factor for relating the reflector
component to the velocity component. The terms in brackets
are now in units of two-way traveltime, which will be the
parameters used in the SVD analysis. Converting the eigen-
vectors back to their physical meaning will require taking
into account the physical dimensions of the model. In matrix
notation, this equation is

slowness, s

reflector depth, d \}

At = A + Ad<2:cos(0)-s

g.—d
=2 cos(8)
= 2:(cos(8)) - (dAs) + 2-cos(B) (sAd)

FiG. 1. Two-parameter model used for singular value decom-
position (SVD). The model consists of a flat reflector at a
depth d and a constant slowness s. The model is illuminated
by a common midpoint (CMP) gather with maximum ray
angle, ®. The traveltime variations of rays are proportional
to the cosine of the angle for reflector depth perturbations
but proportional to the inverse of the cosine of the angle for
slowness perturbations.
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At = LAs (1¢)
where
2-dAs
As = sAdj,
w
Aty
At = |Aty],

Ly = cos (Gk)", and
Ly = w - cos ().

The equation demonstrates that the resolution between
velocity variations and reflector variations results from the
path length of a ray through the velocity media being
proportional to the inverse of the cosine of its angle from
vertical, while the effect of the reflector depth is proportional
to the cosine of this angle.

Data collected in this model are a ray set ranging in equal
offset increments from vertical to some maximum angle
0 max» Which approximates one CMP gather of a reflection
survey.

The forward problem is set up according to Stork and
Clayton (1991) by applying the weights D and § to equation
(1c):

Dl/zAt - (DI/ZLSI/Z)(S—I/ZAS)’ (1d)
where

h

S&,l = > cos (64) ~! for the slowness cell; and
k=1

n

S;'= 3 w:cos (8;) for the reflector cell;
k=1

= (w-cos (8;) + cos (8,) """

S
[

The square root of a diagonal matrix is defined as the matrix
of the square root of its elements. We rewrite equation (1d)

d=A" m, (1e)
where
d= I)l/zAt
A= Dl/stl/z’ and
m =S "As.

The weights D and S set the maximum eigenvalue of the A
matrix to 1.0 and help correct for heterogeneous ray cover-
age (Stork and Clayton, 1991).

We seek the SVD (Lanczos, 1961) of the matrix A.
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SVD OF MATRIX A

We first compute the model eigenvectors by:
ATAZSWLTQLSm:YTAZY (2a)

where
= the matrix of model space eigenvectors, and
the diagonal matrix of the eigenvalues.

1o 1
Il

ATA is computed in the Appendix.
Using the results of the Appendix, when 0,,, = 45
degrees:

S¢' = 1.15 - » for the slowness cell, and
0.88 - n - w for the reflector cell,

w
=)
I

where

n = the number of rays in the CMP gather used to
illuminate the model.

We chose w = 1.15/0.88 = 1.31 so that §;; is the same for
both the reflector cell and the slowness cell. This produces:

0.5057 0.4943
ATA =

0.4943 0.5057|

The eigenvalues and eigenvectors of this matrix are:

First eigenvector: (V0.5, V0.5)

first eigenvalue = 1.000,

Second eigenvector: (V0.5, -\/R)

second eigenvalue = 0.01147,

These eigenvalues are the square of the eigenvalues of A.
The final eigenvalues (square roots) are (1.000, 0.107).

The first eigenvector corresponds to the constructive
interference of traveltime from slowness and reflector depth.
This eigenvector adjusts the velocity and reflector depth by
equal amounts to match the two-way traveltime of the data.
The second eigenvector corresponds to the destructive in-
terference between slowness and reflector, or the velocity-
reflector depth ambiguity. It has the smaller eigenvalue,

Data space eigenvectors corresponding to these eigenval-
ues are computed using

DWLTSLD”Z — AAT: UT Uv (23)

where

U = the matrix of the data space eigenvectors.

