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ABSTRACT

We disentangle X-ray disk reflection from complex line-of-sight absorption in the nearby Seyfert NGC 4151, using a suite of Suzaku,
NuSTAR, and XMM-Newton observations. Extending upon earlier published work, we pursue a physically motivated model using the
latest angle-resolved version of the lamp-post geometry reflection model RELXILLCP_LP together with a Comptonization continuum.
We use the long-look simultaneous Suzaku/NuSTAR observation to develop a baseline model wherein we model reflected emission as
a combination of lamp-post components at the heights of 1.2 and 15.0 gravitational radii. We argue for a vertically extended corona as
opposed to two compact and distinct primary sources. We find two neutral absorbers (one full-covering and one partial-covering), an
ionized absorber (logé = 2.8), and a highly-ionized ultra-fast outflow, which have all been reported previously. All analyzed spectra
are well described by this baseline model. The bulk of the spectral variability between ~1keV and ~6keV can be accounted for by
changes in the column density of both neutral absorbers, which appear to be degenerate and inversely correlated with the variable hard
continuum component flux. We track variability in absorption on both short (2 d) and long (~1 yr) timescales; the observed evolution
is either consistent with changes in the absorber structure (clumpy absorber at distances ranging from the broad line region to the
inner torus or a dusty radiatively driven wind) or a geometrically stable neutral absorber that becomes increasingly ionized at a rising
flux level. The soft X-rays below 1 keV are dominated by photoionized emission from extended gas that may act as a warm mirror for

the nuclear radiation.

Key words. galaxies: active — galaxies: nuclei — galaxies: individual: NGC 4151 — galaxies: Seyfert — X-rays: galaxies

1. Introduction

Active galactic nuclei (AGN) efficiently return energy to their
environment both via accretion onto supermassive black holes
(SMBHs) resulting in broad-band radiation and via the ejection
of matter through collimated jets and outflows. Jets can form
by extracting energy from the inner edge of an accretion disk
around a rotating Kerr black hole (Blandford & Znajek 1977;
Tchekhovskoy et al. 2011) while a maximally spinning black
hole allows the innermost stable circular orbit (ISCO) of the disk
to lie very close to the black hole. A hot electron plasma of yet
unclear geometry, the so-called “corona”, is supposed to upscat-
ter soft thermal seed photons from the accretion disk (Haardt
1993; Dove et al. 1997a,b; Belmont et al. 2008) approximately
resulting in an X-ray power-law spectrum that can be observed
both directly and reflected off the disk. For radio-quiet AGN in
the absence of strong jets, the X-ray spectrum is entirely dom-
inated by emission processes from the compact X-ray-emitting
regions. The prominent fluorescent Fe Ko line at a rest-frame
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energy of 6.4keV as well as a broad Compton hump peak-
ing around 20-30keV are well explained by distant reflection
(George & Fabian 1991; Garcfa et al. 2013) off a standard op-
tically thick and geometrically thin @-disk (Shakura & Sunyaev
1973). Many “bare” and unabsorbed Seyfert 1 galaxies that are
observed under shallow inclination angles are supposed to al-
low a direct line-of-sight to the inner disk and reflected radia-
tion from this region, where strong relativistic Doppler shifts,
gravitational redshifts, and light bending result in a significantly
broadened iron line feature (e.g., Walton et al. 2013, and refer-
ences therein).

The diagnostic power of broad iron lines for studying the
accretion physics in the presence of strong gravity has been
used in a number of models that are designed for fitting data
in XSPEC and other fitting packages. A model that allows to
fit for the black hole spin as a free parameter and to con-
volve a broad-band reflection continuum with a relativistic ker-
nel is provided with relconv by Dauser et al. (2010), who
also include an overview of previous models in this field.
A number of studies using any of these models consistently
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find larger disk emissivities closer to the black hole, while
the outer disk can be well described with a power-law emis-
sivity law of an @-disk (e.g., Wilms et al. 2001; Fabian et al.
2002; Brenneman & Reynolds 2006; Larsson et al. 2007, for
MCG-6-30-15 as well as a number of other AGN studied, e.g.,
by Ponti et al. 2010; Brenneman et al. 2011; Wilkins & Fabian
2011; Dauser et al. 2012 or Risaliti et al. 2013). These steep in-
ner emissivities strongly motivate a “lamp-post” geometry for
the corona as opposed to a corona that sandwiches the accre-
tion disk (Svoboda et al. 2012, and references therein). In the
lamp-post geometry (Martocchia & Matt 1996), the source of
hard photons that irradiate the accretion disk is located above
the black hole, on the symmetry axis of the system. A possi-
ble physical realization would be that the corona is the base
of a jet (Markoft et al. 2005; Wilkins & Gallo 2015; King et al.
2017). The first model allowing to directly fit the broad Fe Ka
line in a self-consistent lamp-post geometry has been published
by Dauser et al. (2013). As a further improvement, Garcia et al.
(2014) link the reflected spectrum xillver (Garcia et al. 2013)
from each point of an ionized disk with the correct relativistic
transfer function. Their model relxill_lp is the only model
to date that allows self-consistent fits of reflection features un-
der consideration of a primary source at a certain height above
the disk in an angle-dependent way. A coverage of high signal-
to-noise (S/N) data above 10keV, as provided by NuSTAR, is
important in such models where the model parameters are very
sensitive to changes in the spectral shape (Walton et al. 2017;
Dauser et al. 2016). A dedicated study of the sample of bare
AGN (Walton et al. 2013) with relxill_1p will follow by Fink
et al. (in prep.).

Many continua of bare AGN, where most of the relativis-
tically blurred features have been detected, are free of strong
and neutral absorption but show signs of ionized warm ab-
sorption or outflows. Still, Compton-thick absorption has been
claimed to explain the broad iron-line features of AGN (e.g.,
Miller et al. 2008; Turner et al. 2009). Walton et al. (2010) pro-
vide strong arguments against this scenario and in favor of inner-
disk reflection.

The only intermediate-class Seyfert galaxy where a vari-
able cold and clumpy absorber (Risalitietal. 2005, 2007,
2009b; Maiolino et al. 2010) has been observed in conjunc-
tion with clear evidence for relativistic reflection is NGC 1365
(Risaliti et al. 2009a, 2013; Brenneman et al. 2013; Walton et al.
2013, 2014). For this source, Risaliti et al. (2009a) are able to
disentangle a partial-covering absorber with low covering frac-
tion from similarly broad spectral features of blurred reflection
by making use of the variability of the absorber. Mrk 766 may
be an additional example, however, the detection of a relativis-
tically broadened iron line is not yet clear (Miller et al. 2007;
Patrick et al. 2012).

In Seyfert galaxies, variability in line-of-sight absorption
across a wide range of timescales has been observed. One com-
mon interpretation of such variability is the passage of discrete
clouds across the line-of-sight (Nenkova et al. 2008a,b). Clouds
in Cen A (Riversetal. 2011) and NGC 3227 (Lamer et al.
2003) are observed via centrally peaked column-density ab-
sorption profiles on timescales of weeks to months and are in-
ferred to reside in the outer broad line region (BLR) or inner
dusty torus. Meanwhile, much shorter absorption events (51—
3 d) have been detected, for example, in Mrk 766 (Risaliti et al.
2011), Fairall 9 (Lohfink et al. 2012), NGC 1365 (Risaliti et al.
2007, 2009b), Swift J2127.4+5654 (Sanfrutos et al. 2013), or
NGC 3227 (Beuchert et al. 2015). These patterns are consistent
with transiting clumps at the distance of the BLR.
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NGC 4151 is aclose-by (z = 0.003319; de Vaucouleurs et al.
1991) and well-studied Seyfert 1.5 galaxy. Complex and vari-
able line-of-sight absorption has been reported from X-ray spec-
tra for over three decades (e.g., Holt et al. 1980; Yaqoob et al.
1989; Fiore et al. 1990). The absorption has been modeled in a
variety of ways across various X-ray missions; successful mod-
els have typically incorporated combinations of approximately
two absorbers, for example, sometimes cold and/or warm com-
ponents. Having at least one partial-covering (covering frac-
tion typically ~30-70%) component is common. Variability in
absorption structure has been observed across a wide range
of timescales, but positively identifying the responsible com-
ponent(s) remains difficult (de Rosa et al. 2007; Puccetti et al.
2007; Wang et al. 2010).

Keck et al. (2015) have recently provided solid evidence for
relativistic reflection off the inner disk in NGC 4151 with ad-
ditional signs for absorption variability. The goal of this paper
is to revisit the spectral modeling of NGC 4151 and to pur-
sue a physically-motivated model of its broad-band X-ray spec-
trum and spectral variability. We consider multiple datasets with
high count statistics. We use the most updated relativistic re-
flection model code, RELXILLCP_LP, and remain mindful of po-
tential degeneracies between relativistic reflection and complex
absorption (e.g., Keck et al. 2015, for NGC 4151). The choice
of this model is strongly motivated by the detection of non-
relativistic radio jets at a velocity of ~0.05 ¢ (Wilson & Ulvestad
1982; Mundell et al. 2003; Ulvestad et al. 2005) and by re-
lated Comptonization models in the jet-base of microquasars
(Markoft & Nowak 2004; Markoff et al. 2005). In Sect. 2 we
provide an overview of the observations we consider for the data
analysis presented in Sect. 3. For the analysis, we carefully mo-
tivate a baseline model, which we then apply to all observations.
We also investigate the inherent spectral variability as well as
the sensitive parameters of the relativistic reflection components.
The soft X-rays are separately investigated. The results and im-
plications are discussed in Sect. 4 and concluded in Sect. 5.

2. Observations and data reduction

The observing log in Table 1 lists all examined XMM-Newton,
Suzaku, and NuSTAR observations. They divide into the long-
look Suzaku observation Suz 3 with the simultaneous long-look
NuSTAR observation Nug,,. These observations are comple-
mented with two additional Suzaku observations of significant
exposure, Suz 1 and Suz 2, from roughly one and two years be-
fore the joint Suzaku/NuSTAR campaign. We also add a number
of shorter XMM-Newton observations in order to probe variabil-
ity on timescales from months to years.

2.1. Suzaku

In the analysis of the Suzaku observations we make use of data
from the X-ray Imaging Spectrometer (XIS; Koyama et al. 2007)
and the Hard X-ray Detector (HXD; Takahashi et al. 2007).
In particular, we use the front (XIS 0,3) and back-illuminated
(XIS1) chips in the 3x3 and 5x5 editing modes and reprocess the
unfiltered event lists by applying standard procedures for event
file screening and attitude correction using AEATTCOR2. We use
the calibration releases 2015-10-05 for Suz 1 and Suz 2 and the
later version from 2016-02-04 for Suz 3. A previous investiga-
tion of Suz 3 by Keck et al. (2015) has shown discrepancies be-
tween the unfolded spectra among the different XIS detectors
below 2.5 keV. With the calibration from 2016-02-04, this effect
seems to be reduced. We therefore consider data in the full range
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Table 1. XMM-Newton and Suzaku observations in 2011/2012 with
screened exposure times.

