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Contracting Theory with Coincidence of Interest 

John Duggan

Abstract 

In the standard models of principal-agent theory, the relationship between the prin­
cipal and agent is adversarial in the sense that the objective of the agent is to maximize
monetary income and minimize effort without regard for the objectives of the princi­
pal. In the real world, however, agents often have a personal stake in their contractual
responsibilities. Furthermore, standard approaches to optimal contracting involve ex­
plicit monetary transfers, thereby excluding from analysis the case of non-profit agents.
This paper presents a contracting model-the cooperative model-distinguished from
standard models by the following three properties: first, the principal contracts with
a non-profit agent for the provision of some commodity; second, the interests of the
principal and agent coincide to the extent that their utilities are both increasing in the
quality of the commodity provided; third, using a suitable reformulation of the standard
moral hazard variable, the optimal contract for the case of quasi-linear preferences has
an extremely simple form. 

After the cooperative model is formalized, cost-plus and fixed price contracting are
defined and compared, the form of the optimal contract is determined for the case of
quasi-linear preferences, the suboptimality of cost-plus and fixed price contracting is
demonstrated, and the possibility of decentralizing the optimal contract through a menu
of linear contracts is explored. Finally, a standard model-the adversarial model-is
presented for the purposes of comparison, along with a general model which subsumes
both models as -;;pec-ial ooses. ·· Btarting with �the·-adve!'sar·ial made! ·an<l altering it in
each of the three ways outlined above, it is possible to trace the ramifications of the
assumptions underlying the cooperative model. 



Contracting Theory with Coincidence of Interest 

John Duggan 

The distinguishing mark of principal-agent theory is its recognition of asymmetric 
information across economic actors. The principal cannot expect an agent to carry out 
the terms of an unenforceable contract, because the interests of the agent may diverge 
from those of the principal. This possibility is exploited to its fullest in the standard 
principal-agent models, which assume that the objective of the agent is to maximize 
his monetary gains and minimize the effort expended to achieve those gains. While 
this assumption is useful for revealing the inadequacies of full information economics 
in a world of asymmetric information, it is clearly an exaggeration of most real world 
contracting problems. In the labor market, workers are not typically as opportunistic as 
the agents of principal-agent theory: for example, a typical college professor is anything 
but an effort minimizer, but rather he has a personal stake in the outcome of his research 
or the advancement of his students; likewise, an auto mechanic surely has an interest in 
cars beyond the inducement of his paycheck. There is an abundance of such examples, a 
consequence of the fact that workers choose their vocation, and they are likely to choose 
a field which offers them some personal gratification. 

In addition to the assumption of divergent interests, the contracts of standard principal­
agent models involve the explicit transfer of money to the agent, precluding the possibility 
that the agent is a non-profit organization. Using a suitable reformulation of the stan­
dard moral hazard variable, this paper presents a model in which the principal contracts 
with a non-profit agent to provide some commodity and in which the interests of the 
principal and agent coincide to the extent that their utilities are both increasing in the 
quality of the commodity. Section 1 presents the details of the model with coincidence 
of interest-the cooperative model_:large!y motivated by a contracting problem of Jet 
Propulsion Labs (JPL), a NASA center for space exploration under the auspices of Cal­
tech. It is not uncommon for JPL to contract with scientists outside the organization 
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for the design and construction of science instruments to be flown on unmanned inter­
planetary spacecraft. While the scientists certainly care about the quality (or technology 
level) of the instrument they produce, they may have other interests which lead them to 
misallocate JPL funds in unobservable ways, resulting in an instrument of lower technical 
capability. In Section 2, cost-plus and fixed price contracting are defined and conditions 
are found under which fixed price contracting is preferred by the principal to cost-plus 
contracting. In Section 3, the optimal contracting problem is posed, the solution is char­
acterized for the case of quasi-linear preferences, and the suboptimality of cost-plus and 
fixed price contracting is demonstrated. It is seen that the reformulation of the moral 
hazard variable not only leads to difficulties in the characterization of the incentive com­
patibility constraint, but also leads to an extremely simple form for the optimal contract. 
Section 4 explores the possibility of decentralizing the optimal contract through a menu 
of linear contracts. In Section 5, a standard model-the adversarial model-is is adapted 
from a model of procurement due to Laffont and Tirole [5], and in the context of a gen­
eral model which subsumes both models as special cases, several modifications of the 
adversarial model are made in a way which traces the ramifications of the assumptions 
underlying the cooperative model. 

1 The Cooperative Model 

The contracting problem is modelled as a four period game of asymmetric information, 
in which the principal contracts with a non-profit agent for the provision of some good 
or service. In the first period, the principal offers the agent a menu of contracts, each 
of which specifies both a level of quality Q E �+ of the commodity and a level of total 
cost; in the second period, the agent selects from the menu a contract which will in part 
determine the constraints of his third period maximization problem; in the third period, 
the agent chooses a level of quality Q and the level of a moral hazard variable m E �+ 
representing an amount of misallocated funds; and in the fourth period, the principal 
reimburses the agent for his costs, or if he has observed a breach of contract then the 
principal costlessly sues the agent, inflicting infinitely large costs.1 Although only the 
first and third periods of the game are of analytical interest, the second and fourth are 
mentioned for the sake of completeness. 

The principal's preferences are given by a twice continuously differentiable von Neumann­
Morgenstern utility function U : �� --> � with extended real values over the quality Q 
of the commodity and the total amount B to be paid to the agent, which might in turn 
depend on the values of the agent's choice variables. Furthermore, the principal's utility 
is assumed to satisfy 

UQ > 0, UB < 0, UQQ < 0, UQB :<; 0, UBB :<; 0, U(O, 0) = -oo, 

1 Alternatively, Q can be interpreted as the quantity of some homogeneous good supplied by the agent. 
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where subscripts denote partial derivatives, as well as the Inada conditions 

T T Q-o T T Q--+oo B-+0 B-+oo 
UQ ---+ oo, UQ ---+ 0, UB ---+ 0, UB ---+ -oo, 

where Q = 0 represents the state in which the commodity is not provided. The agent's 
preferences are given by a twice continuously differentiable von Neumann-Morgenstern 
utility function V : iR! --+ iR over the quality Q of the commodity and the level of 
misallocated funds m. The agent's utility is also assumed to satisfy. 

VQ > o, Vm > o, VQQ < 0, VQm 2: 0, Vmm � 0, 

as well as the Inada condition Q�o 
VQ---+ oo. 

In other words, both the principal and the agent are risk averse in quality Q, and they 
are not risk loving with respect to the budget B and the level of misallocated funds 
m, respectively; the assumptions on cross partials are made in order to sign certain 
comparative statics, and are more general than the common assumption of additive 
separability; the Inada conditions are used to guarantee interior solutions to problems of 
the principal and agent; and the assumption that U(O, 0) = -oo is used to narrow the 
scope of viable cost-plus contracts. 

The agent's choice of Q and m in the third period is equivalent to the choice of 
a point on the production frontier determined by the total amount of funding B and 
the twice continuously differentiable cost function C : iR! --+ !R with functional form 
C(Q, m + ()) = C(Q) + m +(), where it is assumed that C: R+--+ R, CQ > 0, CQQ > 0, 
and () is a random variable with non-atomic distribution function F and density f with 
support on the interval 0 = [ft, OJ C R+· Since the agent is a non-profit organization, it 
is assumed that the principal will just reimburse the agent for the costs of provision, so 
that B = C(Q) + () + m. 

The information structure of the game is such that the functions U, V,C, and F are 
common knowledge to both players. Asymmetric information is introduced by the as­
sumption that the value of () is known to the agent throughout the game, while the 
the exact value of () is unknown to the principal, who only makes observations at 
the beginning of the fourth period of the quality Q of the commodity and the total 
cost C(Q, m + ()) = C(Q) + m +() of the project. That is, the principal can observe 
m + () = C(Q, m + 0) - C(Q), but he is unable to distinguish between the values of the 
two variables m and (). The value of () can be interpreted from the view of the principal 
as a random shock to the fixed cost of the project, which is known to the agent by virtue 
of his superior technical knowledge, and these possible states of nature can be interpreted 
as types of agent indexed by the realization of (). 
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Since a legally enforceable contract can involve only observable quantities, the prin­
cipal cannot require that the agent pick m = 0. 2 One possible type of legally en­
forceable contract is a point ( Q, B) E R!, specifying that the principal will transfer 
B = C( Q) + m + 0 dollars to the agent, just covering his total cost, in return for which 
the agent will provide the level of quality Q. It will be useful, however, to consider con­
tracts of the form ( Q, m + 0) E R!, which are also enforceable since the principal knows 
Q and C(Q, m + 0), and can then calculate m + 0 = C(Q, m + 0) - C(Q). Then the utility 
to the agent of type 0 S m + O' from the contract (Q, m + ()') is V( Q, m + 0' - 0), where 
m + 0' - 0 2': 0 is the highest level of m which the agent can pick without incurring a 
breach of contract suit. If, on the other hand, m + 0' - 0 < 0 then (Q, m + O') is not 
feasible for the type 0 agent, since the inequality implies that the agent's total cost of 
providing quality level Q is at least C(Q) + 0 > C(Q) + m + 0', violating the agent's 
legally binding cost target. The utility to the principal from the contract ( Q, m + 0') is 
U(Q, C(Q) + m + O'). 

The literature discerns two types of principal-agent problems stemming from asym­
metric information: moral hazard, in which the agent takes an unobservable action, and 
adverse selection, in which the agent knows the state of the world but the principal does 
not. In the cooperative model, it seems that the principal faces both moral hazard and 
adverse selection problems, for the agent not only picks the level of misallocated funds 
m, which is unobservable to the principal, but he also knows the true value of fixed 
costs 0, whereas the principal does not. It can be seen, however, that once the adverse 
selection-or, more appropriately, information revelation-problem is solved, so is the 
moral hazard problem: once the principal knows the true value of 0 he can observe m by 
calculating m = C(Q, m + 0) - C(Q) - 0. 

The adverse selection problem is just a mechanism design problem, in which the 
designer corresponds to the principal, a single participant corresponds to the agent, and 
the mechanism corresponds to a menu of contracts. As a mechanism design problem, the 
state space is R! with elements ( Q, m + 0), and a direct mechanism is a restriction of the 
message space to 0 = I�, BJ, so that a direct mechanism is a,mappjng � >---> ( Q( 9), m( O)+O). 
That is, by reporting 0, the agent selects the contract ( Q( 0), m( 0) + 0) from the proposed 
menu of contracts {(Q(O) , m(O) + O) E R!IO E 0}. A truthful revelation direct mechanism 
is one which satisfies the incentive compatibility constraint : VO,{; E 0 

V( Q( 0), m( 0) + 0) 2': V(Q(e), m(e) + {; - 0). 
Invoking the Revelation Principle, the problem of finding an optimal contract for the 
principal reduces to solving for the function ( Q, m) : 0 _, R! which maximizes his 
expected utility: 

max f U(Q(x), C(Q(x)) + m(x) + x)f(x) dx 
(Q,m) le 

2'l'he distinction is sometimes made between observation and verification, which is legally admissible 
proof of an observation. This will not be maintained here. 
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subject to incentive compatibility. 

2 Cost-plus vs. Fixed Price Contracting 

In an ideal world of complete information, cost-plus contracting is a promise by the 
principal to pay for the costs of production C( Qc) + 0 in exchange for a commodity with 
quality level Qc provided by the agent with no misallocated funds. Formally, this is 
represented by the menu of contracts {(Qc, 0) E �!IO E El}, where the first coordinate 
of a contract (Qc, O) specifies a quality level Qc of the commodity to be provided by the 
agent, the second coordinate specifies the level m + 0 of misallocated funds plus fixed 
cost permitted by the agent, and the transfer of C( Qc) + m + 0 from the principal to the 
agent is implicitly understood. In other words, the principal demands a level of quality 
and promises to cover total production costs regardless of the realization of fixed cost 0, 
but not to pay for any misallocated funds m > 0 on the part of the agent. With complete 
information the agent must report his true type, but with incomplete information such 
a contract is not legally enforceable since a type 0 < e agent will report a high level e of 
fixed cost and misallocate the difference e - 0. 

Since the principal is not able to distinguish between misallocated funds m and the 
random shock 0, an enforceable cost-plus contract must specify the same amount m + 0 
for every type of agent. The cost-plus contract (Qc, x) then demands that the agent 
provide the quality level Qc at cost C(Qc) + x. But the requirements that m 2 0 and 
0 2 0 imply that a type 0 agent can accept the contract only if 0 :S x, for even if an 
agent of type 0 > x chose m = 0 there would be no way for him to meet his legally 
binding cost target. That is, 0 > x implies C( QC) + (}  > C( QC) + x. If x < e then there 
is some set of realizations for which the resulting level of quality will be zero, but the 
condition U(O, 0) = -oo implies that the expected utility of the principal is infinitely 
negative whenever any subset of El with positive probability measure is excluded from 
participation. 