Figure 2 shows the data space eigenvectors corresponding
to these model space eigenvectors. These eigenvectors were
derived numerically with the algorithm of Golub and Reinsch
(1970) using one CMP gather with 50 offsets. The first data
space eigenvector is essentially the average of the travel-
times in the data set corresponding to the constructive

interference of slowness and reflector depth. The second
data space eigenvector is the variation with offset of the data
that i1s used to resolve the second eigenvector. The second
eigenvector relates the hyperbolic moveout of the data to the
correct reflector depth and velocity.

The magnitude of the eigenvalue of the second eigenvector
is a measure of the resolution of the reflector depth. It is
plotted as a function of the maximum ray coverage in the
two-parameter model in Figure 3. As could be expected, the
eigenvalue is a strong function of the maximum angle avail-
able, ranging from 0.1 at 45 degrees to 0.04 at 30 degrees.
When accurate resolution of reflector depth is important,
getting as much angular coverage as possible is vital.

RELATIVE WEIGHTING OF VELOCITY AND REFLECTOR
DEPTH

The factor w determines the weighting between the veloc-
ity and the reflector. Earlier, a value of 1.31 was used for w
to equally weight velocity and reflector. Had a different
value for w been chosen, say w = 0.1, the A matrix and its
eigenvalues and eigenvectors would change to:
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Fig. 2. The two data space eigenvectors of the two-param-
eter model with nonzero eigenvalues. The upper eigenvector
has an eigenvalue of 1.0 and corresponds to the model space
eigenvector (1.0, 1.0). The lower eigenvector has an eigen-
value of 0.1 (for ®,,,, = 45 degrees) and corresponds to the
mode! space eigenvector (1.0, —1.0).
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0.9284 0.2566
SI/ZLTD,_LS 172 =n-

2566 0.0741

The eigenvectors and eigenvalues of this matrix are:
First eigenvector: (0.963, 0.269) eigenvalue = 1.000,
Second eigenvector: (0.269, —0.963)

eigenvalue = 0.00297.

The square roots of these eigenvalues are (1.000, 0.054).

The eigenvectors are now unbalanced: the first one has a
greater velocity component. This imbalance will bias the inver-
sion toward placing traveltime deviations into slowness varia-
tions, a process observed in Stork (1988). The eigenvalue has
also decreased as a result of unbalanced weighting. This
effect is analyzed in Figure 4, where the magnitude of the
smaller eigenvalue is plotted as a function of the factor w.
The plot demonstrates that velocity-reflector depth ambigu-
ity has the largest eigenvalue when the weight is about 1.3
for a vertical ray, which will produce an equal net weight for
the reflector and velocity. The optimal weight is slightly
greater than 1.0 to compensate for the rays off vertical,
which are affected more by velocity variations and less by
reflector depth variations.

The eigenvalue is not very sensitive to the relative weight-
ing. As long as the weighting is close to equal, this parameter
should not be a serious concern.

However, some proposed inversion methods for reflection
tomography that do not take care with the weighting have
effective weighting of less than 0.1.

VARIANCE ANALYSIS OF THE TWO-PARAMETER MODEL

Model resolution can be related to data resolution using
the eigenvalue of the velocity-reflector depth ambiguity.

The covariance matrices of model and data are related by
(Aki and Richards, 1980):

0.2 4
[
-]
' 0.1-
[~}
()]
B
=
0.0 T T T T 1 T T T T L 1
0° 15° 30° 45° 60°

Maximum Ray Angle

Fic. 3. The dependence of the smaller eigenvalue on the
maximum ray angle of the CMP gather. The smaller eigen-
value is a description of how well ambiguous velocity and
reflector depths can be resolved. The eigenvalue is a strong
function of the maximum ray angle.

(87285857871 = 0 DYA TNV,
where

As = the model vector consisting of a slowness parameter
and reflector depth parameter, and
o = the variance of the data, At.

Using the results from the two-parameter model analysis for
Omax = 45 degrees and w = 1.31, gives us

1 1
AsAsTy = — - g2 VA 2YT. ,
¢ ) =33 CAYATY e
where
| P D WL W
YA*ZYT =5 -2 -2 -2 -2
A P VR VL
442 —43.2
-432 442!

