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Abstract

We derive a volumetric source term for the Euler and Navier-Stokes equations that mimics the 

generation of unidirectional acoustic waves from an arbitrary smooth surface in three-dimensional 

space. The model is constructed as a linear combination of monopole and dipole sources in the 

mass, momentum, and energy equations. The singular source distribution on the surface is 

regularized on a computational grid by convolution with a smeared Dirac delta function. The 

source is implemented in the Euler equations using a Cartesian-grid finite-volume WENO scheme, 

and validated by comparing with analytical solution for unidirectional planar and spherical 

acoustic waves. Using the scheme, we emulate a spherical piezoelectric transducer and a multi-

array transducer to simulate focused ultrasound fields in water. The simulated ultrasound fields 

show favorable agreement with previous experiments.
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1. Introduction

Simulation of linear and nonlinear acoustic fields using the Euler or Navier-Stokes equations 

is of use in diverse applications such as medical ultrasound and shockwave therapy[1], 

aeroacoustics [2], and underwater acoustics[3]. For many applications, a source of acoustic 

waves is modeled as an oscillating surface. Treating the source surface as a real oscillating 

surface requires either body-fitted grids or immersed boundary/surface techniques, see for 

example [4, 5, 6]. In many cases, however, the surface itself is irrelevant to the ensuing 

dynamics, and we therefore seek an immersed, volumetric representation of acoustic waves 

produced at such an immersed surface, but without explicitly modeling the surface as a 

boundary condition. It is desirable in such a source to suppress generation of waves from the 

“back” of the surface; even if the presence of the direct waves generated can be tolerated, 
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their reflection from open computational boundaries (with imperfectly non-reflecting 

boundary conditions) can lead to undesirable contamination of the solution. Improving the 

boundary conditions and/or enlarging the domain can be a cumbersome [7], and we 

therefore further seek to require that the source generate a set of unidirectional waves to the 

surface normal.

A related problem is parabolization[8, 9], which seeks to derive well-posed equations that 

support only waves propagating in a single direction (or over a limited range of angles). This 

is distinct from the simpler goal of the present paper, which is to obtain one-way sources for 

use in the full governing equations. To do so, we use a concept from active noise 

reduction[10, 11], which is that by placing sound sources of controlled phase delay at proper 

locations, resulting sound waves propagating in a particular direction can be actively 

canceled[12]. To do this, we distribute singular sources of mass, momentum, and energy on 

a three-dimensional surface and use a smeared Dirac delta function to regularize the singular 

distribution to a volume surrounding the surface. The Green’s function solution for locally 

planar waves is then used to construct an anti-sound source for waves propagating in one 

direction. The superposition of these sources gives the desired one-way source.

The model is validated with analytical solutions for spherical and planar waves, and then 

used to model a single element, high-intensity focused ultrasound (HIFU) transducer and a 

multi-array medical transducer on a portion of a spherical surface. We compare the acoustic 

field produced by the one-way source for the single-element transducer with experimental 

measurements reported by Canney et al[13] in both linear and nonlinear regimes, and that of 

the multi-array transducer with measurements reported by Maxwell [14] in a linear regime. 

The proposed model can in principle be combined with any discretization of the Euler or 

Navier-Stokes equations.

2. Model

2.1. Inhomogeneous Euler equations

To model acoustic generation in a fluid by forcing, we consider the compressible, 

inhomogeneous Euler equations,

∂ρ
∂t + ∇·(ρu) = S1, (1)

∂(ρu)
∂t + ∇·(ρuu + pℐ) = S2, (2)

∂E
∂t + ∇·[(E + p)u] = S3, (3)
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where S1, S2 and S3 represent scalar mass, vector momentum, and scalar energy sources, 

respectively. We close the equation by stiffened gas equation of state:

p = (γ − 1)ρε − γπ∞, (4)

where ε is the specific internal energy, with ρε = E − 1
2 ρu · u, and γ and π∞ are parameters. 

Ideal gas equation of state is recovered with π∞ = 0. In the present study we use (γ, π∞) = 

(1.4, 0) for air and (γ, π∞) = (7.1, 3.06 × 109) for water, respectively.