Abbrv. Obsid Det Time Exp [ks] cnts [x107]
(XMM) 657840101 pn 2011-05-11 X
MOS 1 X
MOS 2 X
XMM 1 657840201 pn 2011-06-12 2.3 1.4 v
MOS 1 0.2 0.07 X
MOS 2 0.1 0.04 X
XMM2 657840301 pn 2011-11-25 5.7 2.8 v
MOS 1 6.9 1.3 v
MOS 2 7.1 1.3 v
XMM3 657840401 pn 2011-12-09 6.6 3.0 v
MOS 1 8.8 1.5 v
MOS 2 9.0 1.5 v
XMM4 679780101 pn 2012-05-13 6.3 2.6 v
MOS 1 8.6 1.3 v
MOS 2 8.7 1.3 v
XMMS5 679780201 pn 2012-06-10 8.7 1.6 v
MOS 1 12,5 0.9 v
MOS 2 12,5 0.9 v
XMM6 679780301 pn 2012-11-14 3.8 2.4 v
MOS 1 1.8 0.2 v
MOS 2 2.0 0.3 v
XMM7 679780401 pn 2012-12-10 6.6 2.7 v
MOS 1 9.5 0.5 v
MOS 2 9.6 1.4 v
(XMM) 679780501 pn 2012-12-10 X
MOS 1 X
MOS 2 X
Suz 1 906006010 XIS 0 2011-11-17 61.7 18.5 v
XIS1 61.7 17.7 v
XIS3 61.7 19.0 v
HXD 54.6 8.1 v
Suz 2 906006020 XIS 0 2011-12-18 55.1 21.1 v
XIS 1 55.1 21.3 v
XIS 3 55.1 234 v
HXD 32.1 7.3 v
Suz 3 707024010 XIS 0 2012-11-11 150.2 325 v
XIS 1 150.2 32.8 v
XIS 3 150.2 35.2 v
HXD 139.9 18.9 v
Nus,, 60001111002/3/5 FPM A  2012-11-12/14 106.1 713 v
FPM B 106.2 67.4 v

Notes. Listed are the satellite, the observation ID of the observation,
the date when the observation started, the exposure time after screen-
ing, and the number of counts detected. The check-symbol (4/) denotes
observations that are considered for the data analysis. Observations la-
beled with a cross (X) are excluded. The observation Nug,, only contains
data that are fully simultaneous to Suz 3.

between 0.6-10keV. We find that both releases result in iden-
tical event files. For Suzaku/HXD, we use the latest calibration
release from 2011-09-15. Spectra of both modes and all detec-
tors are extracted from circular regions of ~90” radius, centered
on the point source. We exclude pixels above a threshold of 4%
pile-up as estimated with the tool PILEEST. The resulting spec-
tra of the 3 X 3 and 5 X 5 modes are merged using PHAADD for
each XIS. In order to guarantee sufficient statistics, all spectra
are binned to a minimal S/N of 10 but at least 11 channels per
bin in presence of spectral lines and at least 20 channels per bin
for the continuum. The size of each bin is larger than the reso-
lution of the response grid at ~6keV!. Calibration uncertainties
are prominent around the Si and Au K edges at the energies of
1.8keV and ~2.2keV, leading us to exclude counts from the en-
ergy intervals 1.72—1.88 keV and 2.19-2.37 ke V.

Figure 1 shows the hardness ratio evolution for the 55ks
and 150ks observations Suz 2 and Suz 3, respectively, reveal-
ing significant variability. We use the Bayesian block analysis
(Scargle et al. 1998, 2013) to divide both observations Suz 2
and Suz 3 into single sub-spectra (Suz 24, Suz 25 and Suz 35—
Suz 3p) that are highlighted in color in the figure. This method
uses Bayesian statistics to identify time intervals that are, given
the Poissonian likelihood, compatible with constant hardness

! https://heasarc.gsfc.nasa.gov/docs/astroe/prop_

tools/suzaku_td/nodel®.html
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Fig. 1. Hardness ratio of the 55 ks and 150 ks Suzaku observations Suz 2
(top) and Suz 3 (bottom) given by the ratio of count-rate light curves
extracted between 610 keV and 2-5 keV. The shaded regions divide the
observation in different parts for a time-resolved spectroscopy and are
derived using a Bayesian block analysis. The green-shaded and striped
region in the bottom panel indicates the relative observation time of
NuSuz‘

ratio. We extract observations from these blocks with the same
procedures as described above. The exposures divide into 25.0,
25.6, 55.9, and 43.7 ks for the observations Suz 35—Suz 3p re-
sulting in 27.3 X 10%, 19.0x 10%, 33.3x 10%, and 30.9x 10* counts
for the combination (XIS 0+XIS 1+XIS 3). Similarly, we find
23.0 and 32.1ks for the observations Suz 2, and Suz 25 with
23.1 x 10* and 37.2 x 10* counts.

The non-imaging HXD-PIN data are extracted for the whole
34" x 34’ field of view. The HXD data are binned to a minimum
S/N of 40, and a S/N of 20 for resolved sub-spectra. Where si-
multaneous NuSTAR data are present, cross-calibration constants
are fitted relative to the NuSTAR focal plane module A (FPM A)
and compared to those found by Madsen et al. (2015). Otherwise
spectra are normalized relative to XIS0?.

2.2. NuSTAR

NuSTAR (Harrison et al. 2013) is the first instrument to fo-
cus hard X-rays. X-rays are focused on the two focal-plane
modules FPM A and FPM B. We extract data from within
3-78keV with the standard NuSTAR Data Analysis Software
NuSTARDAS-v.1.5.1, which is part of HEASOFT-v.6.18. Due
to the high flux of NGC 4151, we extract source counts from
within a relatively large region of 90" radius on both chips
FPM A and FPM B, and background counts from a region of
the same size located ~340” off-source but close enough not to
introduce much bias due to the spatial dependence of the back-
ground (Wik et al. 2014). We explicitly extract NuSTAR data
from a time interval that is fully simultaneous to Suz 3 (Nugy;)
and from multiple intervals that are subsets of Suz 35x—Suz 3p
(Nugy, A—Nugy, p) with exposures of 106ks, 2.5ks, 25.8ks,
50.2ks, and 27.6 ks, respectively. This translates to a range of
3-62 x 10* counts for the observations Nugy;a to Nugy,,p. Spec-
tra are binned to a minimum S/N of 100 for the integrated spec-
trum and to 20 for the four individual spectra, which only leaves
data below 50keV. Due to irregularities in the cross-calibration
between XMM-Newton, Suzaku, and NuSTAR, only data taken
above 5SkeV are considered for NuSTAR.

2 http://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/
abc/
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2.3. XMM-Newton

There exist nine observations of NGC 4151 with the EPIC cam-
era (Striider et al. 2001; Turner et al. 2001) between 2011-05-11
and 2012-12-10. In addition, the XMM-Newton observation with
the ID 679780501 has to be excluded due to poor data quality.
All observations are in small-window mode. We follow the stan-
dard procedure to extract data of all detectors (EPIC-pn, EPIC-
MOS1, EPIC-MOS2, and RGS) using the SAS v.14 and the
most recent calibration files. After creating calibrated event lists
with filtered hot and bad pixels, events between 10 and 12 keV
are screened for particle flaring with a threshold of 0.4 cnts s,
We extract all counts within a maximum possible radius of 40—
43" for EPIC-pn, and within ~120” for EPIC-MOS. While the
region size is physically limited by the chip border in the case
of EPIC-pn, we are able to extract counts from nearly 100% of
the encircled energy fraction of the on-axis PSF for EPIC-MOS.
Background counts are extracted from an off-source spot on the
chip within 45” and 89" for EPIC-pn and EPIC-MOS, respec-
tively. We detect significant pileup in all three cameras. In the
case of the MOS, we exclude the central pixels within 20" of the
source position in all cases. For the EPIC-pn, we exclude data
from the inner 15" for all observations, except for 8679780201,
where 17.5” needed to be excluded due to the higher count-rate
of 8.7cntss™!. The EPIC-pn data are binned by a factor of 2
between 0.5-1.0keV, 4 between 1-5keV, 6 between 5-8keV,
and 10 above that. The EPIC-MOS data are binned to a mini-
mum S/N of 10, with additional geometrical binning of 3, 5, and
12 channels/bin in the 0.5-1.0, 1.0-3.0, and 3.0-10keV bands,
respectively. This choice guarantees at least 20-25 cnts bin~! and
provides an optimal trade-off between a decently binned contin-
uum and sufficient data bins around line features in the spectrum.
The first XMM-Newton observation, XMM 1, will not be further
used due to strong particle flaring. For XMM 2, we exclude the
EPIC-MOS data due to the small amount of net-exposure after
filtering the event-files.

From the RGS (den Herder et al. 2000) data, we extract
both orders with the task rgsproc and combine the spectra of
the detectors RGS 1 and RGS 2 for each order with the task
rgscombine. When fitting the RGS data, we simultaneously in-
clude both orders and all considered observations. We choose
a geometrical binning of a factor of 3 for individual spectra to
limit the oversampling of the theoretical RGS energy resolution
as suggested by Kaastra & Bleeker (2016). Given the lack of suf-
ficient counts per bin, we choose Cash-statistics for the further
data analysis. Due to the low effective area at short wavelengths,
we only consider data below 1.3keV (9.5 A).

3. X-ray spectral analysis

In the following, we examine all XMM-Newton, Suzaku and
NuSTAR observations. These observations were taken over a
period of more than one year. We provide a detailed investi-
gation of the spectral components as well as their variability.
We apply the Galactic column of Nygyq = 2.3 x 10 cm™
(Kalberla et al. 2005) in all cases. In Fig. 2, we show the spec-
tra of all observations in the top panel. The data imply a lack
of obvious variability of the soft X-rays below ~1keV. The
source is moderately variable above 6 keV within the range of
1-1.5 x 1073 Photonscm2s~' keV~! at 10keV with XMM 5
catching the source in an exceptionally low flux state. Strong
spectral variability, in contrast, is apparent for the range between
~1 and 6 keV, both in spectral shape and normalization. This ar-
gues strongly against a physical partial coverer to explain the

AS50, page 4 of 21

10.0 rrTTd i
n ]
5 ]
'& -
T
n -
q
:
w 1.0 -
=] L 7
=} = 4
+© L ]
=} L 4
=}
Ay r 4
@
(=}
= L
X
O- 1 = L L1 L L1 4
0.5 ; L | L I L ;
?g ; L | I I o I L ;
0.5 Errr N XMM 3 _ 3
OE ] I I | I L1 3
(1)2 ; ,;+t+.._ ;fjf—*f Radet ++w*ou.m.»~w~,¢.».a‘.wﬁ.‘.»m.wn+ . ____XMM4 _ é
OE 1| | | IR | L3
(1)2 g;; ttr;)fj;f*’ =+ ittt ,tﬂ-*4mﬁ,%wmﬁww“ww#‘{.uﬁ-u»‘7 s XMM5 %
OE 1 I I L I L3
(1): e et T e - - - - - XMM 6 _ 3
SE I I Lol I g
B LS e et - XMM T3
'g ?g Er 1| I I Lol I I | T ‘P 3
E ' ?wif’f Rt g e et et S i — — — — — - W’mw’wm:%%ww+ ‘HE
@ (1).2 B | | | R | | L1
- E 4 i
- Bl S = mrmimnaritoongiotll - m.g.,ﬁsiyﬁw%a@mwmg
(]?~g:+\ L1 I I Lol I I “M‘:
E s 3
" BT Tt i e e \.v..nsiyﬁn,u%’@"mﬁwg
0.5 E 1| I Lol I I \1 T
T Suz 3 GITT1 3
0.5 Ev 1l Lo I | L
L ot S e et = — = = o Suz 3GII2| 2
0.5 ; L . | | AL E
e Suz 3 GTI8! 13
0.5 ; L Lo I I AR ;
= Suz 3 ,GTIA /3
0.5, 1| I Ll I I A
1 2 5 10 20 50

Energy [keV]

Fig. 2. Fit to the XMM-Newton and Suzaku data. The model consists
of a power law that is partially covered by near-neutral intrinsic mate-
rial as well as fully covered by Galactic foreground gas. A xillver-
component of ionized, unblurred reflection is used to model the narrow
iron line and potential soft-line emission.

continuum including the soft emission below ~1keV (see earlier
work by Holt et al. 1980; Perola et al. 1986; Fiore et al. 1990)
but in favor of diffuse emission from optically thin and ionized
gas on larger spatial scales (e.g., Wang et al. 2011a, and refer-
ences therein).