A menu of cost-plus contracts is then viable for the principal only if it excludes no 
set of agents with positive probability measure, and in fact, the object of focus in this 
section is the singleton menu of contracts { (Qc,lJ)} which excludes no type of agent. In 
this case, the principal demands the quality level Qc and reimburses agents of all types 
0 E El for costs up·to"'the·point·C'(Q) 'f'·O;·beyond�wlri-ch·anr-cost·overruns are certainly 
due to misallocation of funds. Letting me : El x �+ --+ � denote the level of misallocated 
funds chosen by an agent of type (} under cost-plus contracting with quality target Qc, 
the problem for the agent is 

max V (Qc, m ) m 

subject to the observational constraint m :S 0 - 0. Noting that the constraint will hold 
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with equality, the solution is simply 

mc(B) = 7J - B, 

where mc(B) is understood to be a function of Qc. It follows that VB E 0 C(Q ) + m +B = 
C( Q)+ 7J, so the principal knows with certainty what the total cost, including misallocated 
funds, will be. Recalling that the principal must exactly reimburse the agent for the cost 
of the project, the cost-plus budget Be is given by Be = C( Qc) + 7J, <fnd .the principal's 
problem is then 

maxU(Q, C(Q) + 7J), Q 

which under the Inada assumptions has an interior solution Qc  given by the first order 
condition Uq = -UBCQ, and since 

Uqq + 2UqBCQ + UBBCQ + UBCQQ < 0, 
it follows that Qc  is unique. 

Ideally, fixed price contracting is the transfer of a fixed budget Bf from the principal 
to the agent with no restrictions on the level of misallocated funds chosen by the agent. 
Under fixed price contracting, the agent has a fixed budget and misallocated funds are 
diverted from the provision of quality, facing the agent with a trade off. This is not the 
case for the cost-plus contract ( Q c, 7J), which binds the principal to cover the cost of the 
commodity with quality level Q c  regardless of the realization of fixed cost, allowing the 
agent of type (} < 7J to pick a level of misallocated funds mc(B) = 7J - (} > 0 without 
any effect on the resulting quality level. The advantage of fixed price contracting is that 
if the preferences of the agent of type (} are close enough to those of the principal then 
the agent will pick a level of misallocated funds ml < me, and if this is true of a big 
enough subset of 0 then the principal can expect a lower level of misallocated funds 
under fixed-price contracting than cost-plus and a higher level of quality Qf. 

Letting Qf : e x �+ -t � denote the level of quality and ml : 0 x �+ -t � denote 
the level of misallocated funds chosen by an agent of type (}given a fixed budget Bf, the 
agent's fixed price problem is 

subject to 

max V(Q, m) Q,m 

C(Q) + m + B  < Bf 
Q, m > 0. 

Since Uq > 0 and Cq > 0, the first constraint will hold with equality, and the problem 
becomes 

max V(Q, Bf - C(Q) - B), 
Q 
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subject to 
Bf - C(Q) - 0?:_0, 

where the constraint Q ?:_ 0 is dropped since Q > 0 is guaranteed by the Inada condition 
on V. The Kuhn-Tucker condition for the agent's fixed price problem is 

where the multiplier A satisfies the complementary slackness conditions , 

.A?:_ O, Bf - C(Qf) - () ?:_ O, .\(Bf - C(Qf) - 0) = 0. 

Then the solutions to the agent's problem are 

Qi Qi (0, Bf) 
ml ml((), Bf)= B - C(Qf(O, Bf)) - 0. 

When ml((), Bf)= 0 it follows that Bf - C(Qf) - () - 0, so 
1 Qt = -- <0 Cq 

mt -CqQt - 1 = 0, 

and when mf((), Bf) > 0 if follows that .A= 0, so 

Vq - VmCQ = 0, 

with the following comparative statics: 

mf B 

Vqq - VqmCQ - VmCQQ - Cq VQm + CQ Vmm 
-CQQt - 1. 

In particular, Qt :S 0 and mt + 1 ?:_ 0. For the analysis to follow, the details of the 
principal's solution for the optimal fixed budget Bf are unnecessary. 

Just as cost-plus contracting is represented by a singleton subset of )R�, where one 
dimension specifies a quality level and the other specifies a level of misallocated funds 
plus fixed cost, fixed price contracting with budget Bf is represented by the menu of 
contracts {(Qf((), Bf), ml((), Bf) + 0) E )R�IO E 0}. This set looks something like the 
one-dimensional path in Figure 1, where the rate of change with respect to () is given 
by the directional derivative (Qt, mt + 1) =(Qt, -CqQt). The path is pictured sloping 
downward because Qt < 0 implies that the slope of the path as a function of m + () is 
-Qt/CQQt = - l/CQ < 0, while 

[Figure 1 about here. J 
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Qt = 0 implies that ml ( 0, Bf) + 0 is constant. Therefore, the path representing the 
fixed price contract with budget Bf is indeed decreasing. 

The results presented in this section attempt to formalize what are intuitively obvious 
conditions under which the principal will prefer the optimal menu of fixed price contracts 
to the optimal cost-plus contract. The optimal cost-plus contract (Qc, 7J) is compared 
with a menu of fixed price contracts given by the fixed budget Be = C( Qc) + 7J in 
order to find conditions which guarantee that E[Qf(O, Be)] > Qc; That is, under fixed 
price contracting the agent is budgeted exactly what would have been spent under the 
optimal cost-plus contract . When it is the case that E[Qf(O, Bc)] > Qc, there is an 
additional condition regarding the risk aversion of the principal which ensures that the 
expected utility of the principal is actually higher with the menu of fixed price contracts 
{ ( Qf (0, Be) , ml (0, Be) + 0) E !R! IO E 0} than the optimal cost-plus menu { ( Qc, Be)}. Of 
course, the menu of fixed price contracts with budget Be is not necessarily the optimal 
fixed price menu, and in general, the principal will do even better if he allocates the 
optimal fixed budget Bf. 

Before comparing cost-plus and fixed price contracting, however, it is of some interest 
to consider a menu of restricted fixed price contracts after appending the observational 
constraint m + 0 :::; 7J to a menu of true fixed price contracts. Under a true fixed price 
contract , the agent is allowed to pick a level of misallocated funds so high that ml ( 0 ,  Bi)+ 
0 > 7J, clearly informing the principal that ml ( 0, Bf) > 0, since he observes total cost 
C( Qf ( 0 ,  Bf)) + ml ( 0, Bf) +  0 and the quality level Qf ( 0, Bf). But there is no reason why 
the principal cannot offer the agent a menu of restricted fixed price contracts given by a 
fixed budget Br, which the agent is free to spend in any way subject to the constraint 
that mr(O, Br) + 0 :::; 7J, where mr(O, Br) is the level of misallocated funds chosen by 
the agent under restricted fixed price contracting. Letting Qr ( 0 ,  Br) denote the level 
of quality chosen by an agent of type 0 under the restricted fixed price contract, the 
following result is immediate. 

Proposition 1 VO E 0 U(Qr(O, Br), Br) 2 U(Qc, Bc). 

Proof: Let Be = C( Qc) + 7J, noting that this is not necessarily the optimal budget under 
restricted fixed price contracting. We then have VO E 0 

C(Qr(O, Be)) + mr(O, Be) +  0 = C(Qc) + 7J, 

since agents of all types will spend all of the budget allotted to them, whether on quality or 
misallocated funds. And since all types of agent must satisfy the observational constraint 
mr(O, Be) + 0 :::; 7J under the restricted fixed price contract, it follows from the above 
equation that VB E 8 

C( Qr( 0, Be)) 2 C( Qc). 
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Since CQ > 0, we know C is invertible and c-1 preserves the above inequality. Therefore, 
VB E 0 Q'(B, Bc) ::;;>: Qc. Then since UQ > 0 it follows that VB E 0 U(Q'(IJ,Bc), Bc) ::;;>: 
U(Qc, Bc). D 

In comparing the menu of true fixed price contracts to the optimal cost-plus contract, 
there are four exogenous elements in the cooperative model which are the natural objects 
of focus: the preferences of the agent, the distribution of the random shock, the cost 
function, and the preferences of the principal. In what follows of this section, Proposition 
2 provides conditions on the agent's preferences which ensure that at least one type B of 
agent will pick a level of quality Qf ((), Be) > Qc, while Propositions 3 to 7 offer conditions 
under which the expected quality level under fixed price contracting with budget Be is 
at least as high as the level of quality Qc under the optimal cost-plus contract. The 
final proposition of the section, Proposition 8, gives a sufficient condition on the utility 
function of the principal for a higher expected level of quality to result in a higher level 
of expected utility. The next two propositions, concerning the preferences of the agent, 
express the idea discussed above that when the agent cares enough about the quality 
level of the commodity, fixed price contracting does better for the principal. The rest 
of the propositions of this section consider the fixed price contract with budget Be, and 
unless otherwise stated, Qf(B) will denote Qf((}, Be) and mf(B) will denote mf(B, Be). 

Proposition 2 lfVm(Qc, Bc-C(Qc)-fi)CQ(Qc) is low enough, or VQ(Qc, Bc-C(Qc)-fi) 
is high enough, then Qf (fi) > Qc. 

Proof: As shown in Figure 2, this follows from the first order conditions VQ = VmCQ 
of the agent's problem under fixed price contracting, and the observation that the term 
Be - C ( Qc) - fi is just the level of misallocated funds for the agent of type fi when the 
fixed budget is Be and he picks the level of technology Qc. 

[Figure 2 about here.] 

Note that under the assumptions on V and C, 

d� Vm(Q,Bc -C(:Q).-.fi)CQ(Q) (VQm =Ym-mC'Q)Cq+VmCQQ > 0 

d� VQ(Q, Bc - C(Q) - fi) = VQQ - VQmCQ < o, 

which is why the first function is drawn increasing and the second decreasing. D 
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Proposition 3 IfVm(Q',O)CQ(Q') is low enough, or ifVQ(Q',0) is high enough, then 
E[Qf] > Q'. 

Proof: Since Q: s; 0, it suffices to show Qf (iJ) > Q', and again using the first order 
conditions of the agent's problem, this is just what the antecedent of proposition entails. 
D 

The following three propositions state conditions on the distribution F of (} which 
will guarantee that E [ Qf] > Q'. The first of the three is a crude formalization-using 
a Taylor series approximation-of the intuition that when the expected value of (} is 
small then the expected value of Qf should be big. In other words, since Qf is non­
increasing in B, a smaller E[B] should correspond to a larger E[Qf]. In Propositions 4 
and 5, let B be defined not necessarily uniquely by Qf(B) = Q', and for Proposition 6, 
let b = sup{ -Q:(B)IB E 0}. 

Proposition 4 If E[B] < B then E[Qf] is approximately greater than or equal to Qc. 
Furthermore, E[Qf] is higher when E[B] -B is lower. 

Proof: Consider the first order Taylor series expansion of Qf ( B) around B: 
Qf(fJ) = Qf(B) + Q:(B)(B -B) + R(B), 

where R( B) is the remainder. Since this is true for all types of agent, we can take 
expectations, noting that Qf ( B) = Q': 

E[Qf] Q' + (E[B] -B)Q:(B) + E[R(B)] 
� QC+ (E[B] -B)Q:(B) 
> Qc, 

where the last inequality follows since Q� s; 0 and it is assumed that E[B] -B < 0. D 

Proposition 5 Suppose Qf (fl_) > Q'. If F( B) is close enough to one then E[ Qf] > Qc. 

Proof: Note that 

E[Qf] ke Qf(x)f(x) dx + Je8 Qf(x)f(x) dx 

> QcF(B)+ k8(Qf(x)-Qc)f(x)dx+Qf(iJ)(l-F(B)). 
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It then follows that E[Qf] > Qc if 

Qc F(lJ) + k0(Qf (x) -Qc)f(x) dx + Qf (lJ)(l -F(B)) > Qc, 
which is equivalent to the condition 

J/(Qf(x)-Qc}f(x)dx + Qf(lJ) > Qc. 1 -F(B) (1) 

To see that the numerator is positive, note that the continuity of Qf and the fact that 
Qf(fl) >QC imply 38 > 0 such that e:::: fl+ 8 implies Qf(B) > Qc. Moreover, since Qf 
is non-increasing, fl+ 8 < lJ. Then 

re [8+' 
JE_ (Qf(x)-Qc)f(x)dx = JE_- (Q1(x)-Qc)f(x)dx 

lae laB+o + (Qf(x)-Qc)J(x)dx 2: - (Q1(x)-Qc)f(x)dx > 0. 
ff8 E_ 

Then since the limit of the left hand term in ( 1) goes to infinity as F( 0) goes to one, the 
proposition follows. D 

Proposition 6 !JO :S: b(E[B] -fl)< Qf(fl)-Qc then E[Qf] > Qc. 