Our goal is to find a combination of S1, S2 and S3 that generates one-way waves. To this 

aim, in the following we will compute general solutions of the equation in terms of arbitrary 

S1, S2 and S3. First we rewrite the equation in terms of linear perturbation about a quiescent 

state:

∂ρ′
∂t + ρ0∇·u′ = S1, (5)

∂u′
∂t + 1

ρ0
∇ p′ =

S2
ρ0

, (6)

∂ p′
∂t + γ(p0 + π∞)∇·u′ = (γ − 1)S3, (7)

where scripts ()′ and ()0 denote variables at perturbed and stationary states, respectively. 

The linearized equations may be further manipulated to obtain

1
c0

2
∂2 p′
∂t2

− ∇2 p′ =
∂S1
∂t − ∇·S2, (8)

∂ω′
∂t =

∇ × S2
ρ0

, (9)

ρ0T0
∂s′
∂t = S3 −

c0
2

γ − 1S1, (10)
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where ω′ = ∇ × u′ is the vorticity perturbation, s′ is the entropy perturbation and T0 is the 

backgrounds temperature. In general, with a presence of entropy source at the source surface 

(e.g. heat injection), the right hand side of equation (10) is non-zero. In the present study, to 

avoid generating entropy at the surface, we therefore set S3 = c0
2/(γ − 1)S1. The curl of the 

source distribution S2 will, unavoidably, create vorticity perturbations near an arbitrarily 

shaped surface. For some simple geometries, including plane waves, the curl will be 

identically zero, but, in any case, the vorticity generated will remain confined to a small 

Stokes layer near the surface in an otherwise quiescent media.

Using a Green’s function, the solution of the equation (8) is given as

p(x, t) =
0

t
dτ

−∞

∞
dζG(t, τ, x, τ)(

∂S1
∂t − ∇·S2) . (11)

The essential idea of our model is to consider a local region on the two-dimensional surface 

as locally spherical (with planar as a special case), and use the appropriate Green’s function 

to derive a set of sources and anti-sources that produce the desired one-way wave field. To 

motivate the general case, we first examine planar and spherical surfaces in the next two 

sections. The cylindrical surface, for which a closed-form solution for one-way waves does 

not exist, is discussed in Appendix A.

2.2. Plane wave

We consider forcing a three-dimensional, initially quiescent, unbounded field of domain 

using the source model for one-way plane wave. To this end we define a source plane 

represented by x = x0 on which the source of the same strength is uniformly distributed. The 

source terms S1 and S2 can be expressed as

S1 = f (t)δ(x − x0) (12)

S2 = g(t)δ(x − x0), (13)

where f(t) and g(t) are arbitrary functions satisfying causality condition: f(t) = g(t) = 0 for t < 

0. Though the analytical expressions for S1 and S2 are presented by Ffowcs-Williams[10], in 

the context of anti-sound generation for active noise control, we repeat the derivation for 

clarity.

The Green’s function for the one-dimensional wave equation is

G(t, τ, x, τ) = H(c(t − τ) − | x − ζ | ), (14)
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where H is Heaviside step function. Substituting S1 and S2 into the solution above, we 

obtain

p(x, t) = c
2 0

t
dτ

−∞

∞
dζH(c(t − τ) − |ζ − x | )(

∂S1
∂t − ∇·S2) (15)

= c
2 0

t
dτ

−∞

∞
dζH(c(t − τ) − |ζ − x | )( ḟ (τ)δ(ζ − x0) − g(τ)δ′(ζ − x0)) (16)

= c
2 0

t
dτH(c(t − τ) − | x0 − x | ) ḟ (τ)

(A)

− c
2 0

t
dτ

−∞

∞
dζH(c(t − τ) − |ζ − x | )g(τ)δ′(ζ − x0)

(B)

(17)

We can compute the integrals (A) and (B) as

(A) = H(c(t − τ) − | x0 − x | ) f (τ) 0
t +

−∞

∞
c(δ(c(t − τ) − | x0 − x | )) f (τ) (18)

