








The market microstructure literature is complicated by the fact that part of it actually
considers screening models, whereby the market makers move first. In Glosten and
Madhavan’s framework, the market makers quote price schedules and insiders follow by
choosing optimal quantities along the most favorable price schedules. This is reminiscent
of the insurance models of Rothschild and Stiglitz [1975] and Riley [1979]. Glosten
and Madhavan have risk-averse insiders (they have negative exponential prefereuces).
but signals, payoffs and endowments continue to be normally distributed. They obtain
nonexistence results for low levels of noise. Out analysis will determine whether these
results are general in the sense that they will reappear in the signalling version ol thei
model or when distributional assumptions are relaxed.?

We start with the signalling model without anonimity. This is a straightforward ap-
plication of the existing literature on signalling models. We provide definitions for a
Bayes-Nash as well as a Bayes-Stackelberg separating equilibrium. The reason is that it
is possible to reinterpret Glosten and Madhavan’s screening equilibrium as a signalling
equilibrium (where the insider, rather than the market makers, moves first) with market
makers behaving as Stackelberg leaders.

Although our equilibrium concepts are taken from the game-theoretic literature. our
market microstructure model is not a fully-specified game, since the market makers’
strategies are derived from a zero-profit constraint rather than payoff optimization. The
zero-profit constraint is justified as the outcome of a Bertrand competition that we do
not model explicitly. Consequently, when we state that the market makers ~behave
as Stackelberg leaders™. we ean that their zero-profit constraint is solved taking into
account the insider’s reaction to the solution.

We provide three equivalent formulations of a. Bayes-Nash separating equilibriuny. The
first is standard. The second is taken from Mailath [1987], who shows conditions for exis-
tence and properties of equilibriumstrategies such as continuity and differentiability. I'he
third is a central planner’s formulation, which both highlights the incentive compatibility
constraints which emerge under risk aversion and facilitates welfare analysis.

When confronting the market microstructure literature with existence results from the
signalling literature, a puzzle emerges. Noise, or anonimity, seemsoriginally to have been
introduced in market microstructure models more to assure existence than to provide a
realistic description of financial markets. In the words of Black [1936): ~Noise makes
financial markets possible, ...” (p. 530). In the standard signalling model. equilibrium
exists even in the absence of noise. Confronted with this puzzle, we will investigate the
role of noise in market microstructure models. Anticipating some results. in hkyle. etc..
noise enters to avoid autarky in a world of common posterior beliefs (see e.g. Milgrom
and Stokey [1982]). Heterogeneity of beliefs could substitute for noise. In Glosten and
Madhavan’s case. noise is necessary only because of the unboundedness of the signal

*Copeland and Galai [1983] and Glosten and Milgrom [1985] also introduce market microstructure
models where the market makers move first. The size of the orders that can be submitted are constrained.
however.
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space: there is no “worst” type of insider. We show that introduction of boundeduess
through, for example, limited liability, can substitute for noise.®* From a practical point
of view, this implies that dealership markets do not necessarily break down when there
is little noise, contrary to what is claimed by Glosten and Madhavan.

Subsequently, we introduce noise, not in order to guarantee equilibrium existence. but
as a way to provide anonimity. We extend the definition of a separating Bayes-Nash
equilibrium. Intuitively, separation obtains if market makers’ posterior beliefs about the
signal that insiders must have received changes as a function of the quantity offered in the
market. We analyze in depth a case where the first moment of the posterior distribution
is sufficient to describe the equilibrium strategies of the market makers. The defiuition
of a seperating Bayes-Nash equilibrium is reformulated as a generalization of Mailath’s
analysis and as the solution to a central planner’s problem. Again, the latter facilitates
computation, which is illustrated with an example. Moreover, it provides a benchmark
to perform welfare analysis.

The formulation of the Bayes-Nash equilibria to our model with or without noise as
solutions to central planner’s problems indicate clearly that equilibrium strategies are
solutions to an initial value problem. In contrast, ex-ante Pareto-efficient allocations are
the solutions to a control problem. A comparison of the two leads to the conclusion that
our market microstructure model does not lead to ex-ante Pareto-efficient allocations.
Allocations which are ex-ante Pareto-efficient cannot be obtained, but we illustrate how
they can be approximated as Bayes-Nash equilibria of a repeated version of our game.

The empirical implications of our model are very different from those in the traditional
literature. In particular, price schedules are generically non-linear, due to the incentive
compatibility constraint. In addition, potential non-differentiabilities make parametric
estimation of the pricing function difficult.

The paper is organized as follows. Section 2 summarizes the existing noisy signalling
models in the market microstructure literature, and investigates the role of noise. Section
3 analyzes market microstructure models without noise, i.e. without anonymity. In
section 4, we extend the concept of a separating equilibrium to signalling models with
noise. Section 5 investigates issues of welfare and market design. Section 6 concludes.
Lemmas and propositions are proved in the appendix.

3This observation also applies to Kyle {1989)].



2 Market Microstructure Models and the Role of
Noise.

The purpose of this section is to briefly describe existing market microstructure models
and to investigate the role that noise plays in their specification. Consider, first, the
models of Kyle [1935], Admati and Pfleiderer [1938], Caballé and Krishnan [1990], etc..
where risk-neutral insiders hide their information behind noise traders. An aggregate
quantity is announced, lumping both informed and uninformed trades. and risk-neutral.
compet it ive market makers bid for it. Informed traders and market makers have conmon
priors and agree on the interpretation of the signals the informed traders might obtain.
Uninformed trades, signals and final payoffs are normally distributed. such that unique
linear equilibria exist. The role of noise seems tobe small. In the absence of noise, autarky
would obtain because of t he market makers' charging absurdly high prices for anv positive
demand or absurdly low prices for any positive supply. Noise is not necessarv to avoid
non-existence problems; it only prevents trivial equilibria from arising. An alternative to
noise as a way to generate nontrivial equilibria would be to introduce differences in beliets
about the distribution of end-of-period asset payofts conditional on the signal. This is a
straightforward generalization of Morris [1990], who considers a case where traders decide
whether to trade a predetermined quantity before observing prices. and heuce. canunot
condition on them.

Risk-averse insiders are introduced into Kyle's environment by Subrahmanyam [1990].
There. the insider’s signal is not observed by the specialist but his endowment is known to
the specialist and equal to zero. Because the risk-averse insiders trade only for speculative
reasons, incentive issues associated with risk sharing are avoided. The noise is due to
uninformed traders, and is normally distributed, as is the signal and the final payoff.
Wit hout noise, autarky would obtain.

In Glosten and Madhavan. however, risk-averse insiders face competitive. risk-neutral
market makers who compete with price schedules. Noise appears in the form of a stochas-
tic endowment, which is unobserved by the market makers. Insiders have expoueutial
utility, and both signal and endowment noise are normally distributed. The model is set
up as an extension of a continuous version of Rothschild and Stiglitz [1975] to noisy eu-
dowments. The market makers first compete with arbitrary price schedules, and iusiders
subsequently choose optimal quantities given the pricing function.