By substituting and rearranging

16.6 -16.3] 1
(AsAsT) = o}, - .-
-16.3 16.61 n

It is clear that the variance is dominated by the smaller
eigenvalue,

The lower right entry of the matrix is the covariance of
the reflector depth in two-way traveltime. Its resolution
(Vvariance = resolution) is approximated by:

0.08 4
0.07
0.06

0086

Eigenvalue

0.04

0.034{

T T

—
0.1 1.0 10.

Weight factor w: weight of refiector cell
relative to velocity cell for a vertical ray.

Fic. 4. The dependence of the smaller eigenvalue on the
weight of the reflector parameter relative to the velocity
parameter for a vertical ray. This is factor w used in the text.
The smaller eigenvalue is not a strong function of the
reflector weight so long that the weight is near 1.0.
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4.0

ASrefiector = =" T s>
Va

or

Va2 + a2 -

min
0‘ ==

— —_ — 0 .
V53-Vn Y 23 Ve M

A maximum ray angle of 45 degrees, a data resolution of
4 ms, and 100 independent data points should resolve a
reflector depth to 3 ms, which is about 10 ft (3m) in 7000 ft/s
(213 m/s) media. Resolution for other maximum ray angles
will be proportional to the inverse of the eigenvalue for the
slowness-reflector depth ambiguity. The predicted linear
resolution of this variance analysis of the velocity-reflector
depth ambiguity is theoretically quite high.

ASrefiector =

CONCLUSION

This analysis demonstrates that potential exists in the raw
data for highly accurate resolution of reflector depth. How-
ever, other aspects, such as laterally variant velocities,
anisotropy, three dimensionality, inelasticity, edge effects,
and nonlinearities are probably more serious factors than
data accuracy for velocity analysis.
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APPENDIX
NUMERICAL COMPUTATION OF EQUATION (2a)

The summations

n
Seo = > cos (8,) ",
k=1

n
Si'= > w-cos (8;),
k=1

and

n

(L'™DL); = > € - Dy - €y
k=0

are converted to integrals using the relationship

" hmax
D gwk):f dh+ g(0 () - ——,
A h

k=1 =0 max

where A is the offset corresponding to a ray with angle 6 and
n is the number of rays in a CMP gather.
A change of variables converts offset coordinates to angle

coordinates:
0(h) - h
= t -
h an 7

de dh

cos? (0) d

)
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where d is the depth to the reflector. Since we simulate a

cable length equal to the reflector depth A, = d.
The resulting integral for the reflector cell is

h max

h
;! =f " dh - w - cos (8 (h)) -
h=0
d

9 max P max n
=w- de - .
0=0 cos (8) tan (8pay)

n
=——w
tan (8pax)

+ tan (0pay) |-

In |——
€08 (B max)

The integral for the slowness cell is

S_l _ hmax dh . n _ emax d9
=00 neo €08 (0(R) hmax Jyo, cos’(0)

n n tan (8 max)
tan (0max) " tan (Omax) \2°co0s (Bpax)
: 1 ! 9
4+ —«Iln |—— + tan .
2 €08 (0max) ma)

cos (8 (k)2 dh n

T _ hmax .
(L L)oo = fh wecos (0 (h)) +cos (0(h)™" hpax

=0

j‘emax cos (8) 73 do n
0

g W*cos 0)2+1 .tan (0 max)”

Stork

dh

n

T _ hmax
L'L)gy =w- f w - cos (8 (h)) + cos (8 (h)) !

wecos (0)2+ 1 tan (8p,y)

®max COS (8) 7 Tdo n
- J .

cos (8(h))2 dh

h max

n

L)y,

cos (0) do n

These integrals can be determined numerically.
For 0,,, = 45 degrees:

S;;' =0.88n-w for the reflector cell

Sifl = 1.15 - n for the slowness cell
and for w = 1.31:
0.5816 0.5684
L'DL=n- :
0.5684 0.5816

Combining the results produces our AT A matrix:

0.5057 0.4943
SI/ZL TD..];‘SHZ =p- .
0.4943 0.5057

wz hmax
oo Wrcos(8(h) +cos(O() ™" h

2 9max
woe 2 :
g W-cos(8)°+ 1tan(8puy)

max