= f (t −
|x0 − x|

c ) (19)

(B) = −
0

t
dτ

−∞

∞
dζ ∂

∂ζ [H(c(t − τ) − |ζ − x | )]g(τ)δ(ζ − x0) (20)

=
0

t
dτ

−∞

∞
dζ ∂ |ζ − x|

∂ζ δ(c(t − τ) − |ζ − x | )g(τ)δ(ζ − x0) (21)

=
0

t
dτ

−∞

∞
dζ sgn(ζ − x)δ(c(t − τ) − |ζ − x | )g(τ)δ(ζ − x0) (22)
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=
0

t
dτ sgn(x0 − x)δ(c(t − τ) − | x0 − x | )g(τ) (23)

= 1
c g(t −

|x0 − x|
c )sgn(x0 − x) (24)

= − 1
c g(t −

|x0 − x|
c )sgn(x − x0) (25)

to obtain

p(x, t) = 1
2 cf (t −

|x0 − x|
c ) + g(t −

|x0 − x|
c )sgn(x − x0) . (26)

Thus we see that the mass source S1 acts as a monopole that generates outgoing waves of the 

same amplitude and the same sign, propagating in both ±x directions, while the momentum 

source S2 acts as a dipole that generates outgoing waves of the same amplitude, but opposite 

sign, propagating in ±x directions.

By defining f(t) = g(t)/c, we obtain

p(x, t) = 1
2 g(t −

|x0 − x|
c ) + g(t −

|x0 − x|
c )sgn(x − x0) (27)

= 1
2 (1 + sgn(x − x0))g(t −

|x0 − x|
c ) (28)

= H(x − x0)g(t −
|x − x0|

c ) . (29)

This is clearly a one-way solution that represents waves propagating only in +x direction. 

The waves caused by S1 and S2 propagating in −x direction cancel with each other since 

they have the same amplitude but opposite signs. In addition to the noise control, 

cancellation of a component of waves propagating in a particular direction by superposition 
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of multiple sources, has been applied to analytical representation of Gaussian beam by point 

sources and sinks[15].

2.3. Spherical wave

Next, we consider an acoustic source distributed on a spherical surface represented by x = 

x0, where x is now the radius in spherical polar coordinates, to generate a one-way spherical 

wave. The wave equation in terms of x becomes

1
c0

2
∂2 p
∂t2

− (∂2 p
∂x2 + 2

x
∂ p
∂x ) =

∂S1
∂t − ∇·S2, (30)

where we have used the definition of Laplacian in spherical polar coordinates 

∇2( · ) = 1
x2

∂2

∂x2 x2( · ). Notice that we can reformulate the equation in terms of xp:

1
c0

2
∂2(xp)

∂t2
− ∂2(xp)

∂r2 = x
∂S1
∂t − ∇·S2 . (31)

Then we can apply the same Green’s function used for the plane source distribution to 

obtain:

xp(x, t) = c
2 0

t
dτ

−∞

∞
dζH(c(t − τ) − |ζ − x | )ζ(

∂S1
∂t − ∇·S2) (32)

= c
2 0

t
dτ

−∞

∞
dζH(c(t − τ) − |ζ − x | )ζ[ ḟ (τ)δ(ζ − x0) − g(τ) 1

ζ2
∂

∂ζ (ζ2δ(ζ − x0))] (33)

=
cx0
2 0

t
dτH(c(t − τ) − | x0 − x | ) ḟ (τ)

(A)

−
cx0

2

2 0

t
dτ

−∞

∞
dζ 1

ζ H(c(t − τ) − |ζ − x | )g(τ)δ′(ζ − x0)
(C)

(34)

Integral (A) follows that used in the planer wave solution. The integral (C) differs from (B). 