Glosten and Madhavan’s results seem to indicate that a linear Nash equilibrium exists
provided there is sufficient noise. We should contrast this with Riley’s analysis. Riley
[1979] analyzes the Nash equilibrium of the extension of Rothschild and Stiglitz (without
noise) to continuous signal and payoff spaces, and shows that a Nash equilibriumn does
not exist. Therefore, we could interpret Glosten and Madhavan’s results as indicating
that noise is necessary for existence in these models. However, Glosten and Madhavan
limit the strategy space for the market makers to that of continuous. twice-differentiable



functions. It is an open question whether their linear equilibrium would survive compe-
tition with discontinuous (or merely non-differentiable) price schedules. An affirmative
answer would indicate that noise is indeed necessary for continuous screening models to
have an equilibrium.*

One could also view the models of Glosten and Madhavan as signalling, as opposed to
screening models. where the insider selects a quantity before market makers competitively
quote a price. Notice the difference: the insider observes points on the optimal price
schedule rather than the price schedule itself. Glosten and Madhavan’s model, then. can
be interpreted as linear equilibria to this “quantity first” model where the market makers
behave as Stackelberg leaders rather than Nash (followers). Market makers determnine
the optimal price quote given the reaction of the insiders to their strategy.

Viewing their work as an extension of Kyle, it appears that Glosten and Madhavan have
shown existence of a linear Stackelberg equilibrium provided sufficient noise is present.
We shall confirm this shortly, after defining precisely the equilibrium concept we have
in mind. We refrain from directly citing Glosten and Madhavan’s results, since they
do not explicitly define an equilibrium concept. They must have had in mind a Bayes
equilibrium, as in solving for the equilibrium, they use the rules of conditional probability.
While Glosten and Madhavan’s results can be upheld when interpreting their wodel as
an extension of Kyle, this does not imply that noise is crucial for the equilibriuimn to exist.
We shall postpone a discussion to sections 3 and 4, where Nash equilibria for the same
model will be investigated. The results for Nash solutions will obviously carrv over to
Stackelberg solutions.

We analyze the Glosten and Madhavan model as an extension of Kyle with Stackelberg
market makers. Assume that an informed agent trades claims to a single risky asset with
an end-of-period payoff f which is normally distributed with mean ¢ and variance %2,
and a risk free bond with price and payoff equal to one. The insider owns w units of the
risky asset (and no bonds), where w is normally distributed with mean zero and variance
p*: w is independent of f. He observes a signal o, independent of w. about the final
value of the risky asset. Conditional on f, ¢ is normally distributed, with mean f and
variance v?. Hence unconditionally, & is normally distributed with mean ¢ and variance
w?+v? The insider chooses to hold b bonds and offer to sell ¢ risky assets to risk ucutral,
uninformed market makers. His final wealth is: W = b+ (w — ¢q)f. Given price p for the
risky asset, his budget constraint is: b+ (w — q)p < wp. The insider exhibits negative
exponential utility: u(W) = ——i-e"‘w. He behaves Nash: given the market makers’ reply
to his offer, p(-), he chooses ¢ to maximize his expected utility.

The assumption of negative exponential preferences is not crucial in what follows. except
when we calculate equilibria explicitly. Likewise, the normality assumptions will uot be
critical until we deal with existence.

iGlosten [1989, p. 221] mentions that Ailsa Roell raised the same point.



Competitive risk-neutral market makers with common beliefs quote prices p alter they
observe ¢. They behave as Bertrand competitors: their equilibrium expected protits
conditional on ¢ will be zero. The market makers are Stackelberg leaders. They do
not directly observe the signal o, but will infer it from ¢ using the rules of conditional
probability and the insider’s reaction function Q(o.w;p(-)).?

Let h(olg,Q(o.w: p(-))) be the conditional probability of the insider observing o given
the offer ¢ and the strategy (o, w;p(+))). This can be obtained from the joint density of
(o, w) by pertforming a change-of-variables to (o, ¢) using ¢ = (o, w; p(+)) and computing
the conditional probability. Let n(-) denote the normal density.

Define the mapping T from the product of the set of real-valued functions on K and R
onto R:
T(p(+),q) = E[flg; Qo.w; p(:))], (1)

with
E[_/'Iq;Q(a, w:p())] = //fn(f\a)h(a\q;@(a, w: p(-)))dfdo. (2)

Because of the Bertrand competition, market makers will quote prices p(¢) such that
T(p(-).q) = p(q). We call the model M, and its equilibrium a Bayes-Stackelberg equilib-

rium.

Definition 1 4 pure strategy Bayes-Stackelberg equilibrium to My is a« combination of
an offer rule. Q(-.-ip(+)): (o,w) = Q(o.w;p(-)), and a quote rule p(-): q — p(q). such
that:

1. Qlo,wip(+)) = argmaxerE[u(W)|o, w] where W = ¢[p(q) — f] + w/,

2. plg) =T(p(-),q), where the mapping T is given in (1).

Unfortunately, it is difficult to investigate general properties or even existence of equilib-
rium. Standard fixed-point arguments do not apply. Nevertheless, as pointed out before.
the equilibrium calculated by Glosten and Madhavan provides an explicit solutiou for a
sufficiently large amount of noise. The following proposition is a direct consequence of
the analysis in Glosten [1989] and Madhavan [1987].

Proposition 1 For p* > % M, has a linear Bayes-Stackelberg equilibiium. Noncris-
¥
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tence obtains when p* <

If the market makers were Nash competitors, they would not condition the insider’s strategy ou
their ewn respounse, p(-).



3 A Model of Non-anonymous Market Making.

Consider the model in the previous section. What we mean by non-anonymous market
making is that the insider’s endowment is common knowledge. Unlike in Glosten aud
Madhavan, his only private information is the signal, . We also drop the assumption
that the market makers are Stackelberg leaders, and assume they play Nash. The insider
offers a quantity ¢ and subsequently, market makers quote prices p. The optimal respouse
of the market makers takes as given the insider’s strategy and does not contemplate iow
the former’s strategy changes as a function of the response. Thus. the model is an
extension of the standard signalling model used by Spence [1973], Milgrom and Roberts
[1982], and Cho and Kreps [1937], among others. The insiders attempt to signal their
information by offering appropriate quantities.

From the signalling literature, it is clear that a Nash equilibrium may exist without noise.
To see why M is a signalling model, assume the signal and the final asset value can have
only two values. This, together with a lack of noise and our assumptions about the
sequencing of events, is Rothschild and Stiglitz reversed. Here. the insider (insuree) firsé
announces a quantity (deductible) and then the market maker (insurer) quotes a price.
Equilibrium always exists (see Hellwig [1987]).° In the absence of noise. the coutinuous
signal and payoff case is also a signalling model. Separating equilibria continue to exist
as long as certain conditions are satisfied.