3.1. Motivation for a blurred-reflection component

As a first approach to model the X-ray data, we simultaneously
fit all XMM-Newton and Suzaku spectra with an incident and re-
flected power law (xillver; Garcia et al. 2013, reflection off
an optically thick, geometrically thin, ionized accretion disk)
that is absorbed by near-neutral intrinsic material (zxipcf) and
Galactic foreground gas (tbnew). We fit the diffuse emission be-
low 1keV phenomenologically with a partial-covering version
of zxipcf with a covering fraction of ~98%. We emphasize
that the partial coverer has no physical meaning in this case and
reflects the combination of a fully absorbed with an attenuated
power law, both of identical slope. A physical interpretation of
the latter would be nuclear emission scattered off distant and
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Fig. 3.

Zoom-in into the iron-line region of the complete set of observations of XMM-Newton and Suzaku with the same model applied as shown

in Fig. 2. We mark the centroid energy of the Fe Ka line with a red, dashed line in the residual panels.

large-scale gas. Figure 2 shows the spectra with corresponding
fits. The modeling confirms a strongly changing column density
ranging between 2.6 and 14.0 X 10*2¢cm~2 as well as a variable
power-law flux. The ionization states of the reflecting material
are found to lie between logé ~ —3 and —1.1.

For simplicity, we freeze the cutoff energy of the incident
continuum to E.,; = 300keV and the inclination angle to i =
30°. The Galactic column is considered as foreground absorp-
tion in all spectral fits. The residuals indicate decent fits to the
continua of the individual observations and the ionized reflec-
tion component accounts well for a narrow Fe Ka and Fe K line
contribution but leaves line-like residuals below 2 keV, strength-
ening the notion of line-emitting plasma. Broad line-like residu-
als between ~5 and 6.4 keV, and a hard excess above 8 keV are
reminiscent of an additional component of blurred reflection. See
also Fig. 3 for a zoom into these features.

3.2. Building on a recent investigation of the Suzaku data:
application of an improved model for relativistic reflection

Keck et al. (2015) have presented a detailed study of the joint
Suzaku/NuSTAR campaign (Suz 3/Nug,,) for data above 2.5 keV.
They discuss two possible models to explain the data: (1) their
best-fit model dominated by relativistic inner-disk reflection
and (2) an entirely absorption-dominated model. The first is
given by a convolution of the unblurred and initially angle-
resolved reflection continuum xillver with the relativistic code
relconv (Dauser et al. 2010) describing reflection off the in-
ner parts of an accretion disk. The authors also test for the
more self-consistent model relxill (Garcia et al. 2013), which
links the relativistic transfer-function and the angle-resolved
disk-reflection spectrum xillver at each point of the disk.
Although Garcia et al. (2013) predict deviations of up to 20%
for parameters of relconv and relxill, Kecketal. (2015)
find a negligible statistical difference. They attempt to fit for
a lamp-post geometry with the convolution code relconv_1p
(Dauser et al. 2013) and require two distinct lamp-post compo-
nents at different heights (~1.3 rgy and ~14 rgy, where rgy is the
event horizon). The authors, however, find significant S-shaped
residuals between 3-5keV and therefore reject this solution on
statistical grounds. The immediate aim of our study is to in-
vestigate this model description using a lamp-post geometry
that is physically motivated not only by steep inner emissivi-
ties (Svoboda et al. 2012) but also by independent reverberation
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Fig. 4. Application of the two-lamp-post model of Keck et al. (2015)
to the Suz 3 and Nug,, data. All model components shown here are
fully absorbed with the column reported by Keck et al. (2015). The inci-
dent continuum is plotted in blue, the unblurred component in black and
the blurred reflection components with a low and high primary source
in brown and red, respectively. The residuals indicate the Suzaku/XIS,
Suzaku/HXD and NuSTAR data in blue, green, and red, respectively.

studies (e.g., Kara et al. 2013, and references therein). As a first
improvement, we replace the convolution model with the self-
consistent and fully angle-resolved version relxill_lp and
adopt the parameters found by Keck et al. (2015). In Fig. 4, we
show this model evaluated for the data of Suz 3 and Nug,, in
the same energy range considered by Keck et al. (2015). We find
similar statistics and residuals as compared to the convolution
model. The S-shaped residuals around the turnover of the ab-
sorber between 3 and 5keV imply a yet unmodeled partial cov-
erer, which the authors investigated as part of their independent
model (2).

This model combines two partial coverers, one with a col-
umn of ~6 x 10% cm~2 and low covering fraction (~40%) and a
second one with ~1.3 x 10%* cm™2 and a near-maximum cover-
ing fraction (~94%). The model provides a decent description of
the continuum above 2.5 keV, but leaves residuals reminiscent of
a broad iron line and is statistically less preferred. This demon-
strates that modeling the complex spectrum of NGC 4151 is not
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Fig. 5. Residuals (y) for a bottom-up approach towards the best-fit of
Suz3. The statistics of each step are shown on the bottom left. NuSTAR
residuals below 5keV are excluded from the plot due to deviations of
the cross-calibration between Suzaku and NuSTAR. The ranges of the
residual axes are adapted in order to show the full dynamic range.

straightforward but combined with degeneracies between these
two solutions.

In the following we build a baseline model using the long-
look 150ks Suz 3 and simultaneous Nug,, observations. We ex-
tend the work by Keck et al. (2015) by considering the entire
energy range covered by the instruments. In order to flatten the
S-shaped residuals in our broad-band X-ray continuum, we com-
bine their models (1) and (2) and apply the latest self-consistent
relativistic reflection code relxillCp_1p>, which is, similar to
the latest version of xillver, calculated using the Comptoniza-
tion continuum nthcomp (Zdziarski et al. 1996). In the follow-
ing, we fix the seed photon temperature to 50 eV, which is used
to calculate the xillver tables.

3.3. A re-investigation of the 150 ks simultaneous Suzaku
and NuSTAR observations with relxillCp_1lp

3.3.1. Derivation of a baseline model

The residuals at each step are shown in Fig. 5. First, we fit
the data with the Comptonization continuum nthcomp, hereafter

3 The model relxillCp_lp extends on relxill_lp (Dauser et al.

2013) taking into account the Comptonization continuum nthcomp as
primary continuum.

AS50, page 6 of 21

Table 2. Best-fit parameters of the blend of Gaussian lines for Suz 3.

Line E* [keV]/2* [A] Flux [Phs™!ecm™2]
ovI (ri,f)* 0.57/21.80 (1.1+£0.3)x 1073
oviLya™ 0.65/18.97 (2.67 +0.19) x 107
OVII RRC® 0.74/16.77 (9.4 + 1.0)x 107
OV RRC® 0.87/14 (7.6:07) x 10
NeIX (rif) 0.91/13.55 (1.02 = 0.09) x 104
NeXLya® 1.03/12.04 (1.8+0.4)x 1073
NeIx RRC/Nex Lyg™ 1.2/10.33 (3.0+0.4)x 107
NeXRRC/MgXI (D™ 135190999 184003  (4.4+03)x 107
Mgvi Ly a® 1.47/8.43 (22+0.3)x 107
MgXI 1s3p — 152 X 1.58/7.85 (2.8+0.4)x 1073
SitKa ™ X 1.720010%017/7 2084709000 (3.6 1 0.4) x 105
Si X1 (1) 1.8473400008/6, 71240005 (4.4 +0.4) x 1075
SixivLya® 2.0/6.20 (23+0.4)x 107
Continuum r norm [PhkeV~"'s™! em™2]
1.72¢ (1.33 £ 0.05) x 1073 *

Notes. All Gaussian lines are fitted with zero width. Centroid ener-
gies marked with oo are adopted from Schurch et al. (2004), Ogle et al.
(2000), and Vainshtein & Safronova (1978), line blends marked with
T from the Chandra/ACIS study of Wang et al. (2011a). Frozen pa-
rameters are denoted with an asterisk (x). When marked with the
symbol X, the line identification is uncertain and can be confused
with an instrumental edge. The lines are consistent with the study on
XMM-Newton/RGS data in this work. Note that the O VII line falls out-
side the sensitive energy range of Suzaku/XIS. For the possible line-
blends NeIX RRC/Mg XI r and SiXII (r/f), we additionally fit for the
centroid energies, because of unclear line identifications. Also, we re-
quire two narrow Gaussians with zero width at 1.58keV and 1.72keV,
which may be due to intrinsic Si1 Ka and Mg X1 1s3p—1s? or due to
calibration effects at the instrumental Al K and Si K edges.

referred to as HXCOMP. It provides a more physically motivated
primary continuum with an intrinsic cutoff as opposed to a power
law with external cutoff (Garcia et al. 2015). This continuum is
absorbed by fully-covering neutral gas (CA, tbnew_simple_z).
The residuals are shown in Fig. 5a and in particular indicate an
unmodeled soft continuum.

In previous studies using Chandra data, the soft continuum
was accounted for with a bremsstrahlung component (Ogle et al.
2000; Wang et al. 2011a). The latter authors, however, empha-
size their lack of a physical motivation for this component. We
therefore adopt a simple scenario, in which the nuclear Comp-
tonized continuum is scattered off distant and large-scale gas and
model this component with an unabsorbed soft Comptonization
continuum (SXCOMP, Fig. 5b). Here, we adopt the same pa-
rameters as for the HXCOMP but leave the normalization free
to vary. This way of modeling introduces a minimal set of addi-
tional degrees of freedom. Also, at CCD energy resolution and
given the blend of emission lines present (see below), we cannot
constrain the exact form of the soft continuum. Fits using Comp-
tonization or bremsstrahlung continua yield statistically identi-
cal fits.

On top of the soft continuum, a number of lines appear in the
residuals, reminiscent of emission from the ionized large-scale
gas component that has been extensively studied by Wang et al.
(2011a), for example, using Chandra and physical emission
codes. We focus mainly on the nuclear properties of the X-ray
spectrum and instead fit this emission with a phenomenological
blend of Gaussians (Fig. Sc). The centroid energies are adopted
from those lines that are significantly detected in gratings data
of XMM-Newton/RGS (Schurch et al. 2004) and Chandra/LETG
(Ogle et al. 2000, see also Vainshtein & Safronova 1978), or as
line-blends by Chandra/ACIS (Wang et al. 2011a). Table 2 lists
the parameters of all fitted lines with their ion identification, line
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flux and centroid energies. For deriving the final photon line
fluxes and their uncertainties, we freeze all continuum param-
eters including the SXCOMP normalization to the best-fit value
found in the final step. This also reduces degeneracies between
the line-blend and the continuum. The remaining residuals show
a yet unmodeled swing in the continuum around 2 keV, strong
and broad emission forming an iron-line complex at approxi-
mately 6 keV and extra curvature above 10keV.

Narrow emission components at the centroid energies of the
Fe Ka (B) lines at ~6.4 (7.1) keV can be modeled with either two
narrow Gaussians (Warwick et al. 1989; Zdziarski et al. 2002;
Schurch et al. 2003; Wang et al. 2010) with a frozen flux-ratio
of 12% (Fig. 5d) or a component of distant reflection (xillver)
in Fig. Se. Both options leave a broad emission feature between
5keV and 6keV, as previously seen by Wang et al. (1999), as
well as equal continuum residuals. We are therefore not able to
confirm a strong statistical need for a distant reflection compo-
nent. We continue to use two Gaussian components as a phe-
nomenological description of the iron line emission that likely
originates from Compton-thin gas. This way, we only add a min-
imal set of additional degrees of freedom to the model.