We further compute
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(C) = −
0

t
dτ

−∞

∞
dζ ∂

∂ζ
1
ζ H(c(t − τ) − |ζ − x | ) g(τ)δ(ζ − x0) (35)

= −
0

t
dτ

−∞

∞
dζ − sgn(ζ − x)

ζ δ(c(t − τ) − |ζ − x | ) − 1
ζ2 H(c(t − τ) − |ζ − x | ) g(τ)δ(ζ

− x0)

(36)

= 1
x0 0

t
dτsgn(x0 − x)δ(c(t − τ) − | x0 − x | )g(τ)

(B)

+ 1
x0

2 0

t
dτH(c(t − τ) − | x0 − x | )g(τ)

(D)

, (37)

Integral (D) becomes

(D) = H(c(t − τ) − | x0 − x | )(Gg(τ) + C) 0
t +

0

t
dτcδ(c(t − τ) − | x0 − x | )(Gg(τ) + C(x))

(38)

= Gg(t −
|x0 − x|

c ) + C(x), (39)

where Gg(t) is the anti-derivative of g(t) and C(x) is an integration constant.

By using the expressions for (A) – (C), we obtain the following solution:

p(x, t) = 1
2

x0
x cf (t −

|x0 − x|
c ) + g(t −

|x0 − x|
c )sgn(x0 − x) − c

x0
(Gg(t −

|x0 − x|
c ) + C(x)) .

(40)

C(x) can be obtained by comparing this solution with the initial condition, p(x, t = 0).
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We see that, the waves generated by the mass source S1 is a monopole solution like in the 

planer solution, while the waves generated by the momentum source S2 also contains a 

monopole solution, in addition to the dipole component seen in the planer wave solution. 

The monopole component induced by S2 clearly originates from the spherical geometry. It is 

straight forward that defining

f (t) = 1
c g(t) + 1

x0
(Gg(t −

|x0 − x|
c ) + C(x)) (41)

makes the following one-way wave solution propagating outward:

p(x, t) =
x0
x H(x − x0)g(t −

|x0 − x|
c ) . (42)

Despite its simplicity, this form of the one-way spherical wave source has not, to our 

knowledge, been previously reported.

2.4. Arbitrary, smooth surfaces

For the general case of acoustic source that is distributed on combinations of arbitrary but 

smooth, two-dimensional surfaces, we may combine the plane, cylindrical and/or spherical 

one-way sources as building blocks that align on the source plane. As an example of such 

cases, in section 4.4 we will demonstrate a simulation of acoustic fields generated by a 

multi-array medical transducer, using a combination of spherical one-way sources to model 

the transducer elements.

3. Numerical method

In principle, the models for one-way source derived in the previous section can be used for 

any numerical methods that solve Euler or Navier-Stokes equations. For good accuracy, the 

waves should be introduced into a region of approximately quiescent flow, and the amplitude 

should be limited such that the linearization, upon which the source model rests, holds. 

Regardless, we can simply amend the derived source terms to the original nonlinear 

equations. In the present study, we use a finite-volume, fifth-order WENO scheme[16] both 

in cylindrical coordinates with an azimuthal symmetry and Cartesian coordinates. High-

order WENO scheme is particularly capable of accurately simulating discontinuous 

solutions, including shock wave and material interface[17].

In the following we describe a method of numerical representation of the governing equation 

in cylindrical coordinates with azimuthal symmetry. That in 3D Cartesian coordinates can be 

trivially derived in a similar manner, and thus is omitted here. We spatially discretize the 

forced Euler equation in the following form:
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∂q
∂t + ∂ f (q)

∂z + ∂g(q)
∂r = sg(q) + ss(q), (43)

where q is the vector of conservative variables, f, g are vectors of fluxes, s is the vector of 

source terms and the superscripts (·)g and (·)s denote the geometrical flux and the acoustic 

source, respectively. This formulation is convenient since the variables can be discretized in 

2D Cartesian coordinates[18]. We integrate the above equation in arbitrary finite volume 

grid cell

Ii, j = [zi − 1/2, zi + 1/2] × [r j − 1/2, r j + 1/2], (44)

where i and j are the indices of the cells in z− and r−directions, and zi±1/2 and rj±1/2 are the 

positions of cell faces. At each finite volume cell, we express the equation in the following 

semi-discrete form:

dqi, j
dt = 1

Δzi
[ f i − 1/2, j − f i + 1/2, j] + 1

Δr j
[gi, j − 1/2 − gi, j + 1/2] + 1

2r j
[si, j − 1/2

g + si, j + 1/2
g ]

+ si, j
s .