More formally, define M, as M, with the following changes in assumptions:

1. The endowment w is commonly known and fixed at 1.

2. The market makers play Nash.

The insider’s strategy is now a function of the signal only. Q(-): ¢ — Q(o). The market
maker’s strategy. p(-) is determined by the Bertrand competitive zero-profit condition.
where the expectation is formed using the insider’s strategy Q(-) and Bayes’ rule.” We
focus on separating equilibria, those for which Q(-) is invertible. Hence:

Definition 2 A separating pure strateqy Bayes-Nash equilibrium to M, s a combination
of an offer rule, Q(-): o — Q(o), and a quote rule, p(-): ¢ — plq). such that:

*One may wonder about the properties of the finite signal and payoff game. When there are twe
states, and many potential signals, it can be shown that equilibria which are supported by particular
off-equilibrium path beliefs that satisfy Grossman and Perry’s [1986] perfection concept always exist.
They may be separating, pooling, or partially pooling. If we generalize to more (still finite) states.
equilibria continue to exist, and continue to be either separating, pooling, or partial pooling.

"Unlike Stackelberg market makers, Nash market makers do not consider the reaction of the insider
to their strategy p(-). Hence, we need not write Q(o; p(-)).
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1. Qo) = ergmaz,er Elu(W)lo,w] where W = q[p(q) = f] + w],

2. p(9) = E[f1Q(q)).
provided the inverse Q~'(-) exists.

This equilibrium could also be called perfect as long as each interval in the image space
of Q(-) occurs with positive probability. Unlike in the finite signal and payoft gaine.
equilibria which satisty definition 2 and span the image space of Q(-) are rebust to
standard refinements.

We work with two equivalent formulations of the above equilibrium notion. The first is
due to Mailath [L937]. Notice that the market makers’ strategies are mechanical: given
an announced quantity ¢, they determine the signal & that generates the proposal by
lwverting what they perceive the insider’s strategy to be. Then, from &, they determine
p(¢). One could as well limit the market makers’ actions to the announcement of a
signal they believe to have generated the offer. Prices are then calculated by setting
p(&) = E[f]a]. Consequently, we can rewrite the insider’s optiization problens as:

maz,er U(o,6,9), (3)
where
U(0.6,9) = E[u(W)lo],
W = qlp(6) - /] +w/,
p(6) = E[f]5].
The optimand to be maximized by choice of ¢ is the utility of the iusider given le

receives signal o, offers quantity ¢, and the market maker infers signal . We uow show
the following equivalence:

Lemma 1l Q(-): o — Q(0), is a separating Bayes-Nash equilibrium strategy for an
insider in My if and only if Q(+) ts invertible, with inverse Q~1(-), and satisfies T{Q(-). o)
= (o), where the mapping T is defined by:

T(Q(-),0) = argmazeerl/(0,Q7"(q), ). (4)

Mailath provides sufficient conditions on U(-,-,-) for a separating equilibrium to (4) to
exist and to be continuously differentiable. Unfortunately, expouential utility. together
with normally distributed signals, are not sufficient for existence, as we will subsequently
show.

The separating Bayes-Nash equilibrium can also be found by solving a central planner’s
problem (see Maskin and Tirole [1990] and Laffont and Tirole [1990]). This facilitates
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both the computation of equilibrium strategies, and the welfare analysis (which is cousid-
ered in section 5). The criterion functional in the central planner’s problem is an integral
defined with respect to some probability measure p. That is, the expected utility of the
different types of insiders (each type receives a different signal) is weighted by p. First.
the central planner announces an allocation rule. Then the insider announces a signal.
In setting the allocation rule, the central planner ensures truthful revelation of the signal.

Lemma 2 Let Y be the set of invertible real-valued functions on the signal space. Q)(-):
o — Q(o0), is a separating Bayes-Nash equilibrium strategy for the insider in M, «f and
only f:

Ot
—

o) = argmal'y(_)ey/U(O‘, 0, y(0))dy(o) (
sit. Ulo.o,y(0)) > Uloyé.y(6) Y 0.5,

for some probability measure p defined on the signal space.

The incentive compatibility constraint in the planner’s problem states that. given alloca-
tion rule y(-), truthfully revealing o maximizes the insider’s utilitv. Thus. this formulation
highlights that when extending Kyle’s market microstructure model to risk-averse insid-
ers, risk sharing becomes an issue and consequently, an incentive compatibility condition
1s necessary.

[f the equilibrium Q(-) to M, is continuously differentiable, (5) can be rewritten as:

Q) = argma:cy(.)ey/U(o‘, o,y(o))du(o) (6)
d A -
st. = U(0,6,y(6))lo=s = 0. (7)

G

provided that the second order conditions of the insider’s problem, Max;l (0.6.y(d)),
are satisfied at o = &. The constraint (7) is the first order condition to this maximization
problem, which is just a restatement of the incentive compatibility constraint. (7) can

be rewritten as:

y,:_Uz(O,U,y)’ (8)
(-[3(07 O‘,y)

where U; is the first derivative of U/ with respect to the j'* argument. Consequently. the

solution to the planner’s problem is a solution to an initial value problem.® We solve

(3) and pick the solution which maximizes (6), provided it satisfies the second order

conditions.

The planner’s problem can be simplified by setting u(-) = do(+), a probability measure
that puts all mass on ¢ = 0. Let Y = {y(-)|y(-) solves (8)}. Then. y(-) € ¥ solves

8Mailath also shows that Nash equilibria to signalling games can be found by solving an ordinary
differential equation.



the central planner’s problem if y(0) = argmaz.(/(0,0,z) provided it also satisties the
second order conditions.

To show that A1, has a separating Bayes-Nash solution, we would like to use the vepre-
sentation in lemma 2 and appeal to Mailath. Unfortunately, Mailath provides sufficient
conditions for existence only for compact signal spaces, whereas the signal space in our
example, and indeed, in the market microstructure literature in general, is the real line.
Consequently, we require a different proof. It is sufficient to show that the central plan-
ner’s problem has a solution that satisfies the second order condition of the incentive
compatibility constraint. Unfortunately, it does not.

Proposition 2 There does not exist a separating Bayes-Nash equilibrium to M.,.

In brief, the reasoning behind this proposition is as follows. Set the central planner’s
weighting function, y(-), equal to a probability distribution with full mass on a particu-
lar . Then there will exist a signal below & such that if the insider receives that signal,
the second order conditions of his incentive compatibility constraint are not satisfied.
Furthermore, weighting functions that put full mass on a particular value of the signal
essentially capture all possible weighting functions. We refer to the appendix for a de-
tailed proof. Consequently, the problem with M, is the unbounded signal space. Ouce
we bound the signal space from below, so there is a worst signal. existence follows.