The continuum results in S-shaped residuals below 5keV,
similar to what Keck et al. (2015) found. We replace the fully
covering absorber (CA) with the combination of a partially cov-
ering absorber (CA) and a fully covering absorber (CA;), both
neutral (see Fig. 5f). CA; requires a covering fraction of ~40-
50%. A similar dual neutral absorber has frequently been applied
before (e.g., Wang et al. 2010; Keck et al. 2015, and references
therein). Further tests reveal that the introduced spectral curva-
ture can not be reproduced with an ionized warm absorber.

The broad pattern just below 6keV remains, even after flat-
tening the continuum below 5 keV. It likely features the red wing
of an extremely blurred Fe Ka line (e.g., Dauser et al. 2010).
We attempt to account for this feature with the previously in-
troduced model relxillCp_lp. We call this component LP;.
Its height hits the lower limit at ~1.1 rgy, which corresponds to
1.2 7, for the spin fixed at its maximum value. Note that we fit
the incident and reflected continua independently at this point.
Due to the lack of data above 50 keV, we are unable to constrain
the cutoff energy (expressed via the electron temperature in our
model) and freeze it at kT, = 399keV or E.;; ~ 1000keV. We
note, however, that Malizia et al. (2014) find E .y = 196f‘3‘; keV
with INTEGRAL, Swift, and XMM-Newton data between 2 and
100 ke V. We expect significant bias for their measurement of the
cutoff due to: the lack of soft X-rays (Garcia et al. 2015); the use
of a lower photon index of I' ~ 1.63; and the background domi-
nance of INTEGRAL as opposed to the NuSTAR data used in this
work. We emphasize that for primary sources close to the black
hole, the cutoff energy has to be corrected for the gravitational
redshift as outlined by NiedZwiecki et al. (2016). The resulting
residuals (Fig. 5g) illustrate that the underlying broad feature as
well as parts of the Compton hump above 10keV are success-
fully fitted by LP;.

Dips around 7 keV suggest an additional column of highly
ionized absorption. We can greatly improve the fit using a XSTAR
absorption component for dense, coronal gas with logé ~ 2.8.
Warm absorber components with similar ionization have previ-
ously been found by Weaver et al. (1994b), Schurch & Warwick
(2002), and Keck et al. (2015). The XSTAR model removes line-
like residuals close to the centroid energies of Fe XXV He«,
Fe XXVI Ly «, and Fe XXV He 3, at zero velocity offset relative to
systemic. There remain narrow absorption-like residuals around
8keV; they can be modeled with a broad Gaussian absorption
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Fig. 6. Contours between the spin and inclination of both lamp-post
reflection components for a fit with free spin. We show 68.3%, 90%,
and 99% confidence levels.

frame). We identify this feature as a blueshifted Fe XXv He «
or Fe XXVI Ly« line, although the possibility of unmodeled
contributions from Fe XXVI Ly (8.25keV rest frame) associ-
ated with the systemic warm absorber cannot be ruled out. The
implied velocities are 0.22*302¢ for He-like Fe or 0.17092 ¢
for H-like Fe, suggesting an ultra-fast outflow (UFO), as previ-
ously constrained with a highly ionized XSTAR component (see
Tombesi et al. 2011, 2013, for a physical modeling of the UFO
with XSTAR). The flattened residuals are shown in Fig. Sh.

An excess around ~6 keV implies a still broad iron line with
a much less smeared red wing. We therefore add a second lamp-
post component (LP,) with a primary source at the larger height
of ~17 rgy, which also takes care of remaining excess residu-
als above 20 keV. While both components LP; and LP, already
describe the entire Compton hump above 10keV, further tests
can exclude the need for a third, distant reflection component to
model also the narrow iron line. We find a best-fitting baseline
model with /\(2 /d.o.f. = 1094/762 and overall flat residuals in
Fig. 5i.

3.3.2. The best-fit baseline model

We found a solid model for the broad continuum from the soft
to the hard X-rays, which, below, we apply to the remaining ob-
servations. This baseline model combines a set of four complex
absorbers with a physical description of blurred reflection as part
of the self-consistent lamp-post geometry. We fit both LP com-
ponents with a tied slab-ionization and find a common value of
log & ~ 2.8. The fit is hitting the lower-limit for the inclination of
3.1° with 90% uncertainties allowing values as high as 10° (see
the contours between disk inclination and spin in Fig. 6 where
we unfroze the spin parameter). The wide range originates in
the cos i-dependence of the model. This inclination is consistent
with the constraint of 8 < 30° that Cackett et al. (2014) found
with reflection-component reverberation mapping. We find no
obvious correlation with the spin parameter and fix the spin at
its maximum value. The relatively flat turnover between 3 and
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Fig. 7. Model components together with the data and residuals of
the 150ks long observation Suz 3. The incident HXCOMP contin-
uum (dashed blue line) and both lamp-post models (LP,: dotted-dashed
brown line, LP,: double-dotted-dashed red line) are shown as absorbed
components, the SXCOMP (dotted cyan line) as unabsorbed compo-
nent. The soft emission lines (gray) required for the best-fit are la-
beled with their line identifiers and listed in Table 2. The residuals of
Suzaku/X1S, Suzaku/HXD, and NuSTAR/FPM, are drawn in blue, red,
and green, respectively.

6keV is well described by the dual neutral absorber rather than
a single full-covering absorber. The column densities of the two
neutral absorbers are found to be Ny ; ~ 21 x 10*2 cm™2 with
feoy = 0.46 and Ny, ~ 9 x 10?2cm™2 for the full-covering
absorber. The HXCOMP photon index is well constrained to
I' = 1.72 £ 0.01 for the long-look observation and will there-
fore be kept fixed for the remaining observations of lower count
statistics in order to reduce degeneracies within the complex
model composite. We list the best-fit parameters and their un-
certainties in Table 3 and show all model components in Fig. 7.

We test for degeneracies inherent to the complex continuum
for the case of Suz 3 and study the resulting contours in Ay?-
space (Fig. 8). The contours and derived uncertainties suggest
that we are able to constrain and clearly separate between both
lamp-post continua with primary sources at different heights and
a two-fold absorber, composed of a partial-covering and full-
covering neutral column. We only observe a tentative correla-
tion between the LP;-normalization and the column density of
CA,. This correlation is likely not physical but caused by both
models describing a similar spectral shape around 6 keV. We can
show that the additional absorber of highly ionized gas is free
of degeneracies with the continuum and can be kept separate
throughout the analysis.

3.3.3. The reflection fraction and reflection strength

In our best-fit baseline model for Suz 3, we fit the primary con-
tinuum independently from the reflection continua LP; and LP;,.
The normalizations of the reflection continua have no geometri-
cal interpretation in this case. In other words, this does not allow
us to infer the reflection fraction Ry, which in the lamp-post ge-
ometry is defined intrinsically as the ratio of the number of pho-
tons incident on the disk to the number of photons that escape
the system and directly reach the observer (Dauser et al. 2014,
2016). The reflection fraction therefore mainly depends on the
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Table 3. Best-fit parameters of the baseline model for the simultaneous
150ks data of Suz 3 and Nug,,.

Model component  Parameter Value
x? (dof) = 1094 (762)
Detconst XISO 0.998 + 0.005
XIS 1 0.954 + 0.005
XIS 3 1.012 + 0.005
HXD 1.215 £ 0.009
FPMA 1
FPMB 1.030 + 0.004
CAca Njga [102em2] 0023
XSTAR 1 Nyt [102 cm2] 12203
log& [ergems™'] 2.82*010
CA, Niga [102em™2] 214
cov. factor Four 0.46*20¢
CA, Nigine [102cm 2] 8.8:03
Abs. line E [keV] 81704
o [keV] 0.347943
Depth [27 0 Tjine ] 0.0339+00124
HXCOMP norm 0.047 £ 0.002
I 1.72
kT? [keV] 399
KTy, [keV] 0.05
Fe Ko norm [Phs™' cm™?] (2.27f8:}i) x 1074
E [keV] 6.394+0.005
Fe K8 norm [Phs™' cm™]*  0.12 X normp. g,
E* [keV] 71
LP, norm 6.9%)7
height [rgy] 1.1000’:8:8853
it 316
I 1.72
log & [ergcms™'] 2.835+001¢
Zs, 2518
kT? [keV] 399
LP, norm 8+2)x10™*
height [rgy] 14.1%3%
if 3*S
r« 1.72
log &' [ergems™!] 2.84
Z, 25%08
kT: [keV] 399
SXCOMP norm (1.33 £0.05) x 1073
r: 1.72
kT? [keV] 399
kT, [keV] 0.05

Notes. The black hole spin of both lamp-post components is set to its
maximum value of a = 0.998, while the radii of the inner and outer disk
are kept at the default values of 1 rgy and 499 r,, respectively. Parame-
ters marked with the symbol { are tied amongst one another while those
marked with an asterisk (x) are frozen. The reflection fraction is no free
parameter here, as the incident continuum (nthcomp) and both reflec-
tion continua (LP,, LP,) are fitted independently (refl_frac=-1). The
normalization of nthcomp is defined at unity for a norm of 1 at 1keV.
The normalization of xillver and relxill is defined in the appendix
of Dauser et al. (2016).
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Fig. 8. Ay?-maps relating the parameters of the cold absorbers CA,
(partial covering) and CA, with those of the blurred reflection compo-
nents LP, and LP,. We show three contour levels of 68.27%, 90%, and
99% (solid, dashed, and dotted lines).

effect of light-bending, which is stronger for primary lamp-post
sources close to the disk, that is, predicting larger values of re-
flection fraction Ry (Miniutti et al. 2004). In the following, we
use a workaround in order to find access to the intrinsic reflec-
tion fraction for both LP; and LP,. We re-define the baseline
model, remove the independent HXCOMP continuum and thaw
Ry with refl_frac > 0. This model describes the same spectral
components but now provides two primary continua, instead of
one, that are intrinsically linked to the reflected continua via the
lamp-post geometry, that is, it allows to directly fit for Ry as a
more meaningful parameter.

If we fit for both primary continua and both reflection frac-
tions at a time, we find strong degeneracies and large uncertain-

ties with Npp, = O.ng:g and Npp, = (1.68f8:éi) x 1073 as well as

R%P‘ = 14’:?2 and R%Pz = 0.43ig%§8. For that reason, we mutu-
ally freeze the reflection fraction of one component to the value
predicted for the emission of a point source at the previously
determined height above the disk (fixReflFrac=2) and fit for
the reflection fraction of the other component as well as both
normalizations of the primary continua. The results are shown in
Table 4. In the left column, LP; is fixed to a predicted reflection
fraction of 1.2 for the given height of Ay p, = 14.17rgg ~ 15.0 7.
A fit of the reflection fraction of LP; is now well constrained as
R%P ' = 1.50 £ 0.06, which is rather low with respect to its low
height of hrp, = 1.1 rgy and the therefore predicted fraction of
22.5. This is absorbed by a much larger normalization of LP; as
opposed to LP,, owing to strong degeneracies between these pa-
rameters. In the second case, we set the reflection fraction of LP;

Table 4. Values obtained for reflection fraction Ry, the reflection
strength R and normalization of the two lamp-post components LP,
and LP,.