Proof: Note that 

E[Qf] k0Qf(x)f(x)dx= k
7i (Qf(fl)+ kxQ�(y)dy) f(x)dx 

Q1(fl) + k
7i (kx Q�(y) dy) f(x) dx 

> Q1(fl)- k7i (kxbdy) f(x)dx 
Q1(fl) -k

7i b(x -fl)f(x) dx 
- Qf(fl) -b(E[B] -fl) 
> Qf(fl_) _ Qf(fl) +Qc = Q'.D 

As depicted in Figure 3, Proposition 6 simply says that if Qf is bounded below by a 
function Qi (fl) -b( e -fl) and the expected vaiue of that function is greater than Q' then 
so is E[Qf]. 
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[Figure 3 about here.] 

Since ml ( 0) + 0 < 0 implies Qi ( 0) > Qc, it is natural to expect that E[mf ( 0) +OJ < 0 
implies E[Qf] > Qc. As the following proposition shows, however, this is not true 
unless the cost function is not too convex. That is, the conjecture is true only when the 
risk premium I > 0, defined by C(E[Qf] + 1) = E[C(Qf)] is small enough. Also, let 
a= c-1(C(Qc) + 0 - E[mf(O) + B]) - Qc. 

Proposition 7 E[Qf] > Qc if and only if E[mf(O) +BJ < 0 and I <  a. 

Proof: First, consider the "if" direction. Note that E[mf ( 0) +OJ < 0 implies that a > 0, 
so the conditional is not vacuously true. We know VB E 8 

which implies 
C(Qf(O)) + ml(O) + 0 = C(Qc) + 0, 

E[C(Qf)] = C(Qc) + O -E[mf(O) +OJ 

C(E[Qf] + 1) = C(Qc) + 0 - E[mf(O) +BJ 

E[Qf] = c-1(C(Qc) + 0 - E[m1(B) +BJ) -1 
= a + Qc -I > Qc' 

which is the desired result. The "only if" direction follows easily. D 

The final proposition of the section formalizes the intuition that when the principal is 
not too risk averse, a higher expected level of quality under fixed price contracting with 
budget Bc than under the optimal cost-plus contract yields the principal a higher level of 
expected utility. As discussed above, when this condition is fulfilled the expected utility 
of the principal under the optimal menu of fixed price contracts is also higher than his 
utility under the optimal cost-plus contract. Define the principal's risk premium 7r > 0 
by U(E[Qf] -71', BC) - E[U(Qf, BC)]. 

Proposition 8 If7r is low enough and E[Qf] > Qc then E[U(Qf,Bc)] > U(Qc,Bc). 

Proof: Suppose that 0 S: 7r < E[Qf] - Qc. Then 
U(Qc, Bc) = U(Qc + 7r -71', Bc) 

< U(Qc + E[Qf] _ Qc _ 1r; Bc) 
U(E[Qf] -71', Be)= E[U(Qf, Bc)].D 
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3 The Optimal Mechanism 

Now that conditions have been established under which fixed price contracting is pre­
ferred by the principal to cost-plus contracting, this section will explore the optimal 
contracting problem. Applying the techniques of control theory to find the optimal in­
centive compatible mechanism, the first half of the problem is finding a manageable form 
of the incentive compatibility constraint. This is the subject of Propositions 11 and 12, 
along with Corollary 13. In Propositions 14.and 15 the form of the·optimal incentive 
compatible mechanism is solved for in the special case of quasi-linear preferences of the 
principal and agent, while Corollaries 16 and 17 show the suboptimality of cost-plus and 
fixed price contracting. 

If there were no asymmetric information in the cooperative model, so that the principal 
observed the agent's type, the optimal mechanism would correspond to the menu of 
contracts { ( Q*( B), II) E iRt IB E e}' specifying a level of quality and a level of misallocated 
funds plus fixed cost, where Q*( 0) is the first best level of technology as a function of the 
random shock. That is, Q* ( 0) is the solution to 

maxU(Q, C(Q) + 11), 
Q 

which by the assumptions on the principal's utility function is uniquely characterized by 
the necessary first order condition 

The comparative statics of the problem yield 

Of course, the real world is not so simple, and the principal must confront the problem 
of finding the optimal menu of contracts with asymmetric information. 

Invoking the Revelation Principle, the optimal contracting problem is greatly simpli­
fied by restricting attention to incentive compatible direct mechanisms 0 >-+ (Q(O), m(O)+ 
0) with VO, iJ E 8 

V(Q.(.O), m(O) + 0) ::::: V(Q(Bj.,m(O) +o -.0). 
Furthermore, the principal's feasible set is restricted to mechanisms which are piecewise 
continuously differentiable, with two additional qualifications: Qe and me are bounded 
on 8 and me + 1 does not fluctuate too much around zero.3 Such a mechanism can be 

3 A function is piecewise continuously differentiable if it has a continuous derivative at all but a finite 
number of points, and at those points the function stiii has ieft and right derivatives. 

To see that a piecewise continuously differentiable function is not necessarily absolutely continuous� 
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represented by a graph with Q on the vertical axis and m + B on the horizontal axis. 
The indifference curves of agent types can be overlayed on the same graph by translating 
them to the right by the amount B, since for any contract (Q(B), m(B) + B) the resulting 
level of funds misallocated by an agent of type B is just m(B) + fj - B. Note that when 
agents of all types choose m = 0, the horizontal axis then also represents types B of 
agents, so the function Q* : El -> 3r can be represented on this graph, as in Figure 4. 

[Figure 4 about here.] 

This graphical insight is exemplified in the following proposition. 

Proposition 9 If Q*( B) is concave then the principal can achieve the first best if VB E El 

_ Vm(Q*(B), O) > Q*(B) VQ(Q*(B) , O) - ' . 

Proof: Consider the mechanism B >--> ( Q*( B) , B), specifying the first best level of quality 
and a level of m + B for each agent type B. This implies that m = 0 for agents of all 
types. The proposition then follows from inspection of Figure 4, and the fact that, under 
the assumptions in Section 1, the indifference contours of all agent types are convex as 
functions of m: 

D 

VQ Vmm - Vm VQm 
(VQ)2 ;:::: 0. 

The proposition implicitly uses the fact that a type 02 agent cannot imitate a type 
01 < 02 agent, for if the type 02 agent were to report Bi, there would be no way for him to 
produce the quality level Q*(Oi) at his legally binding cost target C(Q*(01)) + 01. That 
is, even if the type 02 agent picks m = 0, his cost will be C( Q*( 01)) + 02 > C( Q*( 01)) + 01• 
The proposition follows since the convexity of the agents' indifference curves ensures that 
so that it cannot necessarily be written as the integral of its derivative-consider the function f(x) = 
x2 sin(l/ x2) on the interval [O, Jii72J. Note that f is differentiable everywhere on (0, "/2), with one-sided 
derivatives at 0 and 7r/2, and/' is discontinuous only at zero, soj is_piecewise continuously differentiable. 
Furthermore, the variation off is V(f) = L;:;'=1 2/n7r = oo, and therefore f is not absolutely continuous. 
The qualification that Qe and me are bounded, along with the piecewise continuous differentiability of 
Q and m, is sufficient for the absolute continuity of Q and m. 

The second qualification is needed for the proof of Proposition 11. Letting Ac denote the set of all 
types 8 for which me ( 8) + 1 = 0 and m( 8) + 8 = c, it is required that the set { c E 1R+ IA, oft 0} be at 
most countably infinite. Since me+ 1 = 0 implies that m(8) + 8 is constant, the restriction implies that 
there is at most a countably infinite number of points c at which two or more agent types 81 and fi2 are 
pooled, in the sense that m(81) + 81 = m(82) + 82 = c. 
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it will never be in the interest of a type Iii agent to imitate a type 02 > 01 agent. This 
observation is generalized in Lemma 1, according to which a type 02 agent can successfully 
imitate a type 01 < 02 agent if and only if m( 01) + 01 :;::: 02. It follows that a type 01 
agent can always successfully imitate a type 02 > 01 agent. This leads to the following 
characterization of incentive compatibility within the context of the cooperative model. 

Proposition 10 The mechanism 0 >-+ (Q(O), m(O) + 0) is incentive compatible if and 
only if VO, iJ E 0 such that m( 0) + 0 ::: 0 

V(Q(O), m(O)):;::: V(Q(O), m(O) + 0-0). 

Proof: Incentive compatibility obviously implies this condition. Its sufficiency follows 
from the fact that this is just the definition of incentive compatibility except that it 
ignores the possibility of a type 02 agent imitating a type 01 agent when m(IJi) + 01 < 02. 
That this omission is appropriate follows from Lemma 1. D 

That is, when facing the direct mechanism 0 >-+ (Q(O), m(O) + 0), the type 0 agent 
reports as his type the solution to the problem 

m!ixV(Q(O) ,m(O) + O -0) 
8 

subject to 
o::; m(O) + o. 

The Kuhn-Tucker condition for the agent's problem is 

VQQe + Vm(me + 1) + µ(me + 1) = 0, 

where µ is the Kuhn-Tucker multiplier satisfying the complementary slackness conditions 

µ:;::: 0, 0 :5_ m(O) + 0, µ(m(O) + O - 0) = 0. 

The solution to the agent's problem is not necessarily interior with m > 0, so the first 
order conditions for an interior maximum are not necessary for incentive compatibility. 
For example, Proposition 9 shows that under certain conditions cthe first best mechanism 
is incentive compatible with VO E 0 m( 0) = 0, so that no type 02 agent can imitate a 
type 01 < 02 agent. That is, no agent of any type can falsify his reported type downward, 
so the first order conditions for an interior maximum need not hold for any type of agent. 
Although this shows that the first and second order conditions for an interior maximum 
of the agent's problem do not characterize incentive compatibility in the cooperative 

_ _  1_1 _ ,, 1 lT' ' '  , . , . 1 .  1 •  -r-. • . •  � �  � ... . i11oue1, oti11er r1ecessary ana surnc1ent cona1t1ons are aer1vec:t in .t'ropos1t1ons 11, l�, and 
Corollary 13. 
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In order to go on to characterize incentive compatibility, it will be useful to consider 
the function Q : M -> R which maps a level of misallocated funds plus fixed costs 
m( B) + B E M = [m(fl) + fl, m(B) + B] to a corresponding level of quality Q(B). Lemmata 
2 and 3 show that under the assumptions of Proposition 11 Q is in fact a function, so 
that it maps a point x EM to a single point Q(x) ER+, and that it is non-increasing. 
The former would be obviously true if m( B) + (} were invertible, but this is not the case 
when mo + 1 = 0. Note that if mo(B) + 1 f' 0 then Qx(m(B) + B) = Qo(B)/(m0(B) + 1). 
It will also be useful to distinguish between pooled and non-pooled sets: let Ac == { (} E 
e Imo( B) + 1 = 0 and m( B) + (} = c}' so that Ac is pooled at c if Ac ¥ 0. Define a point 
c ER+ to be a pooling point if Ac is a pooled set. Finally, let PA= {c E R+IAc f' 0} be 
the set of all pooling points, and note that the restrictions on m specified in footnote 3 
entail that PA is at most countably infinite. 

Proposition 11 When the agent has quasi-linear utility V(Q, m) = V(Q) + m, the 
following conditions are sufficient for incentive compatibility: VB E 8 

I Qo:::; 0 

II mo + 1 ;:=o: 0 

III VqQo + mo + 1 :::; 0 

IV m(B)(VqQo + mo +  1) = 0. 

Proof: (Appendix A) It is supposed, contrary to the proposition, that there are two 
agents, one of whom (}' is better off reporting the other's type (}" and can avoid detection 
by the principal. The proof considers two cases: (}' < (}" and (}" < B'. The second 
case admits a standard sufficiency proof, for the reason that the first order condition 
VqQo + mo +  1 = 0 must hold for all agent types between (}" and B'. 

The first case, however, requires some innovation. Roughly, it is shown that there is 
some type iJ agent between agents B' and B" such that m( iJ) + iJ is not a pooling point and 
the graph of Q is flatter than the agent's indifference curve at the point (Q(iJ), m(iJ) + iJ) .  
That is, 

J - < Q (m(iJ). iJ) = J:J�(B) 
Vq(Q(B)) x 

+ 
mo(B) + l' 

or equivalently, 
Vq ( Q( iJ) )Qo( iJ) + mo( iJ) + 1 > 0, 

contradicting (III) . 
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Proposition 12 If the utility functions of the principal and agent are quasi-linear 

U(Q, B) - U(Q) - B  
V(Q, m) V(Q) + m  

and the mapping 0 >--+ (Q(O), m(O) + 0) is an optimal incentive compatible mechanism 
then the following conditions hold: VO E 8 

I Qo ::::; 0 

II VqQo + mo +  1 = 0. 