For example, change M; to a model M, as follows. Let the signal be defined on [0, oc).
and let the value of the asset f, conditional on o, be normally distLibuted with mean
2 and w? (which lose their

L"

2+,1,2<D + v2+w2‘7 and variance 2+,2
meaning from model M3). Drop the other assumptions about the distributions of o and

for some constants v

f. We can now show the following:

Proposition 3 There exists a separating non-linear Bayes-Nash equilibrium to M. with
Q(-) solving:
2In|Q| - av?Q 4+ av®* + o0 =0

Note that @ is a non-linear function of . The non-linearity is due to the incentive
compatibility constraint. This implies that the price schedule, p(-), is also nou-linear.
We have:

Corollary 1 p(q) = 7z +¢,2¢ t 3 +¢,2avz[q ol logl(I”’ dﬁ_(qq) = 24;,”_.,‘3“'2[1 - ﬁ|1 < 0.
d?plg) _ %2 av? > 0.
dqz - v2+¢2 '2

That is, the pricing function is decreasing in the quantity offered at a decreasing rate.
Notice that only the insider with the worst signal (¢ = 0) is able to fully insure himself.
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Due to the incentive compatibility constraints, insiders with better signals do not wish
to sell the entire endowment.

4 A Model of Anonymous Market Making.

In the previous section, we investigated M,, where risk-averse insiders with knowu endow-
ments trade with risk-neutral market makers. This was an application of the standard
signalling model, and results such as existence of a non-linear equilibriurn obtaii. pro-
vided the signal space is bounded from below.

That model was one of non-anonymous market making: the market makers know the
endowments of the insiders. While this considerably simplifies the analysis, it is not a
reasonable assumption in all environments. We re-introduce noise not to obtain existence
of equilibrium, since equilibrium exists in the absence of noise. but instead to enhance
realism.

We continue to work with our example, which we extend to allow for unknown endow-
ments. We shall elaborate where the analysis can be generalized. (‘onsider M,, but
assume in addition that. as in section 2. w. the endowment. is normally distributed. with
mean zero and variance p°. Insiders know w; the market makers do not. C'all this model

There 1s an immediate problem. We are interested in separating equilibria. but the
strategy of the insider now becomes a function of both o and w. Q(-.-). This function
cannot be invertible in o without knowledge of w.? Therefore, the definition of separation
must be extended to cover Mjs. Intuitively, separation means that the market makers’
assessment of the likely signal (and hence. the price that they quote). must chauge with
the quantity offered. Since we are interested in Bayes-Nash equilibria. we require that
the market makers use Bayes’ rule to form a posterior for the signal given the quantity
offered. A natural extension of the definition is that separation obtains if this posterior
changes with the quantity.

When the market makers are risk-neutral and the final values given the signals are nor-
mally distributed, we do not need the complete posterior distribution of o given ¢. which
in general is difficult to compute. In our example, we need only compute the mean of
the conditional distribution:

plq) = E[fle: Q)]

®The insider could still communicate both his signal and his endowment by ceding his message ¢. The
market makers would decode the announced quantity and charge a price accordingly. In what follows we
assume that the market makers cannot perfectly invert the quantity for the signal and the endowment.
Actually, it is not clear that the insider wants such perfect decoding to take place, and, if he does, how
he could communicate the key to his code.

11



. &)2

= '2¢+.v2+¢,‘2

v+ ¥
where the conditional distribution of o given ¢ is determined by (2), using a change-ot-
variables and conditioning.

Elolg; Q- 4],

Our analysis extends to the more general case of risk-averse market makers or non-
normal signals. It is considerably messier. because the complete conditional distribution
of o given g needs to be known in order for the market makers to compute the compet-
itive price. We believe that our example, which is the canonical example in the market
microstructure literature, captures most of the important features of the general case.

Now. separation can be defined with respect to the conditional mean of o given ¢. This
will replace @ '(-) in the definition of a separating Bayes-Nash equilibrium given in
section 3.

Definition 3 A separating pure strategy Bayes-Nash equilibrium to M s a combination
of quantity offers Q(-.-): (o,w) — (o, w), and price quotes p(-): ¢ — p(q). such that:

1. Q(o,w) = argmaz.er E[u(W)|o,w] where W = q[p(q) — f] + wf.

]

2. p(q) = 7w ¢+ Az Elolg; QCL )L

)

As in the previous section, we consider two alternative formulations of the equilibriun.
The first is an extension of Mailath to unknown endowments. The second is a central
planner’s problem.

While the former is straightforward, the latter is considerably more difficult. There. the
insider is asked to reveal his information. He might have an inceutive to misrepreseunt
that information and announce a different signal from the one he receives. The ceutral
planner’s problem is to find an allocation rule (quantities and prices) which maximizes
the insider’s utility subject to a truth-telling constraint. Because of the noise, the central
planner can insist only that combinations of the unknown variables (signal and endow-
ment) be revealed truthfully. Since he can allocate only one asset, he cannot enforce
truthful revelation of the signal and endowment separately. He can only ensure truthful
revelation of a variable z = Z(o,w). That is, all insiders that have signals and eu-
dowments which generate some z announce this truthfully in a separating equilibriurn.
Consequently, for the purpose of translating our Bayes-Nash equilibrium into the equiv-
alent of Mailath’s formulation or into a central planner’s problem. we focus on equilibria
which reveal particular combinations of the signal and endowment, : = Z(o.w), where
Z(-, ) i1s invertible in w for all o.



Definition 4 4 separating pure strategy Bayes-Nash equilibrium to My that reveals = =
Z(o,w) s a combination of a quantity offer Q(-,-): (0. w) — Q(o.w). and a price quotes
p(:): g — plq), such that:

{. Q(o,w) = argmax,er Elu(W)|o,w] where W = q[p(q) — f] + wf.
2. Qlo,w) = Q(Z(a, w)), Q(~) is tnvertible, with inverse Q"l(-), Z( ) s moertidle

i w for all o, with iverse Z71(-, ),

3 ple) = 7m0+ Fam ElolQ7 gk 271 ).