Free LP; Free LP,
normLP;  4.59 +0.13 0.306 + 0.011
normLP, (6.6+0.4)x107* (1.822+0.019) x 107
R 1.50 + 0.06 22.5*
R 1.2¢ 0.44 +0.02
RED 0.69 10.5*
R 0.64* 0.24
RLP2HLP 0.68

Notes. Frozen parameters are denoted by an asterisk (x).

to R"" = 22.5 as predicted for its height A p, = 1.1rgy = 1.17 1,
and freely fit R;‘P? We find a reasonably low reflection fraction

of RfLP2 = 0.437 = 0.023 as expected for a primary lamp-post
source at larger height. Also, the LP-normalizations do not di-
verge as strongly as in the case before. We can still demonstrate
that degeneracies make it challenging to interpret the reflection
fraction as a probe of the lamp-post geometry for the case of two
interacting lamp-post sources.

While the reflection fraction can not simply be inferred
from the observed spectra without knowledge of the geometry
(Dauser et al. 2014, 2016), the reflection strength Ry is defined
as the strength of the Compton hump of the reflection model
with respect to the primary continuum, that is, the flux-ratio of
the reflected to the incident continuum in the 20-40keV en-
ergy band. The derived numbers in Table 4 imply a behavior
very similar to that observed for the reflection fraction. The re-
flected LP;-spectrum seems to be too weak with R = 0.69
compared to the value of 10.5 as predicted by the geometry of
a point source very close to the black hole, which is again ac-
counted for by degeneracies between the reflection fraction and
the LP-normalizations. In contrast, we find a reasonable value of
R];P2 = 0.24 at a larger height, featuring a rather weak Comp-
ton hump close to the predicted value of 0.64, predicted for a
point source at the given height. The reflection strength of the
combination of both lamp-post components is 0.68.

3.4. Test for relativistic reflection in other Suzaku
and XMM-Newton observations

We have now derived a robust baseline model based on the aver-
age 150ks observation by Suzaku (Suz 3) and NuSTAR (Nugy,)
that can also be applied to the remaining observations of Suzaku
and XMM-Newton. We again use the original model description
with one primary continuum (HXCOMP) that is fitted indepen-
dently of the reflection continua (see Table 3). We re-fit the ob-
servations Suz 1 and Suz 2 and freeze all parameters except of
the two absorbers CA; and CA, and the normalizations of the
incident continuum and the narrow Fe Ka and K@ lines. This
approach yields overall good fits, except for broad excess resid-
uals in the iron band, indicating extra variability of the reflec-
tion components. A re-fit of the normalizations of the lamp-post
continua results in strong degeneracies. When fitting with both
lamp-post components switched off, we find the gray residuals
shown in Fig. 9, arguing for the presence of blurred reflection
features via broad features in the iron band. We can, however,
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Fig. 9. Model component plots for Suz 1 (left) and Suz 2 (right) with the single lamp-post component drawn as brown dotted-dashed line. We also
show the absorbed HXCOMP (blue dashed line) and the unabsorbed SXCOMP (cyan dotted line). The soft emission lines (gray) are labeled with
their line identifiers. The residuals of Suzaku/XIS and Suzaku/HXD are drawn in blue and red, respectively.

demonstrate that the data of Suz 1 and Suz 2 do not allow us to
disentangle two emitting sources at different heights.

Given the comparatively large amount of counts for Suz 1
and Suz 2 we attempt to constrain a single lamp-post compo-
nent with variable height. We find overall good fits (Fig. 9, bot-
tom panels). The statistics improve substantially compared to the
model lacking relativistic reflection with Ay? = 55 (1) for Suz 1
and with Ay? = 47 (1) for Suz 2. The lamp-post heights are fitted
with 24fg regy for Suz 1 and 14f2 rey for Suz 2. Due to param-
eter degeneracies we can neither state variability of this single
LP-component between Suz 1 and Suz 2, nor between the time-
resolved spectra of Suz 2. A direct comparison with the complex
and well constrained double-lamp-post source in Suz 3 are not
possible either. We suggest, however, that the single component
fitted to Suz 1 and Suz 2 may be a blend of these components
LP] and LPQ.

Similar to the Suzaku data, the XMM-Newton data reveal
visible broad features in the iron-band residuals of a fit using
the unblurred xillver model (Fig. 3). Due to the strong de-
generacies arising for a free lamp-post height in the models of
Suz 1 and Suz 2, we freeze the heights of both lamp-post com-
ponents to those derived for Suz 3 and only fit the normaliza-
tions. Table A.1 shows that LP; is undetected by XMM-Newton
in contrast to LP,, where we can constrain its normalization to
within ~12-60% with the exception of a very good constraint
of ~4% for XMM 5. Together with the XMM-Newton data, we
report significant variability in normalization for LP, over time
with a minimum timescale of 20-30d.

These results demonstrate the need for a good number of
counts to properly constrain one or even multiple components
of relativistically blurred reflection. Otherwise, it is challenging
to simultaneously probe the stability of both reflection compo-
nents, LP; and LP,, over time.

3.5. Spectral variability probed with Suzaku
and XMM-Newton

As we have shown in Sect. 3, NGC 4151 shows significant spec-
tral variability between 1 and 6keV, on which we will focus
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in the following. We consider all XMM-Newton, Suzaku, and
NuSTAR observations between 2011 and 2012 including the
time-resolved observations Suz 25 as well as Suz 35_p and
NuSuz,A—D-

To address the variability of the spectral components, we ap-
ply the baseline model and allow only a few parameters to vary.
Besides the cross-normalizing detector constants and the flux
normalizations of the model components, these are Ny i, Ny,
and the covering fraction f.,, of CA 1. We detect strong degen-
eracies between Ny and f.,, for XMM-Newton data and there-
fore fix the covering fraction to the weighted mean with respect
to the observations Suz 1, Suz 2, and Suz 3, which all lie very
closely to f.y; = 0.46. Note that the SXCOMP normalization is
kept frozen to the value derived for Suz 3 for all Suzaku observa-
tions but allowed to vary for XMM-Newton. The derived values
are, however, consistent with the frozen value.

The baseline model fits well to all observations with only the
few above mentioned free parameters. All parameters and un-
certainties are listed in the Tables A.1 and A.2. Figure 10 shows
all spectra with overlaid fits in the top panel and residuals in
the bottom panels. Most previous studies have found the X-ray
emission below ~1-2keV to be non-variable (e.g., Yang et al.
2001; de Rosa et al. 2007); Landt et al. (2015) report on weakly-
variable coronal O VII emission. In contrast, Wang et al. (2010)
find evidence for significant variability of the soft continuum.
Our multiple observations yield 0.6-1.0keV fluxes that remain
within ~6% of each* but underlie large uncertainties. This range
contrasts with ~20% variability for the 7-10keV flux of the in-
cident HXCOMP continuum. We find no direct correlation be-
tween the SXCOMP and HXCOMP variability. We can also ex-
clude correlated variability between the Ne IX emission line and
the incident 7-10 keV flux. Within the statistical uncertainties,
the NeIX line flux remains constant over the probed timescale.
Due to the CCD resolution of our spectra and the blend of emis-
sion lines, it is not clear if the weak flux variability within 0.6
and 1.0keV is due to soft continuum, the NeIX flux, or both.

4 The amount of variability is calculated as the standard deviation over
the average.
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Fig. 10. Composite of all XMM-Newton and Suzaku spectra as well as
one NuSTAR spectrum simultaneous to Suz 3 with the applied best-fit
baseline model and residuals. The statistics of each fit are listed in the
residual panels. The minor ticmarks in the residual panels are separated
by 0.1.

The narrow Fe Ka/B line, in contrast, is stable over the moni-
tored time interval.

We find significant absorption variability with column den-
sity changes of a maximum of 50% for CA; and 20% for CA,.
Spectral variability is not only found between single observa-
tions but also within the 150ks-long observation Suz 3 as we
show in Fig. 11. The evolution of the parameters of both neu-
tral absorbers and the incident HXCOMP is shown in Fig. 12.
We find overall larger columns Ny ; but smaller uncertainties
for the partial coverer than for the full-covering column Ny,.
Both columns Ny ; (Ng2) seem to show correlated variability
over time with an initial decline around MJD 55900 followed
by an increase between MJD 56 080 and MJD 56200 and a
subsequent decline after MJD 56 240 back down to a baseline-
level of N1 (Nu2) ~ 12(9) x 10?2 cm™2. The normalizations
of the primary continuum (HXCOMP) can be shown to be vari-
able down to a timescale of ~20d over a normalization range of
~0.03-0.08 Photons cm =2 s~! at 1keV. The time-resolved mea-
surements for Suz 2 and Suz 3 clearly strengthen the presence
of variability of these parameters on timescales as short as days.
This remains true even though the uncertainties of the param-
eters found for Suz 2, p are larger compared to those inferred
from the spectra Suz 3,_p. The covering fraction can be as-
sumed as constant within the uncertainties. The same applies
to the time-resolved results of Suz 3A_p, where we find cov-
ering fractions scattering around 0.55. This value is slightly
larger than that derived for the total observation Suz 3, which
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Fig. 11. Time-resolved spectra of Suz 35—Suz 3p / Nugy, A—Nusy,; p with
the best-fit model components HXCOMP (double-dotted dashed line),
LP; (dashed line), LP, (dotted line) and SXCOMP (solid line). The
spectra A-D are drawn in red, orange, green and blue, respectively.

can be attributed to model degeneracies. The columns Ny ; and
Ny peak during the observation Suz 3p and cover a dynamic
range of Ny 1 (Nu2) ~ 13-25(6-10) x 10*2 cm~2. The primary
continuum, in contrast, shows a more complex variability pat-
tern with normahzatlons between 0.04 PhkeV~'s™'cm™ and
0.05PhkeV~'s' cm™2.

The correlated variability between CA; and CA, on all
probed timescales can likely be attributed to degeneracies arising
between both absorbers (Fig. 13) that reveal similar columns. We
probably also observe systematics related to the complexity of
the dual absorber and to the assumptions made for the baseline
model. According to these results, we can therefore not claim
the observed variability to be inherent in one or the other ab-
sorber for most of the analyzed observations. In contrast, both
contributing absorbers are likely well separated by the single
150 ks-long observation Suz 3 (see Fig. 8). We further observe
an anticorrelation between the 7-10 keV flux of the pre-absorbed
HXCOMP continuum and both columns Ny ; and Ny, which is
highlighted in Fig. 14. This relation is stronger for CA; with
the Pearson correlation coefficient rpca, = 77% and a very low
p-value of Ppca, = 0.8% as compared to CA;, with rpca, = 60%
and PP,CAZ =7.2%.

3.6. The soft X-rays and the NLR

NGC 4151 and its ionized environment have been subject to
a number of studies that combine high spectral and spatial
resolution (e.g., Wang et al. 2011a, and references therein). In
Sect. 3.3, we motivate the description of the soft X-rays be-
low 2keV with the SXCOMP continuum, which is comple-
mented with a blend of Gaussian emission lines that have been
measured to persist over decades (see also Ogle et al. 2000;
Yang et al. 2001; Schurch et al. 2004; Wang et al. 2011a). While
Perola et al. (1986), Weaver et al. (1994a,b), Warwick et al.
(1995) and Wang et al. (2010) detect no signs for major vari-
ability in the soft X-rays, we find tentative signs for variability
at a low dynamic range in Sect. 3.5. As the S/N of individual
RGS spectra are too low for measuring line fluxes over time, we
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is too low to constrain its centroid energy, we use the values
from Vainshtein & Safronova (1978) to set the starting param-
eters. Additional radiative recombination continua (RRC) are
described with the redge model. The model is simultaneously
fitted to all observations with the resulting parameters listed in
Table A.3. The centroid energies of all fitted lines are consistent
with those derived earlier, for example, by Ogle et al. (2000) or
Schurch et al. (2004). The poor constraints on the width and the
turbulent velocities arise due to the choice of the Voigt profile as
the physically motivated description of the emission lines, com-
ing along with more free parameters than a Gaussian approxi-
mation. Despite these increased uncertainties, the Voigt profile
shape is statistically required by the most prominent lines. In
contrast, we can roughly constrain the plasma temperatures of
the prominent RRC features.
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Fig. 14. Anticorrelation of the normalization of the irradiating flux
(HXCOMP) with the column densities of the absorbers CA; (blue) and
CA,; (green).