Proof: (Appendix A) First it is supposed, contrary to the proposition, that there is 
an optimal incentive compatible mechanism (Q(O), m(O) + 0) which violates (I), so that 
30 E 8 such that Qo( 0) > 0. It is shown that this must be true for some open set 
B C 8 the image of which under Q lies either entirely above or entirely below the value 
Q, defined uniquely by Uq(Q) + Vq(Q) _ Cq(Q). In particular it must be true for some 
interval [01, 02] CB. Then it is shown that the principal does strictly better with a new 
mechanism ( Q', m' + 0) which assigns-depending on where the image of B lies-to each 
agent type in [01, 02] the contract (Q(01), m(01) + 01) or (Q(02), m(02) + 02). Then the 
original mechanism could not have been optimal. 

The proof of (II) supposes that there is an optimal incentive compatible mecha­
nism ( Q( 0), m( 0) + 0) which violates the condition. It is easily shown that incentive 
compatibility implies VqQo + m0 + 1 ::::; 0, so the supposition reduces to 30' E 8 
such that Vq(Q(O'))Qo(ll') + mo(O') + 1 < 0, or in other words, the menu of contracts 
{(Q(O), m(O) + 0) E R�IO E 8} is flatter at O' than the agent's indifference curve. Again, 
this must be true for some open set B C 8 the image of which under Q lies either en­
tirely above or entirely below the value Q*( 0) = Q*. Once this is done, it is shown that 
a 'variation' v can be added or subtracted-depending on where the image of B lies-to 
the function Q( 0) to yield a new mechanism ( Q ± v, m + 0) which does strictly better for 
the principal. Then the original mechanism could not have been optimal. 

It follows from-the-pr<.W.ious.,res11lt .that .. if...the.-11ti.lii:)'-£11nc:ti1ms .. of-the.princi pal and 
agent are quasi-linear then an optimal mechanism 0 >--+ (Q(O) , m(O) + 0) is incentive 
compatible only if Qo ::::; 0 and VqQo + mo + 1 = 0. The next result shows that these 
conditions are in fact sufficient for an optimal contract to be incentive compatible. 

voroliary 13 If the utility functions of the principal and agent are quasi-linear then 
an optimal mechanism 0 1-t (Q(O), m(O) + 0) is incentive compatible if and only if the 
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following two conditions hold: VO E E> 

Qo < 0 
VQQo + mo +  1 - 0. 

Proof: It was shown in Proposition 12 that these conditions are necessary for incentive 
compatibility, and from Proposition 11 it follows that they are sufficient if they imply 
mo + 1 2 0. From the assumptions of the proposition we have 

mo + 1 = -VQQo 2 0. 

where we use the assumption that VQ > 0. D 

It is now possible to set up the optimal contracting problem as a control theory 
problem with the necessary and sufficient conditions for incentive compatibility in Corol­
lary 13 as constraints on the instruments Q and m. These conditions are not necessary 
for incentive compatibility in general, and it may seem that they rule out too many 
mechanisms, possibly leaving only inefficient mechanisms as solutions to the problem. 
But these conditions are necessary for all optimal incentive compatible mechanisms, and 
consequently they do not rule out any such mechanism. Furthermore, a non-negativity 
constraint on m must be appended to the problem, for otherwise the solution for m in 
the control theory problem would be infinitely negative. 

The state variable of the problem will be V(8) = V(Q(8)) + m(8), which represents 
the utility to the agent of type {I when he reports his true type, and the control variable 
of the problem will be Q. Note that Q and V implicitly define the function m*(Q, V), 
which gives the level of misallocated funds m as a function of the level of quality Q and 
the type {I agent's truthful utility V. The partials of m* are 

Note also that 

m(, = -VQ 
m� 1. 

Vo = VQQo + mo, 
so the incentive-compa:tibility constraint VQQe +-mo+ }·="0-redu·ces to Vo = -1. The 
constraint Qo ::; 0 will be dropped, but it will be seen that the solution to the relaxed 
problem in fact satisfies the omitted condition. 

The control theory problem is then 
-" 

max I" [U(Q) - C(Q) - m*(Q, V) - x]f(x) dx Q 111. 
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subject to 

Vo -1 
m*(Q, V) > 0, 

with both endpoints free. The Hamiltonian of the problem is 

H = [U(Q) - C(Q) - m*(Q, V) -x)f(x)-T + 7m*, 

(2) 
(3) 

where T is the multiplier for (2) and "( is the multiplier for (3), satisfying the comple­
mentary slackness conditions 

"( ?: 0, 1m* = 0, m* ?: 0. (4) 

The maximum principle implies that a solution to the control problem must satisfy 

(Uq - Cq + Vq)f - 7Vq 0 (5) 
To - f-/, 

and the transversality conditions are r(!!.) = r(iJ) = 0. 

Lemma 6 shows that these necessary conditions imply the omitted condition Qo :'::'. 0, 
so that any solution of the relaxed problem is optimal and incentive compatible, and the 
next proposition shows that the above necessary conditions actually determine the form 
of the optimal incentive compatible mechanism. Let Q be uniquely defined by 

Uq(Q) + Vq(Q) - Cq(Q) = 0, 

and let (}* be uniquely defined by 

v-1(iJ + V(Q(iJ) ) - IJ*) - Q. 

Proposition 14 If the utility functions of the principal and agent are quasi-linear, the 
optimal incentive compatible mechanism (}>-> (Q(O), m(O) + 0) is given by 

(Q(O) (O) O) = { (V-1(V(Q(iJ) ) + 0 - 0), 0) if 0?: O* 
' m + ( Q, O*) if 0 :'::'. O*. 

Proof: (Appendix A) The result follows from Lemmata 4 through 6. 

According to Proposition 14, for the optimal incentive compatible mechanism the 
contracts of agent types () 2 ()* correspond to points on the agent's indifference curve V 
through the type 0 agent's contract (Q(O) ,O). This is graphed in Figure 5. 
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[Figure 5 about here. ] 

To see that this is the case, note that we can take V as the image of [Q(O) , Q(fl) ] 
under a continuously differentiable function into M = [m(fl) +fl, m(O) +OJ with slope 
- Vq(Q) . Then we have VO>()* 

m(O) + () - - {Q(7i) m(O) + () + }q Vq(y ) dy 

m(O) + 0 + V(Q(O) ) - V(Q(O) ) .  

Since m(O) = m(O) = 0 ,  this becomes 

O = O + V(Q(O) ) - V(Q(O) ) ,  

(6) 

and rearranging terms and inverting V, this reduces to the expression for Q in Proposition 
14. Agent types() S {)*, on the other hand, are all pooled at the point (Q, ()*) on the 
indifference curve V. 

One way to deal with the problem of two free endpoints V(!l) and V(O) is to fix one 
V(O) and consider the solution to the control theory problem with only one free endpoint. 
Since m(O) = 0, it follows that V(O) = V(Q(O) ) ,  so Vq > 0 implies that picking V(O) is 
equivalent to picking Q(O) . The principal's expected utility as a function of Q(O) is 

[U(v-'(V(Q(O) ) + 0 - ()*) - C(v-1(V(Q(O) ) + 0 - ()*)) 

-O*]F(O*) + f
8
[U(V-1(V(Q(O) ) + 0 - x))  lo· 

-C(V-'(Q(O) ) + 0 - x]J(x) dx , 

where {)* is also an implicit function of Q(O) . Then the optimal contract is the result of 
picking the optimal Q(O) . While the first order necessary conditions for this maximiza­
tion problem are complicated, a more intuitive line of reasoning establishes that Q(O) is 
bounded above by the first best level of quality Q* ( 0) = Q*, which is constant by the 
quasi-linearity of the principal's utility function. 

Proposition 15 If the utility functions of the principal and agent are quasi-linear then 
the incentive compatible. mechanism() i-,..;.(Q(il).,m(JJ) +.0.). .. is.,.optimaL.only 4 Q(O) S Q*. 

Proof: (Appendix A) It is supposed, contrary to the proposition, that there is an optimal 
incentive compatible mechanism ( Q( 0), m( 0) + 0) with endpoint Q(O) > Q*. Letting 
(Q'(O) , m'(O) + 0) denote the mechanism constructed in Proposition 14 with endpoint 
r-117'"\ ,,-.,..., • •  • 1 , ,  , . 1  1 • //'olln\ till\ , I'\\ 1 , • ,, 1 , ,  f' ,, l,!" \ 11) = l,!-, It 1s snown tnat tne mecnamsm \ l,!" \ 11), m· \ 11) -r 11) aoes stnct1y Detter ror tne 
principal, so that the original mechanism could not have been optimal. 
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An important implication of Proposition 14 is that neither cost-plus nor fixed-price 
contracting are ever optimal, as is shown in the following two corollaries. 

Corollary 16 If the utility functions of the principal and agent are quasi-linear then the 
optimal cost-plus contract ( Qc, 7J) is suboptimal. 

Proof: The optimal cost-plus contract is the solution to the problem 

max f0
(U(Q) - C(Q) - 7J)f(x) dx, Q JE_ 

which is just (Q*, 7J). This is incentive compatible, however, and since Q* < Q, it can be 
seen that it does not satisfy the conditions of Proposition 14. D 

Corollary 17 If the utility functions of the principal and agent are quasi-linear then 
the optimal menu of fixed price contracts {(Qf(O, Bf) , mf(O,Bf) + 0) E �! IO E 0}, is 
suboptimal. 

Proof: (Appendix A )  The proof considers two cases: constraint mf(O,Bf) 2': 0 may or 
may not be slack for all agent types in [fi., 7J) . In the first case, the comparative statics of 
Section 3 imply that 'efO E 0 Q£ = 0 and m: + 1 = 0, or in other words, the fixed price 
menu of contracts is the point ( Qf (7J, Bf), ml (7J, Bf) + 7J). But this is just a cost-plus 
contract, so suboptimality follows from Corollary 16. 

In the second case, it is shown that the fixed price menu of contracts is incentive 
compatible and that there is an interval [O', 7J] with O' < 7J such that 'efO E [0', 7J] Vo = 
-VQ/CQ. But this is not the case for the optimal incentive compatible contract, which 
requires that Vo = -1. In other words, the utility of agent types decreases at the wrong 
rate for a fixed price contract. 

4 Decentralization through a Menu of Linear Con­

tracts 

So far, a contract has been represented as a single point ( Q( 0), m(O)+O) E �!, but it may 
be nossible to "decentrali7.e" the ontimal m1em1 of c.ont.rad.< wit.h �. mPm1 Halli! hlfJ)) r::: 

_._ - -- - - - - - ---- - --- - _ J. _ _ _______ _______ -- ---------- · · ---- - ------- l,-,-,,-,-;; "-

�210 E 0} in which each contract gives the parameters of an affine linear function 
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y = a - bx, where y is the amount of misallocated funds plus fixed costs allowable when 
variable cost is x. Rewriting (6), the optimal incentive compatible mechanism must 
satisfy 

(B) B = { 7i + V(Q(B) )  -V(Q(B) ) if B 2:: B* m + B* if B :S:: B*, 
where VB 2:: B* Qo < 0 and VB :S:: B* Qo = 0. It follows that the optimal amount of 
misallocated funds plus fixed cost can be considered a function of the quality level Q, 
written 

M(Q) = { 7i + V(Q(B) )  -V(Q) if B;:::: B* 
B* if B :S:: B*. 

Then, using the assumption that CQ > 0, define M(C) = M(C-1(C)) and note that 
VB> B* 

Mc 

Mee 

• i VQ MQCc = -CQ < 0 
• 1 • 1 - MQQCc + MQCcc 
VQQ VQCQQ(C01)2  0 - CQ + CQ > ' 

where C01 = l/CQ and Cab= -(CQQ)(C01) 2. Of course, VB< B* we have Mc= 0 and 
Mee= 0. Since Mis convex, the optimal menu of contracts {(Q(B) , m(B) + B) E R!IB E 
El} can be implemented by the menu of contracts {(a(B) , b(B) ) E R2IB E El}, in which 
each contract is an affine linear function M = a(B) -b(B)C, where VB 2:: B* 

a(B) 

b(B) 

- - VQ(Q(B) ) 
- B + V(Q(B) ) -V(Q(B)) + Co(Q(B) ) C(Q(B) ) 

VQ(Q(B) )C01(C(Q(B) ) )  = ��i�i:�� 
and VB :S:: B* a( B) = a( B*) and b( B) = b( I!*). 