This leads to the equivalent of Mailath’s formulation. Let ¢ denote the conditional mean
of o that the market makers infer from ¢. The insider’s problem is:

maz,ep U(o.w,0,q) (9)
where:
Ulo,w,5,q) = E[u(W)|o, w],
W= glp(5) — ] + wl.
v? , w2
V2 + wZCD + v+ r¢,‘2o-"

Now the optimand to be maximized by choice of ¢ is the utility of the insider given he
receives signal o. has endowment w, offers quantity ¢, and the market maker infers &.

p(o) =

Lemma 3 Q(-,): (o,w) — Q(o,w), s a separating Bayes-Nash equilibrium strategy
for the insider to Ms that reveals = = Z(o,w), where Z(-,-) is tnvertible n w for all
o, if and only if Q(o,w) = Q(Z(c,w)), where Q(-) is invertible, with inverse Q'(-).
and Z(-,) is tnvertible in w for all o, with inverse Z=1(-,-), and Q(-) and Z(-.-) satisfy:
T(Q(-), Z(-,-),0,w) = Q(o,w), where the mapping T is defined by:

T(Q(-), Z(+-),0,w) = argmaz,eg U(o, w, E[O’EQ_I(Q); Z700, ). (10)

We could proceed as in Mailath and provide sufficient conditions on U/(-,-,-,-) for the
solution to (10) to exist and be continuously differentiable. We shall delegate this to
future research. Rather, we will work-with the alternative formulation and show existence
for our particular example M3. The equivalent central planner’s problem is:

Lemma 4 Q(-,-): (c,w) — Q(o,w), ts a separating Bayes-Nash equiltbrium strateyy for
the insider in Mj that reveals z = Z(o,w), where Z(-,-) is tnvertible in w for all o. if

and only if Q(o,w) = Q(Z(o,w)), where

13



1. Z(-,-) is invertible in w for all o, with inverse Z=1(-,-), such that
Ulg, 27 o,2), Elol= Z71(-, )], y(z))
> Ulo,Zz7 o, 2),Elo|zZ27(-, )] y(3)) (L1)
has a single invertible solution y(-) for all 3,0, and
9, Q(-) solves:
Q() = argmazy(jey /U(aaZ“(cr-s),E[alz;Z"('v)],y(:))du(ffz:)-

for some probability measure p(o,z) defined on the product of the signal space and
the endowment space. Y s the set of functions that solve (11).

The central planner’s formulation of the equilibrium allocation makes clear how Z{o. w)
can be chosen. The choice must be such that (11), the incentive compatibility condition.
has a solution y(-). Provided the second order condition is satisfied, we can write the
incentive compatibility condition as a differential equation:

! U3(O’,Z_1(O',Z),E[O’IZ;Z_l(',')],y) d

YETT —Elo|z: 27 12
Y 0270 ) Blels 2 e 0 ) (12)

where U; is the first derivative of [/ with respect to the j* argument. Notice the restric-
tion that (12) puts on Z(-,-). Z7*(-,-) must be such that the right hand side does not
depend on o, since the left hand side does not. In M3, this would be satisfied by:

2

Lemma 5 [f Z(0. w) = 0 — av?w. then the right hand side of (12) does not depend on

ag.

Because of the assumption of jointly normally distributed signals aud endowments. we

can write:
E[‘7|322_1('~')}= Yo + =, (13)
where:
. ,¢'2 + 'U2
= ol -
w? + 'U2

o= W+ vt f atuipt

From lemma 5 we can show:

i
Tt

Proposition 4 If p? >
M; that reveals z = 0 — av®w, namely:

there exists a linear separating Bayes-Nash equilibiium to

_ %l =2%) +2’}’1 —1
av?(l — %) av?

Q(2)
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2 e, 2

v v Yo av
—Q + — (%0 + 7 +

o2 1 2t +'zr2+u’2(/o 1(1_“71 _271_1(1

plq) = ).

Notice that if v? — oo, then v, — 0, and hence, Q(o.w) = Q(z(o,w)) = w: The insider is
perfectly insured. Also, more noise is required for the existence of the linear equilibrium
than in the Stackelberg case (cf. Proposition 1). For equilibrium to exist, v; must be
less than 1. As v; T ;. the specialist is increasingly able to distinguish amongst signals.
Hence, his reaction to observing a large quantity is to decrease the price by an increasing
amount. At v, = %, his reaction is infinite, and markets break down.!”

N
a?yl

Proposition 5 For p? < , a Bayes-Nash equilibrium to Mz that reveals : = o —

R ‘
avw does not ewist.

The reason for this negative result is clear. Because the signal and the endowment are
normally distributed, z is unbounded, and there is no worst type. Any strategy oue
could propose that satisfies the second order conditions of the incentive compatibility
constraint for types z > z is suboptimal for some type below z, in the seuse that it
violates his second order conditions.

Consequently, an equilibrium fails to exist for exactly the same reason that it failed to
exist in the exponential-normal model without noise, M,. Indeed, it is the very reason
that Glosten obtains non-existence for insufficent noise in his model. To recover existence,
it is necessary to bound the types z from below. Since z = o — av?w, this implies that
the signal and the endowment should both be defined on a compact set.

As an example, consider the following changes to the assumptions of M.

1. o is uniformly distributed on [0, 1].

2. w is uniformly distributed on [0, 1].

. . . D . 2 o .

3. f conditional on ¢ is normally distributed with mean Uzj_wg o+ U?'-W,g o and variance
v2y?
v

Call this model M3. Then:

Proposition 6 A4 linear Bayes-Nash equilibrium to M} that reveals = = 0 — av*w doés
not exist.

19Tt is puzzling that the criterion function in the central planner’s problem plays no role. It does not
even determine the initial condition for the differential equation as in section 3. Given sufficient noise.
there is a unique, linear solution to the central planner’s incentive compatibility constraint.
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Proposition 7 Forv? < L, there exists a non-linear Bayes-Nash equilibriwm to V1 that
reveals z = 0 — av*w.

Existence can also be shown for values of v? above %

While the equilibrium solution does not have a closed form, we can calculate it nu-
merically. Figure 1 provides an example for particular parameter values. Notice the
non-differentiabilities in Q(-), which arise due to the compactness of the signal and en-
dowment space and the fact that the equilibrium reveals only combinations of the signal
and the endowment. These non-differentiabilities carry over to the market makers™ pricing
function. Since E[o|z: Z7!(-,+)] is increasing in z, the pricing function is also downward
sloping.

An interesting question is whether the above equilibrium converges to that derived in
section 3 where there is no noise (model .M;). To answer this question, define a sequence of
models { M3}, indexed by é. identical to M} except that w, the endowment, is uniformly
distributed on [(1 — 0),1].

Proposition 8 Forv? < 1, the non-linear Bayes-Nash equilibrium to M}, converges to
that of Mj as ¢ | 0.

Figure 2 illustrates the convergence for particular parameter values. Notice that this
implies that equilibriuin exists, regardless of the amount of noise. Thus Glosten’s claim
that a monopolist specialist is required to keep markets open if there is insufficient noise
depends critically on the unboundedness of the signal and endowment spaces. This is
also true for Madhavan’s claim about the necessity of batch markets.

5 Welfare Aspects and Market Design

Now we turn to the issue of market design. Is our market setup optimal? If not, what
changes need to be made for it to be optimal? What we mean by optimality is Pareto-
efficiency, when allocations are generated by a benevolent central planner who maximizes
some welfare criterion (weighted average utility). In our environment, the best we can
hope for is constrained Pareto-efficiency, where the central planner faces an information
constraint. In particular, she does not observe the insider’s signal, and therefore must
provide insiders the right incentive to truthfully reveal the signal and allocate resources
accordingly.