A description of the soft X-rays using physical emission
codes for optically thin and ionized gas is beyond the scope of
this paper, whose main focus lies on a solid description of the
nuclear continuum. Also, the quality of the XMM-Newton/RGS
data does not allow for improvement of results from previous
studies with Chandra. We therefore remain with a phenomeno-
logical modeling of the soft X-rays and provide a straight-
forward gas diagnostic based on the two prominent line triplets
of O vir and Ne IX at ~0.56keV (22 A) and ~0.91 keV (13.5 A),
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Fig. 15. Combined count spectrum including all XMM-Newton/RGS observations, each with two diffraction orders for each of the two RGS
detectors RGS1 and RGS2. For reasons of visibility, the data are binned to a minimal S/N of 3. The model consists of the underlying SXCOMP
continuum complemented with a set of emission lines in blue. Line identifiers are shown on top of the individual lines.

respectively (Fig. 16). Both lines are statistically best described
by Voigt profiles. We list the parameter constraints in Table 5.
In addition to the statistical uncertainties, we also assume non-
vanishing systematical uncertainties for the fit of the hardly de-
tected resonance and intercombination lines of Ne IX.

Both triplets consist of a resonance (w), an intercombina-
tion (x + y) and a forbidden line (z), while the intercombina-
tion line is a blend of the lines x and y. Relating the strengths
of these lines can be used as a powerful diagnostic for the den-
sity and temperature of the emitting gas (Gabriel & Jordan 1969;
Porquet & Dubau 2000; Bautista & Kallman 2000). The ratio
R = z/(x + y) is sensitive to the gas density in that the rate of
collisions increases with n%, which suppresses the forbidden line
emission. The ratio G = (z + x + y)/w, in turn, is sensitive to the
temperature, which positions the gas between being dominated
by collisions or recombination. A hot plasma gives rise to colli-
sions and therefore a strong resonance line, that is, small values
of G. For larger values of G > 4, the plasma is dominated by re-
combination and the triplet levels with the intercombination and
forbidden line have large statistical weight, therefore featuring
a plasma dominated by photoionization. For both He-like ions,
the ratios are well consistent with those derived using XMM-
Newton/RGS by Armentrout et al. (2007). For O v11, the ratios
(G = 4.05 £0.37 and R = 5.8 £ 1.0) indicate gas dominated
by photoionization. These ratios imply a low gas temperature of
T. < 10° K, which is consistent with that obtained from the nar-
row RRC features. In contrast to Schurch et al. (2004), who find
a moderate R-ratio of 3.9, our value is more consistent with that
measured by Landt et al. (2015), arguing for a gas of very low
density with n, ~ 103 cm™. We detect a relatively strong reso-
nance line for Ne IX, resulting in a low G-ratio of 3.333 + 1.029
and R-ratio of 2.6 £0.9. This result implies a hybrid plasma (e.g.,
Porquet & Dubau 2000; Bautista & Kallman 2000) that is likely
in pressure equilibrium with a collisional ionization gas phase
(Wang et al. 2011a). The temperature (~10° K) and density (a
few x10'' cm™3) are estimated to be significantly higher com-
pared to the O VII gas. Again, the results are overall consistent
with earlier work (Schurch et al. 2004; Armentrout et al. 2007,
Ogle et al. 2000; Wang et al. 2011a). The suppression of the for-
bidden line of NeIX and therefore the R-ratio can alternatively
arise from a strong UV field, where photoionization is still dom-
inant (Mewe & Schrijver 1978).

4. Discussion

Extending earlier work by Keck et al. (2015) by including soft
X-ray data, in this paper we re-investigated data from the
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Fig. 16. Enlarged view onto the bands of the He-like triplets of the ions
O V1 (top) and NeIX (bottom). In both cases we show unbinned data
from the first diffraction order combined out of all observations. The
model corresponds to the parameters listed in Tables 5 and A.3.
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Table 5. Triplet line parameters of the ions O VII and Ne IX.

Line E [keV] FWHM [keV] Flux [Phs™' cm™2]
ovitw  0.57200%95%03  (2.693)x 10 (1.30713) x 107
Oviix+y 056702:99002  (2.7+07)x 10 (7.9*1%)x 107
Ooviiz  055946*090%5  (2.5%09)x 10 (4.51013) x 1074
Nerxw  0.9191*9%%07 <9x 1073 (24793) x 1075
Nelxx+y 0.9132*0%!3 <0.041 (22758) x 107
Nelxz  0.9024 £0.0004 <6x 107 (5.8+0.6) x 107

Notes. Both lines are described with Voigt profiles. The thermal ve-
locities are unconstrained and not listed in the table. The continuum
parameters are frozen to those of the SXCOMP.

joint Suzaku/NuSTAR campaign of NGC 4151. The resulting
broad energy coverage and the use of the lamp-post model
relxillCP_lp allowed us to disentangle complex and variable
absorption from blurred disk reflection originating in the regime
of strong gravity. We described the blurred reflection with two
lamp-post components at different heights, while the bulk of
the 1-6 keV continuum absorption was attributed to an absorber
consisting of partial- and full-absorbing components. We also
detected narrow absorption features that can be modeled with a
highly ionized (log ¢ ~ 2.8) warm absorber and an additional ab-
sorption line indicating an UFO. The soft emission was modeled
with a SXCOMP scattering continuum and a number of emission
lines that are identified with XMM-Newton/RGS.

4.1. Size of the corona and pair production

Our baseline model encompasses two point-like primary lamp-
post sources at the heights of 1.27, and 15.07,, which result
in strongly and moderately blurred spectral reflection compo-
nents (see also Keck et al. 2015). Individual studies, for exam-
ple, by Dauser et al. (2012), Parker et al. (2014) and Fink et al.
(in prep.), that apply the model relxill_lp, confirm the need
for relatively low source heights between ~2 and 4r, and com-
pact coronae in order to explain the observed spectra. This has
been independently confirmed by simulations of Svoboda et al.
(2012) as well as reverberation studies (Fabian et al. 2009;
Zoghbi et al. 2010, for 1H 0707-495). In the following we dis-
cuss the implications and limitations of this solution.

For the moment, we assume two distinct emission regions as
they result from our modeling. Dov¢iak & Done (2016) provide
estimates on the spatial extent of spherical coronae depending
on their height above the BH. For an observed luminosity of

L%%)Bi()kev = 0.001 Lggq and a photon index of I' = 2, the ex-

tent of a corona at a height of 10-20r, grows to values larger
than 1r,. The size is decreasing to ~0.4 r, at lower heights and
again increasing to ~1r, for a height close to 1 r,. This evolu-
tion of coronal sizes is caused by light-bending close to the BH
and gravitational redshifts at larger heights. The models fitted to
the XMM-Newton, Suzaku, and NuSTAR data examined in this
paper imply the incident power law to have a mean observed
luminosity of Ly 19KV /Lg4q = 0.001-0.002, which is compa-
rable to the luminosity assumed by Dovciak & Done (2016). We
therefore adopt a coronal radius of 17, for our components. If
the corona of LP; was in fact situated at 1.2 r, above the BH,
its radius would have to be even smaller in order not to interfere
with the event horizon.
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The compactness of a corona with radius d can be ex-
pressed as

ny Lint

(=4xn (1)

e b
dme Lggq

where Ly is the intrinsically emitted luminosity, Lgqq ~ 1.5 X
10%8 (M/My)ergs™ = 4.5 x 10¥ ergs™! is the Eddington lu-
minosity’ and d is the radius of a simplified spherical corona
in units of r,. The compactness can be interpreted as the op-
tical depth of the corona with respect to pair production and
has been extensively discussed by Lightman & Zdziarski (1987),
Svensson (1987), Dove et al. (1997a) and Dove et al. (1997b). A
useful parameter in that regard is @ = kT, /m, % ~ Eg/2 me ¢?
(Garcia et al. 2015), where Ey, is the high-energy cutoff of the
Comptonized continuum. The cross-section for electron/positron
pair production per photon peaks between E = m, c? = 511keV
and ~1 MeV. We therefore evaluate the intrinsic luminosity for
the model of each observation both between 0.1 and 200keV
(the energy range used by Fabianetal. 2015) and 0.1 and
1000 keV, which includes the peak of the cross-section.

If we replace the model description of our best-fit base-
line model (Table 3) with two separate incident continua and
fit for both normalizations (Npp,, NLp,) and reflection fractions

(R%P ' R%PZ), these four parameters are strongly degenerate (see
Sect. 3.3.3 for the numbers). The dynamic range of the nor-
malizations comprises also the solutions of Table 4 and there-
fore provides the full range of allowed values in a conservative
way. The observed source luminosities therefore range between
32 x 10Mergs™ < Ly ey S 2.54 x 108 ergs™! and

43 ~1 LP, 43 -1

1.17 X IQ ergs™ < Ljlo apokey S 2-50 x 10™ erg s Es-
pecially in the case of LP;, where the corona would be situated
deep inside the gravitational potential, we need to transform the
observed luminosities into the intrinsic frame of the corona. The

conversion factor (1 + zg)r depends on the gravitational redshift

Zg = (1/\/1 - 2h/(h? + a2)) — 1 between the corona and the ob-

server as well as the photon index I'. Fixing the spin ata = 0.998,
we find that the conversion factor increases quickly from ~1.14
(zg ~ 0.08)at h ~ 15.0r, to ~37 (zg ~ 7.2) at h ~ 12r,.
In addition, in the case of LP; we also need to apply a correc-
tion factor to account for photon trapping. Due to strong light-
bending, at the height of 1.2, only ~1% of the photons of an
isotropically emitting primary source reach the observer, while
a significant fraction of the photons (~13%) reach the accretion
disk, leading to a large reflection fraction of R;‘P‘ = 22 for LP,
(see also Table 4). At this reflection fraction, the corresponding
luminosity becomes L;}:lo.pzoomv = 0.4Lgqq. Leaving Ry free,
the incident continuum can reach observed luminosities as large
as 2.54 x 10% erg s~!. For this value, the corona would intrinsi-
cally exceed Lggq by a factor of ten.

The full range of allowed luminosities translates into a
compactness-range of 2500 < €pp, <200000and 5 < €1p, < 11.
With these constraints, we can show that the compactness pa-
rameter £ would, within the uncertainties, well cover the param-
eter space below the limits for pair production (Stern et al. 1995;
Dove et al. 1997a,b; Fabian et al. 2015) for LP,. It would, how-
ever, exceed this limit in some extreme cases of LP;. Here, we
also have to correct the parameter ® and the cutoff energy for
the gravitational energy shift arising between the compact source
and the observer. In the case of LPy, this would shift the primary

5> The Eddington luminosity is calculated with the black hole mass
Mgy = 3 X 107 Mg, (Hicks & Malkan 2008).
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source above the pair limit for all compactness values indepen-
dent of the value for E.;. As a result, the corona would be en-
tirely optically thick for photons with energies £ > 511 keV with
respect to pair production.