To see that the menu of linear contracts {(a(B) , b(B) ) E R2IB E El} is incentive com­
patible and induces truthful agents to pick the optimal levels of misallocated funds and 
quality, consider the maximization problem confronting a type B agent: 

II1ax V(Q) + a(O) -b(O)C(Q)-B, 
O,Q 

or after substituting for a and b, 
T7 111/n\\ T7 (rlfn\\ 

II1ax V(Q) + 7i + V(Q(B) )-V(Q(O) )  + Y
Q
\"1\",n C(Q(O) ) - Y

Q
\"1\�JJ C(Q)- B. O,Q CQ(Q(B) ) Cq(Q(I!) )  
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The first order con di ti on for Q is 

or after manipulation, 

v, (Q) - Vq(Q(�) )  C (Q) = 0 Q 
Cq(Q(B) )  Q ' 

Vq(Q) Vq( Q(O)) 
Cq(Q) - Cq(Q(O) ) ' 

and since Vq/Cq is a strictly decreasing function this implies that Q = Q(B) . That is, 
the agent picks the optimal level of quality corresponding to his reported type. 

After substituting Q(O) for Q, the first order condition for 0 becomes 

Vq(Q(O) )  
_ 

Vq(Q(B) )  
Cq(Q(O) ) 

-
Cq(Q(B) ) ' 

which is satisfied by all values of B , and in particular it is satisfied by 0 = B, so the 
decentralized mechanism is incentive compatible. When an agent of type B reports the 
truth he picks quality level Q( B) , and to see that he also picks the optimal level of 
misallocated funds plus fixed cost equal, consider the linear contract of the type B 2 B* 
agent: 

a(B) - b(B)C( Q(B) )  
- - Vq(Q(B) )  Vq(Q(B) )  e + V(Q(B) )  - V(Q(B) )  + Cq(Q(B) )  

C(Q(B) )  - Cq(Q(B) )  
C(Q(B) )  

7J - V(Q(7f) )  - V(Q(B) )  
e, 

where the last step follows after substituting for Q(B) from Proposition 14. A similar 
argument establishes that a type e :::; B* agent picks m( B) + B = B*. Therefore, the 
decentralized mechanism does indeed induce truthful agents to pick the optimal levels of 
misallocated funds and quality. 

Here, a cost-plus contract is just the case a = 7J and b = 0, and a fixed price contract 
is just the case a = Bf and b = 1. Since b = VqC01 > 0, it can be seen that no agent 
is faced with the cost-plus contract, but it is not clear whether any agent faces a fixed 
price contract . Note that VB 2 B* 

db 
_ 

Cq Vq qQe - VqCq qQe 
O dB - (Cq) 2  > ' 

so B can be considered an implicit function of b with �: = 1/ �� > 0. Then �� = C and 
��g = CqQ6/�� < 0. That is, a higher coefficient of cost sharing b must be compensated 
• , , , n .,  , , , , ,.. 1 , .  r , .  r , 1 l r ny a n1gner nxea payment a, ana tne nxea payment 1s a concave runci10n 01 tne s10pe or 
the linear contract. 
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5 The Adversarial Model 

A standard model of adverse selection very similar to that presented in Section 1 is the 
adversarial model, offered by Laffont and Tirole (Chapter 2, [5]) in an analysis of the 
procurement of a public project from a private firm by a regulator. Let Q E lR+ denote 
the quality of the project; let t E lR denote a monetary transfer from the principal (the 
regulator) to the agent (a firm); and let the cost C of the project be given by Q(m + 0), 
where 0 E [fl, BJ C lR+ is a random variable observed by.the agent but not· by the principal, 
whose beliefs are given by the non-atomic distribution function F with density f, and 
m E lR is a moral hazard variable chosen by the agent but unobserved by the principal. 
Then the utility of the principal is given by U(Q) - Q(m + 0) - t and the utility of the 
agent is ,P(m) + t, where it is assumed that U and ,P are twice continuously differentiable 
with UQ > 0, UQQ ::; 0, 1/Jm > 0, 1/Jmm ::; 0, and limm�-e i/J (m) = -oo. In this model, m 
is interpreted as slack-or "negative effort"-so that the principal prefers lower values, 
and a high 0 corresponds to higher costs.4 

As in the cooperative model, the principal observes quality and cost, so once the 
information revelation problem is solved he can solve for m = (C/Q) - 0. Letting V 
denote the utility of the agent, the utility function of the principal can be written U( Q) -
0 - t  - Q,P-' (V - t),  so it is apparent that-unlike the cooperative model-the principal's 
interests are in conflict with those of the agent. That is, the principal does best when V is 
infinitely negative. Because of the voluntary nature of market participation, however, the 
principal must offer the agent at least as much utility as the agent's next best alternative. 
This reservation utility level is assumed to be the same for all types of agent and is 
normalized to zero. 

Now consider a more general model, in which cost is a function C( Q, m + 0) of project 
quality and the sum of the slack variable and random shock, the principal's utility is 
given by U(Q) - C(Q, m + O) -t ,  and the agent's utility is given by V(Q, m) + t, where C, 
U, and V are twice continuously differentiable with CQ > 0, Cm > 0, UQ > 0, UQQ ::; 0, 
Vm > 0, Vmm ::; 0, VQ 2: 0, VQQ ::; 0, and VQm 2: 0. Furthermore, it is assumed that the 
functions V and C and variables m and t satisfy a set of constraints CON(V, C, m, t) .  It 
can then be seen that the cooperative model is a special case of the general model when 

4In Laffont and Tirole's original formulation the principal's objective function includes the rent of 
the agent, and the shadow cost of transfering one dollar to the agent is (1 + .\) dollars, where .\ > 0 is 
interpreted as a .social .. cost-due"to�distortionary_.taxation." .. Neither,..of_these .. features __ _ser"v.es the purposes 
of this section, so they have been dropped. The moral hazard variable is originally effort e = -m, but 
this redefinition is inconsequential and serves to unify notation. 

24 



CON = COOP, where 

COOP(V, C, m, t) = 

V(Q, m) = V(Q) + m  
C(Q, m + O) = C(Q) + m + O  
CQ > O 
CQQ > 0 
m :'.". 0 
t = 0, 

and the adversarial model is a special case when CON = ADV, where 

ADV(V, C, m, t) = 

V(Q, m) = ,P(m) 
1/Jm > 0 
1/Jmm � 0 
limm�-u ,P( m) = -oo 
C(Q, m + ti) =  Q(m + ti) 
V(Q, m) + t :'.". 0. 

The principal's problem under COOP is solved as in Section 3, with the additional con­
straint t = 0 and corresponding Lagrange multiplier >.. The partials of the Hamiltonian 
with respect to Q and m are then 

UQ CQ - VQ + >.VQ/f 
>. ,, 

respectively, which reduce to condition (5). 

The principal's optimal contracting problem under ADV can be analyzed as a control 
theory problem with state variable V(O) = ,P(m(ti)) + t(ti) and control variables Q, m, 
and t, in which the transfer can be written as an implicit function t(V , Q, m) = V - ,P(m) 
and the first order incentive compatibility constraint reduces to Vu = -,Pm .  Guesnerie 
and Laffont (Corollary 2.1 ,  (3]) and Laffont and Tirole (Proposition 1 .2, [5]) show that 
this first order constraint in conjunction with the second order constraint mu :'.". -1 is 
necessary and sufficient for incentive compatibility, so the relaxed problem can be solved 

max f8
[U(Q) - C(Q, m + x)]f(x) dx Q ,m }§_ 

subject to ADV(V, C, m, t) and Vu = -Vm, leaving to be determined conditions under 
which the relaxed solution also satisfies mu :'.". -1 .  Letting µ be the multiplier for the first 
order constraint, µu = f and the transversality condition µ(fl) = 0 imply that µ = F. 
From the maximum principle, we have 

UQ CQ 
Vm = Cm + FVmm/ J, 
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or after substitution from ADV, 

Uq - m + B  
1/Jm Q + F1/Jmm/ J. 

It can then be seen that the second order condition for incentive compatibility is in fact 
met by the solution to the relaxed problem when the following restrictions are met: 

d (F(B)) 
1/Jmmm 2 0, 1/JmmUQQ < 1, d() J(B) 2 0. 

Under these conditions, the optimal contract is determined by (7) and (8), implying 
that the principal can achieve the first best provision of quality but must accept the 
informational wedge FiPmm/ f :'O 0 between the marginal benefit 1/Jm of slack and the 
marginal cost Q. 

It is of interest to consider the ramifications of coincidence of interest for the princi­
pal's contracting problem in the adversarial model. Abstracting from the details of the 
adversarial model, this can be done by replacing ADV with ADV*, where 

ADV*(V, C, m, t) = f limm�-� V(Q, m) = -oo 
l V(Q , mJ + t 2 0. 

Again, the principal's optimal contracting problem is a control theory problem with 
state variable V(ll) = V(Q(ll), m(ll)) + t(B) and control variables Q, m, and t, where 
t(V, Q, m) = V - V(Q, m) and the first order incentive compatibility constraint reduces 
to Vo = -Vm . The Hamiltonian is 

H = [U(Q) - C(Q, m + B) - V + V(Q, m)]f - µVm(Q, m) 

with partials yielding 

Uq + Vq Cq + FVqm/f 
Vm - Cm + FVmm/ J. 

(9) 
(10) 

For the purposes of exposition, it is assumed that the second order incentive compatibility 
constraints Qo ::; 0 and to ::; 0 are not binding at the optimum, so that the solution to 
the system of .equations ... ( 9} .and . .  (l O)_is . .  globallyi11centi.v:e . .com patible. 

Comparing (8) with ( 10), it can be seen that the marginal condition which determines 
the level of slack under ADV is unaffected by the addition of coincidence of interest. After 
comparing (7) with (9), this is obviously not true of the optimal level of quality. With 
coincidence of interest, an increase in the level of quality affects the marginal utility of the 
principal in three ways: it increases the cost of the project by Cq ; it raises the utiiity of 
the agent by Vq , and this raises the principal's utility by Vq through a correspondingly 
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lower transfer; and since VQm :'.'.: 0, slacking becomes relatively more attractive to the 
agent. Whether the principal is better off depends on the size of VQ relative to FVQm/ f 
and how the level of slacking is affected through CQm and VQmm . In the special case of 
additive separability (VQm = VQmm = CQm = 0), however, the principal is strictly better 
off with coincidence of interest: in effect ,  the agent is willing to pay marginal costs up to 
VQ for extra quality. 

The explicit monetary transfer t plays an important role in optimal contracting subject 
to the constraints ADV*, and for this reason the above results do not apply to contracting 
with a non-profit agent. To see how non-profit agency affects the optimal contract, 
define the constraint set ADV** by adding the constraint t = 0 to ADV* and omiting 
the individual rationality constraint V(Q, m) + t :'.'.: 0. The control theory problem is 
unchanged save for the constraint t = 0 with Lagrange multiplier A and the presence of 
two free endpoints rather than one, so the Hamiltonian is now 

H = [U(Q) - C(Q, m + 0) - V + V(Q, m)]f - µVm + .X[V - V(Q, m)] 

with partials yielding 

UQ + VQ CQ + [µVQm + .AVQ]/f 
Vm = Cm + [µVmm + AVm]/J, 

(11 )  
( 12) 

where µ(O) = F(O) - J! .X(x) dx. Of course, the principal's expected utility can be no 
higher when t is fixed ;;:t zero, but it does not follow from (1 1 )  and (12) that for any 
given value of 0 the principal is worse off. Although in expectation the principal 's utility 
is lower, he may be better off for some values of 0 than he would have been otherwise. 

The optimal contract under constraints ADV** is difficult to intuit from ( 1 1) and 
(12) without the assumption of quasi-linear preferences of the agent, for while control 
theoretic analysis offers an interpretation of the multiplier µ of the incentive compatibility 
constraint, it has little to say about the Lagrange multiplier A. The assumption of quasi­
linearity, however, is inconsistent with the constraints ADV**. The analytical advantage 
of the cooperative model is a vast simplification of the form of the optimal contract, 
given by ( 1 1 )  and ( 12) after dropping the assumption that limm--B V(Q, m) = -oo and 
adding the assumptions of quasi-linear cost, quasi-linear preferences, and non-negativity 
of m. 

6 Conclusion 

After presenting the details of the model with coincidence of interest, cost-plus and fixed 
price contracting have been defined and compared, and the form of the optimal contract 
has been determined for the case of quasi-linear preferences. It was found that the optimal 
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menu of contracts for 'high' types of agent coincides with the agent's indifference curve 
through ( Q(iJ), 7J), while 'low' types of agent are pooled at ( Q, ll*). Subsequently, it was 
shown that cost-plus and fixed price contracting are suboptimal, and the possibility of 
decentralizing the optimal mechanism through a menu of linear contracts was confirmed. 
Lastly, the assumptions underlying the cooperative model were compared with those of 
the adversarial model adapted from Laffont and Tirole. 

The approach here is of analytical interest because it applies to a class of contracting 
problems that the standard models of principal agent theory have left largely untouched, 
allowing a non-profit agent to have a personal stake in his work. The reformulation of 
the moral hazard variable used by this approach leads to the difficulty that the necessary 
first order conditions for an interior maximum need not hold for any type of agent, 
complicating the task of finding a form of the incentive compatibility constraint which 
is amenable to control theoretic analysis. This reformulation is not without its rewards, 
however, for it also leads to an extremely simple form of the optimal contract for the 
case of quasi-linear preferences. 