We focus on the no-noise environment. Here. we determine the optimal allocation rule in
a situation where an informed, risk-averse insider wishes to share risk with risk-neutral
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uninformed market makers, who know the endowment of the insider. The allocation rule
can be written as a pair of functions of the report of the insider, &. {q(-).p{-)}. where ¢
is the quantity the central planner takes from the insider, and p is the price she charges
the market maker.

We examine the social welfare functions which put zero weight on the market maker’s
utility. This corresponds to assuming the market makers are competitive and on average.
their profits equal zero. We also must put weights on the insider’s utility function for
each possible signal o. We take v(-), the prior probability of observing o. This will eusure
that the allocation rule {¢(-),p()} (now functions of o, assuming truthful reporting) is
ex-ante Pareto-efficient (efficient from the point of view of the insider before he observes
the signal).

Let V(o,q(0),p(0)) = E[u(W)|o] where W = ¢(o)[p(o) — f] + wf-

Definition 5 The allocation rule {q(-).p(-)} is ex-ante Pareto-efficient if it is the solu-
tzon to:

{q(-).p()} = argma:ry(,)ru(.)ey/V(a,y(a),x(o))dv(a) (L4)
s.it. Vi(oyy(o),a(o)) > Vie,y(d),z(0)) Vo, (13)
J(@(0) = Elflol)de() =0, (16)

where Y is the set of real-valued functions defined on the signal space.

(15) is the incentive compatibility constraint, and (16) is the market makers™ zero profit
constraint.

The central planner’s problem can be written as a control problem with ¢ playing the
role of time. Unlike the central planner’s problems of sections 3 and 4, the criterion
function now plays a role beyond providing initial conditions for the corresponding dif-
ferential equation. The difference- emerges because the pricing rule p(-) is no longer a
predetermined function, but could be any of a family of functions which satisty (16).

It is clear that the separating Bayes-Nash equilibrium to M will often be different from
the Pareto-efficient solution. That is, the Pareto-eflicient allocation cannot always be
implemented as a Bayes-Nash equilibrium to M}.!' The question is, how can we design a

' Examples may be constructed based on Pontryagin’s maximum principle.
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market which does generate Pareto-efficient allocations? There is an easy way to proceed:
We can embed our one-period model in a repeated framework. and appeal to folk-theorem
like arguments.

Let the game M, be repeated identically for time ¢t = 1,...,00. One insider can choose
each period from among a countably infinite number of market makers. Once he las
made his choice, he pays a fee € to the market maker for the right to trade with her over
the next period. Then he observes his signal, announces a quantity, and she charges him
a price. The following period, the insider can opt to either switch market makers, or stay
with the same one.

In order to keep the market maker from exploiting her temporary monopoly position.
the insider pays a fee ¢ each period such that the discounted value for the market maker
from keeping the insider as a customer forever (if 6 is the discount rate. this value is ;=)
marginally exceeds her one-period monopoly profit plus the one-period fee .

Consequently, the insider can make the market maker behave as in the Pareto central
planner’s problem. It is not in the latter’s interest to deviate, because she would lose a
customer, making zero profits from period ¢ + 1 on, as opposed to 1. Notice that the
Pareto-efficient allocation can only be approximated: the insider must pay a fee ¢ each

period. This fee, however, will be small if the discount rate 6 is high.

Were there more than one insider, the fee would be bigger because the market maker
faces a positive probability of another insider contacting her after the former customer
has departed due to her price gouging. Now the discounted sum of fees must exceed the
sum of (i) the one-period monopoly profits, (ii) the one-period fee €. (ii1) the expected
profits from future customers who might contact her. Note that if all insiders observe
price gouging, this situation reduces to the single insider case.

6 Conclusion

Our analysis of noisy signalling models has important implications for empirical analysis
of market microstructure models. First, as in signalling models with no noise. the incen-
tive compatibility constraints for the risk-averse traders lead to non-linearities in the equi-
librium price-quantity schedules. Second, since the equilibrium will reveal only combina-
tions of several random variables, each defined on a compact set, non-differentiabilities
might appear in the price schedule. Both properties complicate empirical analysis of the
price impact of trade. Nonparametric estimation seems advisable, especially since the
shape and location of the non-differentiabilities of the equilibrium price schedule depend
on relatively arbitrary assumptions.

Non-linearities and non-differentiabilities might explain why in empirical studies of the
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traditional linear model, the slope coefficient of the price-quantity schedule. i.e. the
price impact parameter, is often economically insignificant (see e.g. Glosten and Harris
(1989], Hughson and Bernhardt [1990], etc.). Figure 2 illustrates how, as the amount
of noise increases (6 T 1), the equilibrium quantity-signal combination schedule. and
hence the price-quantity schedule, has increasingly steeper edges and a flatter interior.
Consequently, we conjecture that the common stock of firms held by a limited number of
well known insiders, because of the absence of noise, will exhibit a strong price impact of
trade. Conversely, common stock of firms held by a dispersed group of insiders. because
of the greater noise, will show relatively little price impact.

In this paper we have assumed that market makers are risk-neutral. If market makers are
risk-averse, the situation is more complicated. In particular, inventory considerations can
no longer be ignored (see also Biais and Hillion [1991]). We speculate that the following
framework might lead to more precise conclusions. Consider a large number of risk-averse
market makers. Each of them will have a different reservation value for the risky asset
because of differences in inventory. Hence, their bidding for the quantity offered by an
insider is reminiscent of first-price auctions. If there are enough market makers, each
will bid her reservation value (as opposed to a value strictly below the reservation value).
The model might become especially intriguing if put in a repeated framework. Among
other things, it seems that transaction prices might fail to be autocorrelated. despite
inventory issues, and contrary to a widely cited presumption. We leave the verification
of this conjecture to future research.

Finally, a comment regarding the static nature of our model is warranted. Even the
repeated version lacks genuine dynamics. It is not clear what results would emerge
when allowing the insider to trade at various times before all uncertainty is resolved.
Kyvle analyzes this problem for a risk-neutral insider. Our insider is risk-averse. and
consequently, does not trade merely for speculative reasons, but also to share risk. lu
addition to the multiperiod incentive compatibility problems this raises, recontractiug
possibilities substantially complicate the analysis. Further research should clarify these
issues.
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Appendix

Proof: (Lemma 1)

Qo) = argmazeenBlu(W)lo]
where W = q( (q) — )+ wf
[I|Q_1( )]
< Qo) = aumam,eR[/(a, 7,q)
where &= Q7 !(q)
& Qo) = argmaz,erU (o, Q7' (q),9)
where Q(o a7gmaL,eRU( a,Q7q),q) is sholthand notation for: Q(o) = T(Q(-).0).
where the mapping T is defined by T(Q(:),0) = argmaz,crU(o, Q7' (¢),q). [

To prove lemmas 2 and 4, we first show the following equivalence:

Lemma 6 2(-). a function from R to R. is invertible. with inverse x™'(-). and satisfies
T(x(-),0) = x(0). where the mapping T is defined by T(z(-),6) = argmax-cpf(0,07'(2). 2).
if and only ifx(-) = argmaasyey [ f(0,0,2(0))du(0), s.t. ¥0,6: f(0,0,:(0)) > f(0,0,:(0)).

for some probability measure u(0). Y is the set of invertible real-valued functions on R.