Such extremely compact coronae have not been found in
the sample of AGN and XRBs studied by Fabian et al. (2015).
Also, the limitations that we outline above and that are also
mentioned by NiedZwiecki et al. (2016) challenge the interpre-
tation of LP; as a distinct component. The component LP,
can therefore only be interpreted in combination with LP,. Al-
though the superposition of the two distinct lamp-post compo-
nents LP; and LP, serves well to describe our data, we hesitate
to claim the two point sources to represent a realistic descrip-
tion of the corona. Also, the strong degeneracies between the
largely uncertain normalizations of both lamp-post components
and the low reflection fraction found for LP; argue against two
extremely compact and distinct coronae. In contrast, a contin-
uous structure enclosing both components seems more likely.
The detected spectral signatures of strongly blurred reflection
yet indicate in a model-independent way that at least part of
the corona must lie very close to the black hole. The low re-
flection fraction measured for LP, also points towards a verti-
cally extended structure (Keck et al. 2015). It may be reflected
by outflows (see also King et al. 2017) that have been detected
for NGC 4151 (Kraemer et al. 2005; Tombesi et al. 2010, 2011),
where relativistic aberration (Beloborodov 1999; Malzac et al.
2001) can effectively reduce the observed fraction of reflected
photons. These outflows together with its non-relativistic jets
(e.g., Pedlaretal. 1993; Ulvestad et al. 2005) could well fit
in this picture and may provide a natural environment for
the source of primary X-ray photons (Markoff & Nowak 2004;
Markoft et al. 2005; Wilkins & Gallo 2015; King et al. 2017).

Reverberation studies have independently suggested hor-
izontally (Wilkins & Fabian 2012) and, in particular, verti-
cally extended primary sources above the black hole for
Ark 564 (Zoghbietal. 2010), Mrk 335 (Karaetal. 2013),
IRAS 13224-3809 (Wilkins & Gallo 2015) and also for
NGC 4151 (Zoghbi et al. 2012; Cackett et al. 2014), which in-
dicates a primary source within ~5-10r, from the black hole.
This may, in conjunction with the high-quality spectral informa-
tion of the long-look Suzaku and NuSTAR data, be well in agree-
ment with a jet-based geometry, which can still be relatively ra-
dially compact. Magnetic fields (e.g., Baczko et al. 2016, for the
extreme case of the radio galaxy NGC 1052) make this region
an efficient emitter of synchrotron photons (e.g., Merloni et al.
2000; Markoff et al. 2005), which can act as additional seed pho-
tons for Comptonization processes in the corona and therefore at
least reduce its transverse extent (Dovciak & Done 2016) close
to or below the value of 1 ry, which we have previously assumed
for our estimates of the compactness.

4.2. Complex absorption variability

We model four layers of absorption: two neutral layers, one
partially covering the nucleus with fo,, ~ 0.5 (CA;/Ny,;) and
one full-covering absorber (CA,/Ny2), a warm absorber with
log & ~ 2.8 as well as an additional broad absorption line around
8keV that can either be formed by a Fe XXVI Ly g line that is
unmodeled by the warm absorber or, more likely, a blueshifted
Fe XXV Hea or Fe XXVI Ly  line, indicative of an UFO at a
speed of ~0.16-0.24 c.

We showed that one or both of the absorbers CA; or
CA,; account for the bulk of the spectral variability between
1-6keV on timescales from days to years. This agrees with

Puccetti et al. (2007) and de Rosa et al. (2007) for a very sim-
ilar set of absorbers. The partial-covering column Ny ; ranges
between 10 and 25 x 1072 cm™2. Its covering fraction averages
46% across the Suzaku observations. The full-covering column
N2, on the other hand, ranges between 5 and 15 x 10722 cm™2.
The columns Ny ; and Ny » seem to track one another well; given
the data quality and the comparable values of both columns, we
can explain this model-dependent result as being due to degen-
eracies between Ny and Ny». In agreement with earlier anal-
yses using BeppoSAX (Puccetti et al. 2007; de Rosa et al. 2007)
and Chandra (Wang et al. 2010), we can therefore not tell if one
or the other column dominates the variability. A separation of
both neutral absorbers from the inner-disk reflection component
is equally challenging, as both describe very similar spectral fea-
tures at the flat turnover. We could still show that disentangling
both is possible with the high count statistics and broad spectral
coverage of the long-look Suzaku and NuSTAR observations as
well as the variable nature of the absorbers. The latter has also
been demonstrated by Risaliti et al. (2009a) and Risaliti et al.
(2013) for NGC 1365, which is very similar to NGC 4151 in
that regard.

The shortest variability timescale of 2d has been mea-
sured with the time-resolved analysis of Suz 3 (see Fig. 12).
The circumnuclear gas in NGC 4151 may be continuous
yet non-homogeneous and/or containing (or consisting of)
a discrete number of localized clouds. Such scenarios have
been explored for this source in the past by Holtet al
(1980), Yaqoob & Warwick (1991), Zdziarski et al. (2002), and
Puccetti et al. (2007).

In the case where the variable absorber consists solely of
clouds, variability either by Ny or the covering fraction may
be associated with single clouds entering or exiting the line-of-
sight. We can not exclude variability of the covering fraction
due to inherent degeneracies that lead us to fix this parameter.
The model by Nenkova et al. (2008b) attempts to explain line-
of-sight variability for all inclinations with a Poissonian distri-
bution of clouds that decrease in number density further out.
This model has been successfully fitted to infrared (IR) SEDs
by Alonso-Herrero et al. (2011) and is able to explain absorp-
tion events observed in the X-rays (Markowitz et al. 2014; and,
e.g., Beuchert et al. 2015). On average, these studies predict
only a few clouds on the line-of-sight for inclinations similar
to the the one we measure for NGC 4151. This is consistent
with independent estimates for NGC 4151 by Holt et al. (1980),
Yaqoob & Warwick (1991) and Zdziarski et al. (2002).

Regardless of whether the variable absorber is CA; or CA;,
we can use the observed variability timescales of Ny to estimate
the location of potential clouds that are moving on Keplerian
orbits (Risaliti et al. 2002; Puccetti et al. 2007) with

Mgy ( nu )2 At 2( Nu )’2 em
107 M \109cm=3/ \2d) \1022cm2 ’
(2)

where Mgy is the black hole mass and where ny and Ny are
the cloud number density and column density, respectively. For
At we use the shortest variability timescale of 2d. The col-
umn density is set to the maximum modeled value of Ny; =
~25 x 10?> cm™2. The number density is unknown. If we as-
sume number densities for BLR clouds of ny = 10°"19¢cm™3
(Netzer 1990; Kaspi & Netzer 1999; Netzer 2008), we obtain a
distance range of R ~ 5.6 X 107#-5.6 x 1072 pc or 3.9 x 10>-
3.9 x 10* rq. These distances are consistent with those inferred
by Puccetti et al. (2007) and with the distance of the BLR

R=3.6x10"
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(~8 x 1072 pc, Maoz et al. 1991). Note that for the inclination of
NGC 4151, the average number of clouds on our line-of-sight
stays approximately the same even if we extrapolate the clumpy
torus model down to the BLR. In contradiction to this theoret-
ical consideration, Arav et al. (1998) find no signs for distinct
BLR clouds in high-resolution optical Keck spectra. This result
favors an interpretation of our data with irregular and dynamic
absorbing structures. In theory, dust must be entirely or at least
partially sublimated at the inferred distances with the dust subli-
mation radius

3

bol 03Ty 72O
Ry =0.13 0 ( )
d pe (1044 erg s—l) 1500K

(Nenkova et al. 2008b). We find Ry ~ 0.13pc =
with the assumed bolometric luminosity Ly, = 10*ergs
(Vasudevan & Fabian 2009) and the dust evaporation tempera-
ture of Ty = 1500 K (Barvainis 1987). When the inner range of
the torus is estimated independently, slightly smaller distances
are found; using the 5100A line luminosity (Kaspi et al. 2005),
the outer BLR of NGC 4151 could be constrained to a distance of
~6x10°~6% 10* ry, and the inner rim of the torus to ~0.04 pc us-
ing thermal dust reverberation studies by Minezaki et al. (2004)
and Burtscher et al. (2009). Schniille et al. (2015), however, find
no signs for dust sublimation in their data and explain this with
large graphite dust grains that sublimate at much higher temper-
atures. If we assumed clouds at a distance of R = Ry, the cloud
density required by the observed Ny variability pattern would
be on the order of ~6 x 10! cm=3, which can be excluded for a
dusty torus (Elitzur 2007).

On the other hand, we also detect variability over longer
timescales of approximately one year that may indicate clouds at
larger distances. If we assume, for example, number densities of
107-8 cm=3, which are typical for the dusty torus (Miniutti et al.
2014; Markowitz et al. 2014), we find R ~ 2 X 10732 x 107! pc
or 1.3 x 10°~1.3 X 10° r,. These values put the clouds into the
outer BLR or at the inner side of the dusty torus, which is also a
common result of Markowitz et al. (2014) for similar timescales.
Much larger distances of clouds from well inside the torus would
require unrealistically large number densities and are therefore
unlikely.

Recently, Couto et al. (2016) published a study that in-
vestigates X-ray absorbers with archival long-look Chandra
observations. They find a highly ionized column similar to our
xstar component as well as an outflowing near-neutral ab-
sorber with a speed of ~500kms~!. This neutral absorber goes
back to absorption line features in HST/GHRS/STIS data first
mentioned by Weymann et al. (1997) and referred to as the kine-
matic component “D+Ea” in Table 1 of Kraemer et al. (2001);
see also Kraemer et al. (2006) for further usage. Couto et al.
fit these absorbers to a number of seven archival Chandra
observations with two additional observations by XMM-Newton
in 2000 and Suzaku in 2006. They conclude that the bulk of
the spectral variability over 14 yr is caused by a change in the
ionization state of both absorbers as a response to changes in
the irradiating luminosity rather than the observed variations in
Ny. Similar to the absorbers used by Couto et al. (2016), we
find the columns of both neutral absorbers, CA; and CA,, to be
anticorrelated with the incident photon flux of the HXCOMP
component. A portion of either of these is likely consistent with
the component D+Ea. Its outward motion forms a consistent
picture with the observed anticorrelation of the incident flux with
the column density, in which a still dusty, radiatively driven wind

8.9 x 10* rg

causes a decrease of the line-of-sight absorption for stronger
radiative driving. We, however, emphasize that the interpretation
of the data analyzed in this work strongly depends on the method
of modeling. Both the interpretation with orbiting clouds or
with an outflowing near-neutral absorber represent structural
changes in the absorber. We do not favor one over the other.
In a yet different scenario, the ionization state of the absorber
can change with varying irradiation, resulting in changes of the
equivalent column density. We, however, are not sensitive to this
effect with the available count statistics.

On larger scales, Ruiz etal. (2003) and Radomski et al.
(2003) detect dusty extended gas in NIR/MIR data, which is
fully covering the nucleus similar to dust that has been found
within ~4 pc using the Gemini NIR integral field spectrograph
Riffel et al. (2009). This dusty component may therefore make
up a non-variable portion of our CA.

4.3. The soft X-rays

We model the soft X-rays of all observations with a SXCOMP
with the photon index tied to that of the HXCOMP as
well as a blend of Gaussian lines that are motivated from
high-resolution grating observations of XMM-Newton/RGS and
Chandra/HETG. We have shown that the soft flux below 1 keV
is, contrary to the hard flux, only mildly variable at a low dy-
namic range of ~6% at most. The origin of the variability (con-
tinuum, emission line(s), or both) is unclear. If we calculate the
ratio of the SXCOMP and HXCOMP normalization, we can,
on average, infer a low optical depth of the soft emitting gas
of T ~ 0.023.