A Proofs of Propositions 

Proposition 1 1  When the agent has quasi-linear utility V(Q , m) = V(Q) + m, the following 
conditions are sufficient for incentive compatibility: VIJ E 0 

I Qe � 0 

1I me + 1 :2: 0  

III VQQe + me +  1 � 0 

IV m(IJ)(VQQe + me +  1)  = 0. 

Proof: Suppose in order to show a contradiction that incentive compatibility does not hold, so 
that 31J', IJ" E 0 such that IJ' is better off imitating IJ" and, moreover, he can do so successfully. 
That is, 

V(Q(IJ")) + m(IJ") + IJ" - IJ' > V(Q(IJ')) + m(IJ') 
and 

IJ' � m( 811) + IJ". 
There are two cases to consider: IJ' < IJ" and IJ' > IJ". 

Case 1: Because the agents have quasi-linear utility, they share the same indifference maps 
over Q and m+IJ, up to a translation of the origin. Let V' denote the indifference curve through 
( Q( IJ'), m( IJ') + IJ') and let V" denote the indifference curve through (Q( IF'), m( 1111) + Ii'), as 
pictured in Figure 6 (top) . 
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[Figure 6 about here.] 
Since IJ' prefers (Q(IJ"), m(IJ") + IJ") to (Q(IJ'), m(IJ') + IJ'), we know that V" lies above 

and to the right of V'. Furthermore, we know that Q(IJ') ::'.'. Q(IJ") since Qe ::; 0, and that 
m( IJ') + IJ' ::; m( IJ") + IJ" since me + 1 ::'.'. 0. 

The assumptions on V guarantee that V' is downward sloping and smooth, so it can be 
taken as the graph of a strictly decreasing, continuously differentiable function q : D' -+ �+, 
where D' = {x E MIV(Q(x)) + x - IJ' = V(Q(IJ'))+ m(IJ')} with derivative qx(m(IJ) + IJ) = 
-1/Vq(Q(IJ)) < 0. Note from our assumptions on V that x* = max{x E D'} is well-defined 
and q(x*) = 0. Note also that, using the quasi-linearity of V, we can take V" to be the image 
of D" = {x E MIV(Q(x)) + x - IJ" = V(Q(IJ")) + m(IJ")} under the function q(x - a) , where 
a is some positive constant. It follows that Q(x') = q(x') and Q(x") = q(x" - a) , where 
x' = m( IJ') + IJ' and x11 = m( IJ") + IJ". 

The first step is to show that 'efx E [x', x*] q( x) ::'.'. Q( x ), so suppose not in order to show 
a contradiction. Then :Ix E [x', x*] with x > x' such that Q(x) > q(x). This implies that 
Q(x) - Q(x') > q(x) - q(x'). Since Q is non-increasing on the finite interval [x', x*], it follows 
that Qx exists almost everywhere on the interval and that 

1� Qx(x) dx ::'.'. Q(x) - Q(x') 

> q(x) - q(x') = f"' qx(x) dx. Jx' 

Now, let M = {x E MI Qx(x) > qx(x)}, and to see that M has positive measure, suppose not. 
Then from the previous inequality we have 

f - Qx(x) dx > r - qx(x) dx, J[x',x]\M J[x',£]\M 

but this contradicts the fact that 'efx E [x',x] \ M qx(x) ::'.'. Qx(x). Therefore, M has positive 
measure. Moreover, :Ix E M \ PA since Footnote 3 requires that PA is countable, and therefore 
has measure zero. 

Pick any non-pooling point x E M \ PA, so that m(IJ) + IJ = x implies me(IJ) + 1 > 0.  Then 
there is a unique ii E 8 such that m( ii) + ii = x and 

Since x E M, we know 

or equivalently, 

Qx(x) = Qe
_
(ii) 

mo(IJ) + l  

Qe(ii) _ _ 1 
me( ii) + 1 = Qx(x) > qx(x) = -

Vq(Q(ii)) ' 

Vq(Q(ii))Qe(ii) + me( ii) + 1 > 0, 
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which contradicts the assumptions of the proposition. Therefore, we have Vx E [x', x*J q(x) 2'. 
Q(x). 

The next step is to show that x" � D'. If, contrary to the claim, x" E D' then by construction 
x" E [x', x*], so from qx < 0 and a >  0 it follows that Q(x") = q(x" - a) > q(x") 2'. Q(x"), a 
contradiction. 

The final step is to suppose that x" � D', as in Figure 6 (bottom). Then by construction 
x" > x*. Note that Q(x*) = 0, since 0 ::; Q(x*) ::;• q(x*) = 0, so from Q 2'. 0 and Qx ::; 0 
it follows that Vx E [x*, x"] Qx(x) = 0. That is, the graph of Q must be fiat along the 
x-axis between x* and x". To see that this is impossible, define the interval 0' = { 0 E 
01x* < m(O) + 0 ::; x"} and note that we have VO E 0' Qo(O) = 0. Since it is assumed that 
VqQo + mo +  1 ::;  0 and mo + 1 2'. 0, we then have VO E 0' mo(IJ) + 1 = 0. But this gives us 

1
x" 

1 x" - x* = dx = mo(x) + l dx = O, x* 01 
or in other words, x" = x* E D', a contradiction. 

Case 2: Now suppose that 30', O" E 0 such that O" < O' and the type O' agent is better 
off imitating IJ". Moreover, he can do so successfully, so that O' ::; m( O") + O". Note that 
VO E [O", O') m(O) > O. To see this, we know that for such a 0, m(IJ) + 0 2'. m(IJ") + O" since 
m0 + 1 2'. 0.  We then have 0 < IJ' ::; m(IJ") + O" ::; m(O) + 0. Subtracting IJ from the first, 
second, and fourth terms yields 

0 < O' - 0 ::; m( 0). 

Then by the assumptions of the proposition we have VO E [O", IJ') 

Vq(O)Q0(0) + m0(0) + 1 = 0. 
That is, the necessary first order conditions for an interior maximum hold for all such types of 
agent. 

In the case of general preferences, we can write the supposition that the agent of type O' 
prefers the type O" contract to his own as 

Define 

V(Q(O"), m(IJ") + O" - IJ') - V(Q(O'), m(O')) 
B' 

- f Vq(Q(x), m(x) + x - IJ')Qo(x) 1011 
+ Vm(Q(x), m(x) + x - IJ')( mo(x) + 1) dx 

O' (V, 
) - fe,, Vm . V� Qo + mo +  1 dx > 0. 

V(O, IJ) = V(Q(O), m(O) + O - IJ), 

where the first component of V(O, IJ) represents the agent's reported type and the second com­
ponent represents the agent's true type. The supposition can be rewritten as 

[6' 
( ') 

(VQ(x, 01) 
( ) ( 

-) 
Jo" 

Vm x, IJ 
Vm(x, IJ') 

Qo x + me x) + 1 dx < 0, 

30 



and the first order conditions become VO E [ O", O') 

VQ (O, 0) 
Vm(O,O) Qe(O) + me(O) + 1 = 0. 

Next, note that the assumptions on preferences of the agent imply that his utility function 
possesses the single crossing property: 

The single crossing property together with the first order condition evaluated at 0 implies 
VO E [O", O') 

Then we have [e' ( ') 
(Vq(x, O') ( ) ( ) ) 

Jen Vm x, 0 Vm(x, O') Qe x + me x + 1 dx :::: 0, 

contradicting the above formulation of our supposition. D 

Proposition 12 If the utility functions of the principal and agent are quasi-linear 

U(Q, B) 
V(Q , m) 

= U(Q) - B 
V(Q) + m  

and the mapping 0 >-+ (Q(O), m(O) + 0) is an optimal incentive compatible mechanism then the 
following conditions hold: VO E El 

I Qe � 0 

II VqQe + me +  1 = 0.  

Proof: For both parts of the proposition, the method of proof will be to perturb the mechanism 
0 1-+ (Q(O), m(O) + 0) in order to find a new mechanism (Q'(O), m'(ll) + 0) which does strictly 
better for the principal. First, consider (I). 

' '[Figure 7'about 'lrere.J 

Suppose in order to show a contradiction that 30' E El such that Qe(O') > 0, as depicted 
in Figure 7 (top). Since Qe is continuous, 38' > 0 such that VO E Bs•(O') Qe(O) > 0. Let the 
constant Q be uniquely defined by U(Q) +  V(Q) - C(Q) = 0. Next, we need to show that there 
is an open set B' C B6,(0') the image of which under Q lies either entirely above Q* or entirely 
below it. There are two cases to consider: Q(O') � Q and Q(O') :::: Q .  Since the proofs of the 
two cases are symmetric, we will assume without loss of generality that Q(O') � Q. 
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Note that there is a type IJ" arbitrarily close to IJ' such that Q(IJ") op Q. To see this, suppose 
that 3E > 0 such that VIJ E B,(IJ') Q(IJ) = Q. But then VIJ E B,(IJ) Qo = 0, and in particular, 
Qo(IJ') = 0, a contradiction. Then we can take 8" E Bs•(8') such that Q(8") op Q ,  and again 
without loss of generality let Q(8") < Q, so by the continuity of Q we know 36" > O such 
that V8 E Bsn(811) Q(8) < Q. We then have our open set B = Bs•(IJ') n Bsn(8"). That is, 
V8 E B  Qo(IJ) > 0 and Q(8) < Q.  

Now we will show that V8 E B  m(8) > 0. Let B = (8� , 8�) ,  take IJ E B, and note that from 
incentive compatibility and Proposition 10 we have 

V(Q(IJ)) + m(IJ) 2: V(Q(8;)) + m(8;) + 8; - IJ, 

which implies 
m(IJ) + IJ - m(B;) - IJ; 2: V(Q(8;)) - V(Q(8)) > 0, 

where the last inequality follows from Qo > 0 and VQ > 0. After rearranging terms, we have 

m( 8) > m( 8;) + 8; - 8 > m( 8;) ;::: 0, 

where the second inequality follows from 8 < B;. 
Now define B = [81 , IJ2] C B with IJ1 < IJ2 and consider the new contract 

(Q'(IJ) m'(IJ) + 8) = { (Q(ih) , m(IJ2) + IJ2) if IJ E B 
' (Q(8), m(IJ) + IJ) else, 

as in Figure 7 (bottom). To see that ( Q', m' + IJ) is incentive compatible, suppose it is not, 
leaving only two cases to be considered: a type 8' � B agent wants to imitate a type 811 E B 
agent and can do so successfully, and a type 811 E B agent wants to imitate a type 8' agent 
and can do so successfully. The first case can be ruled out immediately, since the type 8' � B 
agent would have imitated the type 82 agent under the original mechanism, violating incentive 
compatibility of (Q, m + 8). 

In the second case, by Proposition 10 we have 

V(Q(IJ2)) + m(82) + IJ2 - IJ" < V(Q(8')) + m(IJ') + 8' - 811, 

but by the incentive compatibility of ( Q ,  m + 8) we also have 

V(Q(811)) + m(8") 2: V(Q(8')) + m(8') + 81 - 8". 

Conjoining the first inequality with the second, we have 

V(Q(811)) + m(8") + 011 - V(Q(IJ2)) - m(IJ2) - 02 
O" 

= { V(Q(x))Qo(x) + mo(x) + 1 dx > 0. 
lo, 

To get our contradiction, note that [0", 02] C B implies that VIJ E [IJ", IJ2] m( IJ) > 0, which 
implies that the agent's constraint is not binding for any such type, so using the complementary 
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slackness conditions for the agent's problem, we have VO E [8", 82] µ = 0. Then from the Kuhn­
Tucker conditions for the agent's problem we have VU E [8", 82] 

VQQo + mo +  1 - µ(mo + 1) = VQQo + mo +  1 = 0. 

But then 

lo
o
, 

0" 
V(Q(x))Qo(x) + mo(x) + 1 dx = 0, 

a contradiction. Therefore, the new mechanism (Q', m' + 8) is indeed incentive compatible. 

It remains to be shown that the principal is strictly better off with the mechanism ( Q', m'+8). 
Since the new mechanism is incentive compatible the principal's payoff is 

�
01

[U(Q(x)) - C(Q(x)) - m(x) - x]f(x) dx 

+ f02
[U(Q(fh)) - C(Q(82)) - m(82) - B2]f(x) dx lo, 

+ f0[U(Q(x)) - C(Q(x)) - m(x) - x]f(x)dx lo, 
and it suffices to show that 

,o
, I [U(Q(82)) - C(Q(82)) - m(82) - l'2]f(x) dx Jo, 

lo
o, > [U(Q(x)) - C(Q(x)) - m(x) - x]f(x) dx. o, 

The result will follow if we can show that Vx E [81 , 82] 

U(Q(82)) - C(Q(02)) - m(82) - 82 - U(Q(x)) + C(Q(x)) + m(x) + x > 0, 

which can be rewritten as 

{O' 
lx UQ(Q(y))Qo(y) - CQ(Q(y))Qo(y) - mo(Y) - 1 dy > 0. 