Proof: We use shorthand notation. First, 2(0) = argmaz.cpf(0.27(z).z) if 2(:). a
function from R to R, is invertible, with inverse ~!(-), and satisfies 1'(w(-),#) = «(#).
where the mapping T is defined by T'(z(-),0) = argmaz,epf(8.07"(2). ). Second. ¢ €
argmazecp f(0,0,2(0))if V6.0: f(0,6,2(0)) > (0,6, 2(0)).

(=)

(i) 2(0) = argmaz.cp f(0,27(2),2) =
2(0) = argmax,cpf(0,0,z) =
1(9) = argmaxz(,)eyff(H,ﬁ,2(9))J,u(9),all H(B)

(ii) z(8) = argmaz.cpf(0,271(
Hence, max.cp f(6, x‘l(z).
6,

(<) (By contradiction) Assume, for some u(4),
z(-) = argmaa:z(.)ey/j’((),(),z(@))du(&)
. 0 = argmazyp, f(0, 9. =(6)),
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and Vz(-) invertible: argmagz.epf(0,27'(2),2) = z7(0) # z(f), some 6 (i.e. z7'(z7) # 6.
some z7). Let Z be the set of functions z(-) that satisfy: § € argmaa;c,f(0.60.:(0)). lor
all 8. We must verify whether x(-) is an element of Z. If not, it cannot possibly solve

argma:(.jey / f(,0,2(0))du(0)

s.t. 8= argma.réeRf(H.é, 2(6)).

For any invertible 2(-) : maxéeRf(H,é,;v(é)) = maxX:epg f(#,z71(2), x(™}(3))). Conse-

quently, for argmaxgcp f(0, é,m(é)) = f for all 6, it must be that:

) x(27H(E))) = 2(0).

14y

wrgmazzepf(f, 27"

Yet, for some 8, argmazr:cp f(0, x71(2), 3) = z%(0) # 2(6), for some 0. Hence, () & Z.
|

Proof: (Lemma 2) Follows directly from lemmas | and 6. [

Proof: (Proposition 2) We solve the central planner’s problem setting w = 1.

. 1
)y(6) + (1 —y(9))E[flo] - Fell = y(8))*var(flo)

U(U.O’,’y(&)) = p(a-
)? 2 /2 2,02
. ol w A v w £ . 2 (& (,D
o y(a)vg T wz(U o) + (_Ug ¥ o2 + 2 +'¢20) 2&(1 y(o)) e

Consequently, y(-) has to solve:

y = ¥
' av?(l —y)

All solutions to this (separable) ordinary differential equation can be written as:
avilnly| — av*y + av* + o+ k =0, (17)

for constants k. To determine k, set (o) = d5(0), a probability distribution with unit
mass at ¢ = &. It follows that y(6) = 1 and ¥ = —0&. This satisfies the second-order
conditions for ¢ = . To see this, notice that the second-order conditions are:

d* :
—=U(0,5,4(5))]s=s <0, iLe. y'(o) <O.
de
Since y(d) = 1, lim, 5y’ (0) = —o0, limglc—,f;gU(cr,&,y(&)H&:a = —oc, and the second-

order conditions hold. However, take any ¢ < & — av?. From (17), y(o) must satisfy:

ye ¥ > 1, i.e., y(o) > 1. But then y'(6) > 0, violating the second-order conditions.
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What about other probability distributions that can be used in the criterion function of
the central planner? We have only used u(o) = 65(0). Any other distribution. however.
will pick a strategy determined by a particular k. Such a strategy already turned out
to be optimal for ¢ = —k, i.e.. u(o) = 6_,(o). Hence, we have essentially analvzed all
possible distributions u(o). [

Proof: (Proposition 3) Use the formulation of the equilibrium as a central planner’s

problem. As in the prootf of proposition 2, the following equation solves the ordinary
differential equation that provides the first-order condition for the incentive compatibility
constraint:

av’lnly| — av’y + av® + 0+ k = 0. (18]
Set p(o) = de(o) to determine k. It follows that y(0) = | and k& = 0. This particular
solution satisfies the second-order condition for all & > 0. To see this. notice that. from
(13). y has to satisfy:

ye ¥ = e~leTa?

Since ye™Y 1s contmuous on (0, 1] and reaches a maximum of e 1 and a minimum of 0,

whereas e 'e” =7 is between 0 and ¢! for ¢ > 0, y(o) will be somewhere between 0
and 1. Consequently, 1“‘:) > 0 and y'(o) > 0, which is required for the second-order
conditions to be satisfied. [ |

Proof: (Lemma 3)

Qo.w) = argmaz,epE[u(W)|o, Z7(-, )]
where W = g[p(q) — f] + wf
v? . P?
p(q)=v02+¢2¢+ 2+WE[CAQ RIS
where  Q(Z(0,w)) = Q(o, w)
< Qo,w) = av‘gquERU(a,w 7.q)
where o = [0|Q )]
with  Q(Z(o,w)) = Q( w)
& Qo,w) = argmaz,cpl/(o, w. ElolQ Y q): Z71(.)].q)

with  Q(Z(o,w)) = Q(o,w),
where Q(o, w)=argmaz,cpU(o,w, E[o|Q~'(q); Z7'(-,")], q) is shorthand notation for:
Qo,w) =T(Q(:). Z(-,),0,w),
where the mapping T is defined by
T(Q(-), Z(,"),0,w) = argmaz,erU(o,w, E[o|Q7"(¢); Z7M(-.*)].q).

o
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Proof: (Lemma 4) Follows from lemmas 3 and 6. (Instead of a single “objective”

argument, o, we now have two “objective” arguments: o and w. Z7'(0.:) substitutes
for the latter.) [

Proof: (Lemma 5)

> v? + Y2
Hence:
U = = fwz.;{r)»
- {vzfz,i*?é-i-v?‘fﬂ}za)
+ a(Z—l(a.:)—y(:J)U:?;z-

In order for —E2 4 £(o|z; Z7Y(.,-)] to be independent of o, we need

{/; dz ?
w'Z ‘ ,02?’[)'2
+aZ”
2 _+_ vd)ﬂa ( )02 _I_ ’d)'Z
to be independent of 0. To obtain this result, let Z(o,w) = ¢ — av?w. Therefore.
Z7'(0,z) = -6 — =z z. Independence of ¢ follows since:
2 2,72
VY
- 2+¢2a+a2 Yo,z )m2+¢2
ip? P ah?
R il‘za + v+ 'WJ Tt
_
B vt 42

|
Proof: (Proposition 4) Use the central planner’s formulation of the Bayes-Nash equi-
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librium. Solve the first-order conditions to the incentive compatibility constraint (an
ordinary differential equation):

Us(o,Z7 (o, 2), E[o|2 Z71(-. )], y(2)) -

+0y(o. Z_l(o',z),E[Ulf‘, Z_l(" )].y(:))y’(f) 2

Le.
—av’y'y +y' (v + (11 = 1)2) + 1y = 0.