Due to the comparatively large PSFs of XMM-Newton and
Suzaku, we are unable to spatially resolve the line-emitting
gas. In contrast, a number of authors have been using Chan-
dra for this purpose, which is both powerful in spatial and
spectral resolution. Ogle et al. (2000) and Wang et al. (2011a)
show that a considerable part of the soft X-rays is due to
distant, extended gas that is spatially coincident with a bi-
conical gas distribution (see Storchi-Bergmann et al. 2010, for
integral field spectroscopy of [OI]) and the narrow line re-
gion (NLR; Bianchi et al. 2006). A spatially resolved modeling
of the extended gas with Cloudy allows Wang et al. (2011a)
to conclude a two-phase photoionized medium of intermedi-
ate (logé ~ 1.7) and high (logé ~ 2.7) ionization (see
also Armentrout et al. 2007, for similar modeling using Cloudy
with XMM-Newton/RGS data) next to the collisionally ionized
phase. The higher ionized line-emitting gas phase detected us-
ing Cloudy may also be consistent with the highly ionized warm
absorber of similar ionization (logé ~ 2.8) that we model with
XSTAR.

The evidence for a thermal, collisionally ionized gas phase
may point towards a contribution of a bremsstrahlung contin-
uum to the soft X-rays, which we, for simplicity, model with
a SXCOMP continuum, that is, scattered nuclear Comptonized
emission. We are unable to favor either of both options with our
data, but provide the reader with a short discussion on the im-
plications of our chosen model. In this picture, the observed
highly ionized phase, which we refer to as a “warm mirror”
(Guainazzi et al. 2005; Guainazzi & Bianchi 2007a,b), can act as
scattering medium for the nuclear emission. This scenario would
justify our SXCOMP component to be a long-term average with
respect to the variable nuclear HXCOMP (see also Pounds et al.
1986; Yang et al. 2001; Wang et al. 2011b). The low degree of
flux-variability that we measure between 0.6 and 1.0keV may

(e.g., Czerny & Hryniewicz 2011; Dorodnitsyn & Kallman 2012) be explained with portions of this warm mirror that are located
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close enough to the nuclear source to respond to its variability. In
fact, around 30%?° of the soft X-rays originate in a region that is
unresolved by Chandra (Ogle et al. 2000). The response of this
mirror at various distances from the source could explain the
lack of correlated variability between the soft and hard bands. A
correlation of the HXCOMP variations with the prominent O VII
and NeIX line fluxes can neither be claimed nor excluded with
respect to the large uncertainties at CCD resolution. Also, we
can neither report to be in favor of or against correlated variabil-
ity of these lines with the column density of the absorbers. This
would be expected if the clumpy absorber were to temporarily
block the nuclear irradiation onto the diffuse gas and promote
recombination of the gas.

Other than the warm mirror, an intrinsic soft excess may
also explain the soft emission, which has phenomenologically
been modeled with a steep soft power-law (e.g., Yang et al.
2001; Wang et al. 2010). This also involves a fit with an ex-
tra bremsstrahlung component (e.g., Warwick et al. 1995). In a
more self-consistent picture, the soft excess emission could be
provided by a combination of blurred and unblurred ionized
disk reflection, that is, by the model components relxillCp_lp
and xillver, which we use to describe the relativistic fea-
tures inherent in the continuum. Although this works relatively
well for the soft continuum at CCD resolution, xillver is un-
able to model the highly ionized species of the H-like and He-
like ions O vII/O vIII and Ne IX, which we observe with XMM-
Newton/RGS. In addition, xillver predicts a number of strong
lines from Mg, Si, and S rather than O or Ne, which are not
observed with XMM-Newton/RGS. We therefore prefer an inde-
pendent soft continuum due to extended gas on larger scales.

5. Conclusions and outlook

The unique Seyfert galaxy NGC 4151 allows to both probe the
circumnuclear absorber and its strongly variable absorption to-
gether with the effects of strong gravity close to the BH via im-
prints on the reflection spectrum. As part of this work, we con-
ducted a follow-up study based on Keck et al. (2015) and apply
the improved model relxillCp_1lp that describes blurred re-
flection in a physically motivated and self-consistent lamp-post
geometry together with the complex set of neutral absorbers
that has been frequently reported in the literature. We apply
the resulting baseline model to all Suzaku, XMM-Newton, and
NuSTAR spectra that we consider in this work and perform a
time-resolved spectral analysis of the neutral absorbers CA; and
CA, that are variable on timescales from days to years. We find
the soft X-rays below 1keV to be only mildly variable within
a maximum of ~6% as opposed to ~20% for the HXCOMP.
Strong spectral variability is apparent between 1 and 6 keV. As a
result of our dedicated modeling, we come up with the following
conclusions:

1. We identify two separate point-like lamp-post components
LP; and LP; in simultaneous long-look Suzaku and NuSTAR
spectra at heights of 1 ~ 1.27; and & ~ 15.0r,, respec-
tively. We applied the most recent model relxillCp_1lp that
combines the reflection spectrum off each point on an ion-
ized disk (xillver) with the appropriate relativistic trans-
fer function. This model uses the Comptonization continuum
nthcomp as primary continuum. The normalizations and re-
flection fractions of both lamp-post components are highly

6 This number can only be approximate due to the recent improve-
ments on the Chandra PSF.

degenerate. In particular we measured a low reflection frac-
tion for LP; and find that runaway pair production would
dominate for a single and compact corona close to the BH.
We therefore propose a vertically extended corona as op-
posed to two distinct and compact coronae. We emphasize
that our results possibly reflect Comptonization processes in
a jet-base and emphasize the presence of non-relativistic jets
in NGC 4151. An outflowing corona would flatten the emis-
sivity profile, which may explain the low observed reflection
fraction. We must additionally consider the jet-base and its
magnetic field as a source of synchrotron photons. These ad-
ditional seed photons may cause the corona to be relatively
compact in the horizontal direction. The relevance of mag-
netic fields for coronae close to the BH is strongly implied
and needs to be carefully investigated in the future.

. Thanks to the high count statistics provided by the long-

look Suzaku/NuSTAR campaign, we are able to constrain a
complex system of four separate layers of absorption, that
is, two neutral absorbers, one of which is partially covering
the nucleus with only 40-50% (CA) and one fully cover-
ing the same (CA;), a third layer of highly ionized absorp-
tion (logé ~ 2.8) as constrained with absorption features
of Fe XXV and Fe XXVI as well as an UFO with an outflow
velocity of ~0.16-0.24 ¢ from a broad absorption feature
around ~8keV. We also showed that we are able to distin-
guish the relatively flat turnover of the neutral partial coverer
between 3 and 6keV from the broad and blurred reflection
components, which both describe a similar spectral shape in
this energy range.

. We observe both columns CA; and CA; to be strongly

variable both on short timescales of 2d (probed with the
long-look Suzaku observation) and long timescales of ap-
proximately one year (probed with two additional Suzaku
observations as well as a XMM-Newton monitoring). Both
absorbers are responsible for the bulk of the spectral vari-
ability observed between 1 and 6 keV. Their variability pat-
terns are similar at all timescales, which is likely caused by
the observed degeneracies between both columns. We are
therefore unable to tell from our modeling, if one or even
both absorbers are intrinsically variable. The observed col-
umn density evolution could be interpreted as a clumpy ab-
sorber, where one or more single clouds transit the line-of-
sight at a distance as close as the BLR up to the inner side
of the torus. While no BLR clouds have yet been detected in
the BLR of NGC 4151, a clumpy nature of the inner dusty
torus may still be a valid explanation. On the other hand, the
anticorrelation of the irradiating photon flux with the column
densities Ny ; and Ny, offers the alternate explanation of a
radiatively driven dusty wind or changes in the ionization
degree of the near-neutral absorber.

. The soft X-rays below 1keV are only mildly variable. They

likely originate in extended gas, which is included by the
large PSF of Suzaku and XMM-Newton. We observe a blend
of unresolved emission lines in the CCD spectra together
with a weak continuum that we model with the SXCOMP.
We analyzed the combined XMM-Newton/RGS spectrum
of all seven XMM-Newton pointings and the underlying
soft emission with a phenomenological blend of Gaussian
line profiles. Line-ratio diagnostics on the dominant He-like
triplets O VII and NeIX suggest that the gas must primar-
ily be photoionized with a minor contribution of a collision-
ally ionized phase. Related to the choice of the SXCOMP as
underlying continuum, we discuss the extended and highly
ionized gas in terms of a “warm mirror”, scattering nuclear
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Comptonized continuum emission into our line of sight. We
outline observational evidence for this gas phase, that is, the
logé ~ 2.8 warm absorber and the soft line emission. The
mild degree of variability in the soft X-rays may originate
in gas that is located close enough to the nucleus to be able
to respond to changes in the hard X-ray continuum within
the probed timescale. We can exclude intrinsic soft excess
emission due to blurred, ionized reflection.
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T. Beuchert et al.: A Suzaku, NuSTAR, and XMM-Newton view on variable absorption and relativistic reflection in NGC 4151

Table A.3. Line parameters of Voigt profiles fitted to the combined RGS data of all XMM-Newton observations as part of the monitoring.

Line E [keV] FWHM [keV] kg T [keV] Flux [Phs™' cm™]
Cvia 0.36637 +0.00008  (4.3*1%)x 1073 - (27+03)x 107
CVRRC  0.3901+00004 - (44714)x 107 (1.9£0.3)x 107
NvIf 0.41855 +0.00009  <1.5x 1073 - (1.35%01¢) x 1074
NvIi 0.4250 £0.0004 <6 x 1073 - (2£3)x 107
NvIr 0.42909 + 0.00015  (8+3°) x 107 - (9.6:1¢) x 107
CvIg 0.4342+0.0002  (7:)x 107 - (3.6:5¢) x 1073
Cviy 0.4580 £0.0002  <4.8x 102 - E3.5+g;g) x 107°
CVIRRC  0.4875+00005 - 0.01079.9%0 15702) x 107
NviiLya  0.49874+000015 <2.1x107? = (1.6:93) x 1073
ovuf 0.55946 2.5% 107 = 45x107
ovii 0.56702 2.7% 1073 - 7.9 x 107
ovirr 0.57200 2.6x107 - 1.3x 107
OviiLya 0.65158+000013 (3.4724) x 1073 - 1.58*011) x 1074
NVIRRC  0.6629+00004 - (10752)x 1073 (2.5%98) x 103
OVIRRC 07366 +0.0005 - (3.0785) x 107 (5.5+0.7)x 107
OovimiLys 0.7723+0.0006  <4.5x 107 - (1.6:33) x 107
OviiLyy 0.8228=0.0008  <63x1072 - 0.094+0.007
OVIIRRC  0.8677+09008 - (4.0719) x 107 (4.237)x 107
NeIx f 0.9024 <6x 107 - 58x107°
NelIXi 09132 0.041 - 22x107°
NelXr 0.9191 <9x107? - 24%107°
NexLya  1.0192+0.0006  <9x 107 - (2.7793) x 107
Continuum T norm [PhkeV~!s™! cm™2]

1.72* (1.33 £ 0.05) x 107+

Notes. The parameters of the O VII and Ne IX lines are adopted from Table 5. The thermal velocities are unconstrained and not listed in the table.

The continuum parameters are frozen to those of the SXCOMP.
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