Again, the result will follow if the integrand is positive over [x , 82]. By the definition of Q 
and the assumptions on U, V, and C, we know that VQ < Q UQ(Q) + VQ(Q) - CQ(Q) > 0. 
Picking an arbitrary y E [x, 82] C B, we have Q(y) < Q by the construction of B. Also by the 
construction of B ,  we have Qo(Y) > 0, so 

(UQ(Q(y)) + VQ(Q(y)) - CQ(Q(y)))Qo(y) > 0. 

Adding and subtracting mo(Y) + 1 to the left hand side of the inequality yields 

UQ (Q(y))Qo(y) - CQ(Q(y))Qo(y) - mo(y) - 1 
+VQ (Q(y))Qe(y) + rrio(Y) + 1 

= UQ(Q(y))Qo(y) - CQ(Q(y))Qo(y) - mo(Y) - 1 > 0, 
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where we use the result derived above that 'VO E B VQQB + mo +  1 = 0. Therefore, the principal 
is strictly better off with the new mechanism (Q', m' + 11), so an optimal incentive compatible 
mechanism must satisfy 'VII E 0 Qo ::; 0. 

This would conclude the first part of the proof, except that the new mechanism (Q', m' + 0) 
is not piecewise continuously differentiable, and since the original mechanism was only supposed 
to be optimal among the class of piecewise continuously differentiable mechanisms, it must be 
compared only to mechanisms within that class. The method of proof can be extended to 
find a piecewise continuously differentiable mechanism by taking the function f', which maps 
[ 112 - E, 112] onto [ O, , 02], defined by 

where f is continuous in both x and E. Then for E > 0, define the new mechanism 

(Q'(O), m'(O) + 0) = (Q(f'(0)) , m(f'(8)) + 8) if () E (82 - E, 82) 
{ (Q(ll2), m(ll2) + 112) if II E (111 , 112 - Ej 

( Q( 11), m( 0) + 0) else, 

and note that ( Q',  m' + 11) is piecewise continuously differentiable for each f. 

To see that ( Q', m' + 11) is incentive compatible, suppose an agent of type II" E (112 - E, 112] 
wants to imitate a type II' agent and can do so successfully. Then as above, we have 

which implies that 

V(Q(O")) + m(ll") 2'. V(Q(ll')) + m(ll') + II' - II" 
> V(Q'(ll')) + m'(ll') + II' - 11", 

V(Q(O")) + m(IJ") - V(Q(f'(ll'))) - m(f'(ll')) - 11' 

li
B" 

= VQ(Q(x))Qo(x) + mo(x) + 1 dx > 0. f'( B') 
By the construction of J' , we know that f'(ll') E (lli , 112] C B, and the same argument as above 
yields our contradiction. Therefore, ( Q', m' + 8) is incentive compatible, so the principal's 
expected utility is 

k0' [U( Q(x )) - C( Q(x)) - m(x) - x]f(x) dx 

+ f0,-'
[U(Q(112)) - C(Q(02)) - m(li2) - ll2]f(x) dx lo, 

+ le:�, [U( Q'(x )) - C( Q'(x )) - m'(x) - x]f(x) dx 

+ /8
[U(Q(x)) - C(Q(x)) - m(x) - x]f(x) dx. 

lo, 
Note that the principal's expected payoff is a continuous function of E and that it converges to 
his payoff under ( Q', m' + 11) as E goes to zero. Then we can find an E small enough to make his 
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payoff arbitrarily close to his payoff under ( Q', m' + 8), and in particular, we can find an € such 
that ( Q', m' + £) does strictly better for the principal than the original mechanism ( Q ,  m + 8). 

Now consider (II). First, we need to establish that Qo ::; 0 implies mo + 1 ::'.'. 0. This follows 
easily from the Kuhn-Tucker conditions for the agent's problem: 

mo + 1 = - VqQo > 0 1 + µ  - ' 

where we use the fact that µ ::'.'. 0. Next, note that a consequence of mo+l ::'.'. 0 is VqQo+mo+l ::; 
0. To see this, recall that the Kuhn-Tucker condition for the agent's problem 

VqQo + mo +  1 + µ(mo + 1) = 0 

implies that 
VqQo + mo +  1 = -µ(mo + 1) ::; 0. 

Therefore, to prove the second part of the proposition, we just have to rule out the possibility 
that VqQo + mo +  1 < 0 for an optimal incentive compatible mechanism. Since mo + 1 ::'.'. 0, we 
have two cases: mo + 1 = 0 and mo + 1 > 0. In the first case, VqQo + mo +  1 < 0 and Vq > 0 
imply that Qo = 0, so we have the desired condition VqQo + mo +  1 = 0. 

In the second case, depicted in Figure 8 (top) , suppose in order to show a contradiction that 
38' E El such that Vq(Q(8'))Qo(8') + mo(8') + 1 < 0 and mo(8') + 1 > 0. 

[Figure 8 about here.] 
Note that since the left hand side in the former inequality is a continuous function of 8, 

36' > 0 such that 8 E Bs•(O') implies Vq(Q(IJ))Qo(IJ) + mo(IJ) + 1 < 0 And since mo + 1 is a 
continuous function of 8, we know 36" > 0 such that IJ E Bsn(8') implies mo(8) + 1 > 0. Let 
6 = min{6', 611} . Therefore, '<18 E Bs(IJ') 

VqQo + mo + 1 < 0 

and 
mo + 1 > 0. 

From these inequalities and the Kuhn-Tucker condition for the agent's problem we know WJ E 
Bs(8') VqQo + mo +  1 = -µ(mo + 1) < 0, which implies µ >  0. We then have '<18 E Bs(8') 

Qo < 0 

and 
m(8) = 0, 

where the last equation follows from the complementary slackness condition. 

Note that the quasi-linearity of the principal's utility function implies that the first best 
technology level for the principal Q*(O) is a constant Q*, and furthermore, Q* is unique since 
Uqq - Cqq < 0. Next, we need to show that there is an open set B C  Bs(IJ') the image of which 
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lies either entirely above Q* or entirely below it. If this is the case for Bs( 11') itself then we have 
our set. Suppose, on the other hand, that 3111 , 112 E Bs(ll') such that 111 < 112 and Q(111) ;::: Q* 
and Q(112) ::; Q*. Then since VII E Bs(ll') Qo(ll) < 0, the open set B = Bs(ll') n (-oo , 111 )  
satisfies our purposes. Therefore, without loss of generality we take an open set B <;; Bs( 11') 
such that VII E B  Q(O) > Q*. 

Picking two arbitrary points 111 , 112 E B  with 111 < 112, we will alter the original mechanism 
() >--> (Q(ll), m(ll) + II) between these points by subtracting a variation v from the value of Q(ll), 
where the function v satisfies certrun conditions to be specified. First, let · 

d _ 
. ( Qo(ll) 1 ) 

- mm - + , BE[Bi .B2] me(()) + 1 VQ(Q(ll)) 

be the minimum vertical distance between Qe/(me + 1) and -1/VQ over the interval [111 , 112], 
where d is well defined since we are minimizing a continuous function over a compact set. 
Furthermore, since [111 , 112] C B C  Bs(ll'), we know that the right hand side is positive over the 
entire interval, and since the right hand side is a continuous function it must assume its minimum 
d at some point in [111 , 112]. It follows that d > 0. Now, pick a variation v : [111 , 112] ---> el?+ such 
that v is continuously differentiable, and 

0 v(ll1) = v(ll2) 
0 > JvoJ - d/2 

0 > Jve l + Qo 

and VII E (()1, 112) v(ll) > 0. Roughly, v must be non-negative and sufficiently flat, but positive 
over the open interval. That the third condition can be satisfied by some function v follows 
from the fact that VII E B  C Bs((J') Qo(ll) < 0. 

Altering the original mechanism by subtracting v, we get the new mechanism II >--> ( Q'(ll), m'(ll)+ 
0) defined by { (Q(ll), m(ll) + ll) if ll ::;  111 

( Q'( 11), m'( 0) + 11) = ( Q( Ii) - v( Ii), m( Ii) + 11) ifl'1 ::; II ::; 112 
(Q(ll), m(ll) + 11) if 112 ::; 11, 

as depicted in Figure 8 (bottom). Note that this new mechanism is a member of the class of 
piecewise continuously differentiable mechanisms, so we just have to check that the utility of 
the principal is greater under ( Q', m' + II) than ( Q ,  m + 11). To do this, it will be useful to verify 
that the new mechanism is incentive compatible, and by Proposition 1 1  it suffices to check that 
only four conditions hold for ( Q', m' + II): 

0 > Q9 
0 < m0 + 1  
n ;::: VQQO + niO + 1 u 

0 m'(ll)(VQQo + mo +  1). 
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The second inequality is obviously fulfilled, since m' = m and mo + 1 ;::: 0. To see that the 
fourth equation holds, note that VIJ E B  C Bs(IJ') m'(IJ) = m(IJ) = 0. 

To verify that Q0 :s; 0, note that (I) implies this is true for the set 0 \ [!Ji , IJ2], so it remains 
only to be shown that it is true on the interval [IJ1, IJ2]. By the conditions for v we have 
VIJ E [ IJ1 , IJ2] 

Q�(IJ) = Qe(IJ) - vo(IJ) :s; Qe(IJ) + [ve(IJ) [ < 0, 

which gives us the first inequality. Again, the third inequality .holds for the original mechanism 
(Q, m + IJ), so it remains only to be shown that it is true on the interval [IJ1 , IJ2]. Since VIJ E 
[IJ1 , IJ2] m'(IJ) = 0, it follows that m0(1J) = 0, so the condition can be rewritten as 

Q8(1J) = Qe(IJ) - ve(IJ) :s; 1 
Vq(Q(IJ)) ' 

Also, since m0 = 0 on [IJ1 , IJ2] , we know by the construction of d that VIJ E [IJ1, IJ2] 

which implies 

1 d -Qe(IJ) - Vq(Q(IJ)) ;::: d > 2 > 0 ,  

d 1 Qo(IJ) + 2 < -Vq(i!) ' 
Then since v is assumed to satisfy [ve [ < d/2, we know Qo + [ve [ < -1/Vq , yielding WJ E [IJi ,  IJ2] 

Q�(IJ) = Qo(IJ) - ve (IJ) :s; Qo(IJ) + [vo(IJ)[ < 
1 

Vq(Q(IJ)) , 

which is the desired inequality. Therefore, the new mechanism (Q', m' + IJ) is incentive com­
patible. 

The last step is to show that the principal's expected utility is higher under the new mech­
anism than under the old. Under (Q', m' + IJ), the principal's expected utility is just 

�81 [U( Q(x )) - C( Q(x )) - m(x) - x]f(x) dx 

+ f82 [U(Q(x) - v(x)) - C(Q(x) - v(x)) - x]f(x)dx le, 
+ fe�[U( Q(x)) - C(Q(x )) - m(x) - x]f(x) dx, 

where the fact is used that m = 0 on the interval [IJ1 , IJ2]. It will therefore suffice to show that 

r8
z 

! •. [U(Q(x) - v(x)) - U(Q(x)) - C(Q(x) - v(x)) + C(Q(x))]J(x) dx > 0. 
- . ' 

The result will follow if it can be shown that the integrand is positive over the interval ( IJ1 , IJ2). 
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Pursuing this line of argument, pick an arbitrary jj E (111, 112). Then the integrand is 

U(Q - v) - U(Q) - C(Q - v) + C(Q), 

where Q = Q(8) and v = v(O) .  Recalling that VII E (111 , 112) v(ll) > 0, this can be rewritten as 

-1" Uq(Q - x) - Cq (Q - x) dx, 

so once again the result will follow if it can be shown that the integrand is negative over the 
interval [O, v]. Note from the first order conditions which characterize Q* and the assumptions 
on U and C that VQ > Q* Uq (Q) - Cq(Q) < 0, so we have the result if it can be shown that 
Vx E [O, v] Q - x > Q*. Furthermore, if this is true for x = v then it is true for all points in 
the interval. Using the assumption that v(112) = 0, note that 

Q - v = Q(O) - v(O) = Q(112) - foe, Qe(x) - ve(x) dx. 

Since VII E [1'1, 112] Q�(ll) = Qe(ll) - ve(ll) < 0, it follows that 

foe
, Qe(x) - ve(x) dx < 0, 

so Q - v > Q(112). Noting that 112 E B  implies Q(112) > Q*,  we have 

Q(8) - v(O) > Q(ll2) > Q*, 

which gives us our contradiction. D 

Proposition 14 If the utility functions of the principal and agent are quasi-linear, the optimal 
incentive compatible mechanism II >--> (Q(ll), m(ll) + 11) is given by 

(Q(ll) (II) II) = { (v-1(V(Q(O)) + 0 - 11) , 11) if 11 ::". 11* , m  + (Q, 11*) if ll '.O II*. 