The following provides a (unique) linear solution:

Yo(1 — 2‘/1) 27n =1 ;
2 ~ .

yle) = av?(l — ) av

The second-order conditions are:

d
dz

(Us(e. Z27Mor,2), Elols 274 ) w(9):

d
dz

Elo|5 27 (-, ) + Us(0, 27 (0,2), Elo]5 27'(, )], w(2))
yl(‘%))lzzs < 0.

Rearranging yields,
2’)’1 - l
< 0.

av?
For the second-order conditions to hold, it must be that v; < %, or:

; 2

2 U2 AU

p
a2v4

Proof: (Proposition 5) From the proof of fn‘oposition 4, it follows that the secoud-order

. ) . . . R
conditions are violated for v, > % i.e., for p? < % [ ]

We prove proposition 7 before proposition 6.

Proof: (Proposition 7) Again, use the central planner’s formulation of the Bayes-Nash
equilibrium. First, determine E[o|z; Z7!(+,")], where Z(-,-) is given in lemma 5 (which
continues to hold for 1\/];). A tedious change-of-variables from (o,w) to (o,z) using
z = Z(o,w) provides (assuming v? < i)

1
- 1iz<o3(z + av?) + 1 elo1-av2)jav? + Lsi g2y (1 — 2)

flo,2)
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Consequently,

L, 1
Elo|z:Z7'.) = Sev”+ 53 (z € [~av?0)),
= 3avz+:, (z €[0,1 = av?)),
1 1
= §+§Z, (zG[I—avz,l])

The first-order conditions of the incentive compatibility condition can. as betore. be
written as an ordinary differential equation:

—av’y'y + y'(v0 + (1 = 1)) + my =0,
where ~ve,7; take on values depending on z. The second-order conditions are:

2y (2) — av¥(y'(2)) + (e + 2(m = 1) — avy(2))y"(2) < 0.

(i) For z € [0,1 — av?), e = %an and 7, = 1. The ordinary differential equation that

represents the first-order condition is separable. and the solution is given hy:
L, 2
Sov Inly| — av’y + 2 + k=0,

for constants k, where k£ is determined by the criterion function of the central

planner’s problem. The second-order conditions are satisfied for y'(z) < 0. Le.,
1

y e (07 §]

(ii) For z € [-av?,0),7 = 3av? and 71 = ;. The first-order conditions become:
—2av¥y'y + y'(av? — ) +y = 0.

This ordinary differential equation 1s not separable, and needs to be solved numer-
ically. The second-order conditions are satisfied for y'(z) < 0. i.e.. y < é(l — ).

(iii) For z € [1 — av?,1},v¢ = %, = 1. the first-order conditions become:
—2av*y'y +y'(1 — 2)+y =0,

again a nonseparable differential equation. The second-order conditions are satisfied

for y'(z) < 0, ie., ¥y < 3.

Next, set p(0,z) = 6_,2(z) In the central planner’s criterion function. The member of
the family of solutious to the above ordinary differential equations that maximizes the
resulting central planner’s criterion function will be anchored at { z, y(z)} = {—av?. 1~ ¢}

for some small number € > 0. (At y(—av?) = 1, the corresponding second-order con-
_ 2

ditions are violated.) Consequently, the “worst type”, i.e., the insider with : = —av
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(0 = 0,w = 1), will be almost fully insured. k. the constant of integration in the so-
lution for = € [0,1 — av?) will be determined so the solution for z € [—acv?. 0] matches
up at = = 0. Similarly, the solution for = € [1 — av? 1] should match up with that for
: €[0,1 —av?) at = =1 — av? Figure 1 displays equilibria for various- values of av?. We
have checked the numerical solutions against the second-order conditions. y'(z) < 0. for
various values of av?; they were never violated for initial values (z,y(z)) = (—av? 1 —¢).

Proof: (Proposition 6) Take = € [0,1 — av?®). The linear solution to the ordinary dif-

ferential equation that represents the first-order conditions of the incentive compatibility
constraint has slope: —, which is greater than zero, violating the second-order concli-
tions. m

Proof: (Proposition 8) Replicating the proof of proposition 7. we obtain the following:

Elolz:Z27'-.)] = %av” + %: (z € [—av? —(1 = 8)av?)),

= (l- g)av'2+ 7, (2 € [=(1 = §)av?i 1 —ar?)),

+

2, | 2
(1 =8)av?+ 5% (z €[l —av’.l— (Ll =0)ar”)).

| =
| —

(1) For z € [—av® —(1 — §)av?), the solution is identical to the one of proposition 7.
except fer the shorter support.

(ii) For z € [—(1 = §)av?® 1 — av?), the solution becomes:

(1 —Davinly| —av’y + 24+ k=0

o | o

)

The second-order conditions (y'(z) < 0) are satisfied for y € (0,1 — 3].

(iii) For z € [l — av?® 1 — (1 — 6)av?], the ordinary differential equation that represents
the first-order conditions of the incentive compatibility condition becomes:

200’y — y' (1 + (1 = §)av?) + zy' —y = 0.

This equation needs to be solved numerically. The second-order condition. y'(z) <
0, is satisfied for

1+ (1-06)av? -z

y < 5
2av?

Setting (0, z) = 6_,,2(z), the same optimal supply schedule an [—avi, —(1 = §)ae?) as
before with ¢ = | is obtained. It is anchored at (z,y(z)) = (—av? 1 — ¢), for some small
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¢ > 0. The optimal schedules for z € [—av?, —(1 = §)av?) and z € [ — e 1 — (1 —0)ar?]
are matched with the one for z € [—(1 — §)av® 1 — av?). Figure 2 displays the optimal
supply schedules on [—av? 1 — (1 — §)av?] for various values of 8. In all cases. the
second-order conditions are satisfied.

As § | 0, the first interval, [—av? —(1—§)av?), vanishes. The solution on [—(1—é)ev?. | -
av?) converges to that of proposition 3. The last interval. z € [l — av® 1 — (1 — §)av?]
also vanishes. [ |
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Figure 1: Quantity (}7) as a function of the market maker’s imperfect information (Z2)

when av? = .9.
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Figure 2: Quantity (Y') as a function of the market maker’s imperfect information (Z)
when av? = .9 and the amount of noise approaches zero (6 = [1..75..23.0)).
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