Proof: Let 01 = {II E 0JQ(ll) < Q} and 02 = {II E 0JQ(ll) = Q},  and note from Lemmata 
4 and 5 that 0 = 01 U 02• First, consider {II E 0Jll ::". II*} = 01 U {Ii*} .  We know from the 
proof of Lemma 6 that VII E 01 mo(ll) = -Vq(  Q(ll))Qo(ll) - 1 ,  and since II* is an accumulation 
point of 01 and mo, Vq , Q ,  and Qo are continuous it follows that this is true for II* as well. 
Rewriting the equation, we�have 

and integrating yields 

m(ll) + II  

me(ll) + 1 = -Vq(Q(ll))Qo(ll), 

m(O) + 0 + fe9 Vq(Q(x))Qe(x) dx 

m(B) + B +  V(Q(O)) - V(Q(ll)). 
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By Lemma 4, we know 't() E 81 m( ()) = 0, and since ()* is an accumulation point of 81 and m 
is continuous it follows that this is true for ()* as well. Then the above equation reduces to 

() = iJ + V(Q(O)) - V(Q((J)), 
which can be rewritten as 

Q((J) = v-1 (V(Q(IJ)) + IJ - e). 
Since m((J) = 0 implies m((J) + () = (), we have the desired result. 

Now consider {() E Ell() :'::'. ()*} = 82. Lemma 5 shows that 't() E El Q((J) :'::'. Q ,  so from Qe :'::'. 0 
it follows that 't() E 82 Q((J) = Q.  It then remains only to be shown that m((J) + 0 = O* . Note 
from the first part of the proof that m( 0*) + O* = O*, so the result will follow if it can be shown 
that m((J) + 0 is constant on 82• To see that this is the case, note that 

me(O) + 1 = -V(Q(O))Qe(O) = 0, 
since Qe(O) = 0 on 82• D 

Proposition 1 5  If the utility functions of the principal and agent are quasi-linear then the 
incentive compatible mechanism 0 >-+ ( Q( 0), m( 0) + 0) is optimal only if Q(IJ) :'::'. Q*. 

Proof: Suppose in order to show a contradiction that (Q(O), m(O) + 0) is an optimal incentive 
compatible mechanism with endpoint Q(IJ) > Q*, and take the incentive compatible mechanism 
(Q', m' + 0) constructed as in Proposition 14 with endpoint Q'(IJ) = Q*. Let Oi be uniquely 
defined as in Proposition 14 by 

IJ + V(Q(IJ)) - Oj' = V(Q), 
and note that (Ji can be considered an implicit function of Q(IJ) with 

d -
dQ(B) 

Oj' = VQ(Q(O)) > 0. 

Recalling that Q(IJ) > Q*, define e:; by 

iJ + V(Q*) - e; = V(Q), 
and note that 02 < Oi , as shown in Figure 9.  

[Figure 9 about here.] 

Since ( Q', m' + ()) and ( Q ,  m + 0) are both given by the construction in Proposition 14, the 
principal does better under the new mechanism if the following condition holds: 

6' 
k 2 (ej' - 02)f(x) dx 

+ f9I [U(Q'(x)) - U(Q) - C(Q'(x)) + C(Q) - x + OrJf(x) dx 
le; 

+ le:[U( Q'(x )) - U(Q(x )) - C( Q'(x ))  + C(Q(x ))]f(x) dx > 0. 
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The first term is obviously positive, since lli > ll2. To see that the second term is positive, pick 
an arbitrary x E (ll2, lli). The endpoints of the integral give lli - x > 0, and we also know that 

U(Q'(x)) - U(Q) - C(Q'(x)) + C(Q) 

= rx Uq(Q'(x))Q0(x) - Cq(Q'(x))Q0(x) dx. 
lo• 2 

Furthermore, we know from the definition of Q* and our assumptions on U and C that VQ > 
Q* Uq(Q) - Cq(Q) < 0. By the construction in Proposition 14, we know ll2 < x < Oimplies 
Q'(x) > Q* and Q0(x) < 0, it follows that 

(Uq(Q'(x)) - Cq(Q'(x)))Q0(x) > o, 

which gives us the desired result. 

A similar argument establishes that the third term is positive. First, picking an arbitrary x E 
(Oi, 8), note from Proposition 14 that Q(x) = v-1(V( Q(O)) + 8 - x) and Q'(x) = v-1(V(Q*) + 
8 - x ) . Since the derivative with respect to V( Q(O)) in the expression for Q is positive and 
V(Q(O)) > V(Q*), it follows that Q'(x) < Q(x). Next, define h = Q(x) - Q'(x) > 0 and note 
that 

U(Q'(x)) - U(Q(x)) - C(Q'(x)) + C(Q(x)) 
= U(Q'(x)) - U(Q'(x) + h) - C(Q'(x)) + C(Q'(x) + h) 

= - lah Uq(Q'(x) + y) - Cq(Q'(x) + y) dy. 

By the construction in Proposition 14, we know that Q'(x) > Q*, and consequently, Q'(x)+y  > 
Q*. Then VQ > Q* Uq (Q) - Cq(Q) < 0 implies that 

- lah Uq(Q'(x) + y) - Cq(Q'(x) + y) dy > 0, 

which is the desired result. D 

Corollary 1 7 If the utility functions of the principal and agent are quasi-linear then the opti­
mal menu of fixed price contracts {(Qf(ll, Bf), mf(ll, Bf) + ll) E ��Ill E 0} is suboptimal. 

Proof: In order to apply Proposition 14, it is first necessary to show that the optimal menu 
of fixed price contracts is incentive compatible. By Proposition 1 1 ,  there are four proper­
ties to verify. It was shown in Section 3 that Q� S: 0 and that m� + 1 ;::: 0. To see that 
mf(ll, Bf)(VqQt + mt +  1) = 0, suppose that mf(ll, Bf) > 0. It was shown in Section 3 that 
for the quasi-linear case mf (ll, Bf) > 0 implies Qt = mt+ 1 = 0, so obviously VqQt+mt +l = 0. 
Finally, to see that VqQt + mt +  1 S: 0, suppose that mf(O, Bf) = 0. It was shown in Section 
3 that mf(ll, Bf) = 0 implies Qt = -l/Cq and mt = 0. The Kuhn-Tucker conditions for the 
agent's fixed price problem are 

Vq - Cq - ACq = 0, 
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where A �  0, Bf - C(Qf) - 0 � 0, and A(Bf - C(Qf)- 0) = O. It follows that VQ = CQ + ACQ � 
CQ , or in other words, VQ/CQ � 1 .  But then substituting for Qt and mt , we have 

VQQt + mt + 1 = -�� + 1 '.O 0, 

which is the desired result. Therefore, the optimal menu of fixed price contracts is indeed 
incentive compatible, and it must satisfy the conditions of Proposition 14. 

To see that the fixed price menu of contracts is suboptimal, two cases mu�t be considered: 
'VO E [ft,O) mf(O, Bf) > 0 and 30' E [!t,O) such that mf(O', Bf) = 0. In the first case, it is 
shown in Section 3 that when the agents have quasi-linear utility functions VO E [ft, IJ) Qt = 0 
and mt + 1 = 0. This implies that VO E El Qf(O, Bf) = Qf("O, Bf) and mf(O, Bi) + O  = 0, since 

Qf(O, Bf) = Qf(O, Bf) - { _ Qt(x, Bf) dx = Qf(O, Bf) 
lro,B) 

and mt = - 1  implies that 

mf(O, Bf) = mf("O, Bf) + f 
_ dx = 0 - 0. j[B,B) 

But this is just a cost-plus contract (Qf(O, Bf),O), which was shown to be suboptimal in 
Corollary 16. 

In the second case, suppose 30' E [ft,O) such that mf(01, Bf) = 0. By the construction in 
Proposition 14 it follows that VO E [O', O] mf(O, Bf) = 0. Then 'VO E  (O',O) 

VQ(Qf(O')) 
CQ(Qf(O')) ' 

where Qt = -1/CQ. But by Proposition 14, O' E 81 U {0*} and if the fixed price menu of 
contracts is optimal we must have 

and 

V(O') = V(Q(O)) + 0 - O' 

Vo(O') = - 1  -I VQ(Qf (O')) 
CQ(Qf(O') ) '  

where the failure of equality is generally true since V is strictly concave and C is strictly 
convex. That is, the utility of agent types decreases at a rate inconsistent with the construction 
in Proposition 14, and fherefore, the optimal menu of'fixed price contracts is suboptimal. D 

B Lemmata 

Lemma 1 A type 02 agent can successfully imitate a type 01 < 02 agent if and only if m(01) + 
01 � 02. 
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Proof: First, consider the "only if" direction, and take type 111 and 112 agents such that 111 < 112 
and m(111) + 111 < 112, and suppose the type 112 agent attempts to imitate the type 111 agent. 
Since the principal observes the quality level, the type 112 agent must produce Q(111 ) ,  but even if 
he picks m = 0 his cost will be C(Q(111)) +112 > C(Q(111)) + 111 .  Since the principal also observes 
the total cost of the project, he will sue the agent for breach of contract, inflicting infinitely 
large costs on the type 112 agent. 

The "if" direction follows easily, since under the antecedent assumption the type 112 agent 
can pick a level of misallocated funds m equal to m(01) + 111 - 02 � 0. D 

Lemma 2 If Qo ::::'. 0 and mo + 1 � 0, then Q is non-increasing. 

Proof: Suppose in order to show a contradiction that for x', x" E M = [m(.!l + ft, m(O) + OJ 
with x' < x" we have Q(x') < Q(x"). We know 311', II" E El such that m(ll') + II' = x' and 
m(ll") + II" = x", and since mo + 1 � 0 it must be the case that O' < 011• Now we have by 
assumption Q(x') = Q(ll') < Q(ll") = Q(x"). But since Qo ::::'. 0 and O' < 11", we know that 
Q(O") ::::'. Q(ll'), a contradiction. D 

Lemma 3 If Qo ::::'. 0, mo + 1 � 0, and m(O)(VQQo + Vm(mo + 1)) = 0 then Q is single-valued. 

Proof: First, note that Q cannot be sloping upward, as shown in the previous lemma. If Q 
is not single-valued, it then follows that 301, 112 E El, 111 < 112 with m(111) + 111 = m(112) + 112 
and Q(m(111) + 111) > Q(m(112) + 02). Since mo + 1 � 0, it must be the case that VII E 
[01 , 02] m(ll) + II =  m(111) + 111 = m(ll2) + 112. That is, we only need to consider the possibility 
that Q is vertical at m(111) + 111 . To rewrite this yet another way, it will suffice to derive a 
contradiction from the assumption that VII E [01 , 112] mo + 1 = 0. 

Note that VO E [111 , 112) m(O) > 0, since m(ll) + II  = m(02) + 02, which implies m(ll) 
m(02) + 112 - II >  m(112) � 0. By our assumptions, it follows that VII E [111 , 112) 

which implies that Q0 = 0, so Q is constant on the closed interval [01 , 112]. But then Q(01) = 
Q(02) ,  contradicting our assumption that Q(m(111) + 01) = Q(111) < Q(02) = Q(m(ll2) + 02). D 

Lemma 4 Q(ll) < Q implies m(ll) = 0. 

Proof: We know that if 30 E El such that Q(li) < Q then UQ(Q(ll)) - CQ(Q(O)) + VQ( Q(ll)) > 0. 
From (5) it then follows that / > 0, which from ( 4) implies that m = m* = 0. D 

Lemma 5 VII E El Q(ll) ::::'. Q .  
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Proof: Suppose in order to show a contradiction that 311 E 0 such that Q( 11) > Q.  Then 

Uq(Q(ll)) - Cq(Q(ll)) + Vq(Q(ll)) < 0, but then (5) implies 'Y < 0, which contradicts (4). D 

Lemma 6 VfJ E 0 Qo(fJ) ::;'. 0. 

Proof: First, define 01 = {II E 01Q(ll) < Q} and 02 = {II E 01Q(ll) = Q}, and note that 
02 = 0 \ 01 .  Since Lemma 4 implies that VII E 01 m( 11) = 0,  it follows that 

mo = m0(Q(ll), V(ll))Qo(ll) + mj,(Q(ll), V(ll))Vo 
= -Vq(Q(fJ))Qo(ll) - 1 = 0. 

Rewriting the last equation, we have 

1 Qo(ll) = Vq(Q(ll)) < O, 

so the proposition holds for 01. By construction of 02, the level of quality is constant at Q, so 
VII E 02 Qo(ll) = 0, which gives us the desired result. D 
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