(45)

The conservative variables at cell faces are reconstructed by 5th order WENO scheme from 

the cell-centered values, then are used in HLLC Riemann solver to calculate the fluxes. A 

symmetry boundary condition is used at the domain boundary corresponding to the axis of 

symmetry, r = 0, and approximately nonreflecting, characteristic boundary conditions are 

used at other domain boundaries[19]. Further details are provided in [17, 20].

We express the forcing term ss defined on a surface Γ using the following integral 

representation:

ss =
Γ

ΩΓ(ξ, t)δ(X(ξ, t) − x)dξ, (46)

where ξ is the coordinate defined on Γ, ΩΓ(ξ, t) is the forcing, and X(ξ, t) ∈ Γ is the function 

that maps ξ to x.

In z − r 2D axi-symmetric coordinates, we can represent arbitrary surface with axi-

symmetric geometry by a curve L. L can be parametrized by a single scalar ξ, thus we have
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ss =
Γ

ΩΓ(ξ, t)δ(X(ξ, t) − x)dξ, (47)

where dξ is the line element of L.

We express the forcing at cell Ii,j by

si, j
s = ∑

k = 1

K
ΩΓ(ξk, t)δh( | X(ξk, t) − xi, j | )Δξk, (48)

where δh is a smeared delta function, Δξk is the length of kth line elements of L, and k ∈ ℤ : 
k ∈ [1, K]. Various forms of δh are available[21]. In the present study we employ the 

second-order, two-dimensional Gaussian function:

δh(h) = 1
( 2πσ)2e

− 1
2

h2

σ2
, (49)

where σ is the support width. Typically σ = O(Δ) is taken, where Δ is the characteristic grid 

size at the region of the source. The overall rate of grid convergence of the scheme is 

second-order in smooth regions of the field. We note that the second order accuracy of the 

scheme for smooth regions is due to the second-order accurate spatial discretization of the 

geometrical flux, shown in equation (45), despite 5th order WENO scheme is used for 

reconstruction of variables at cell faces. Temporal integration of the partial differential 

equation is realized by third-order total variation diminishing Runge-Kutta scheme (TVD-

RK)[22].

4. Numerical Results

We now verify and validate the one-way source models. First, we verify the source model by 

simulating the one- and three-dimensional sources for which analytical solutions are 

available. Next we consider HIFU waves produced on a portion of a spherical shell and 

compare with previous experimental measurements as well as numerical solutions 

employing the KZK equation. Finally, we apply the spherical one-way source to 3D 

simulation of a ultrasound generation with a multi-array medical transducer, then compare 

the simulated acoustic fields with experimental measurements.

4.1. Simulation of a plane Gaussian pulse

We first simulate a one-way, Gaussian acoustic pulse in air propagating in +z direction from 

the source distributed on the plane of z = 0. On z − r Cartesian grid, since the line source is 

aligned on the r axis, source representation can be simplified by smearing the source in ±z 
direction to express the source term as
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si, j
s = ΩΓ(t)δh( |ri | ), (50)

where ΩΓ(t) = [ f (t)/c0, f (t), 0, c0
2 f (t)/(γ − 1)] and

f (t) =
pa
2πσt

e

− 1
2

(t − t0)2

σt
2

, (51)

where σt is the support width of the Gaussian pulse in the time space and t0 is the delay. We 

take pa = 10 Pa, σt = 5 µs and t0 = 20 µs. The simulation domain is z ∈ [−20, 20] and r ∈ [0, 

20] mm. The initial condition is given by (ρ, u, p) = (1.204, 0, 101325), where the density, 

velocity and pressure are in kg/m3, m/s and Pa, respectively. The simulation is evolved with 

a constant time-step, Δt = 160 ns. 200×100 uniform computational grids are used.

In Fig. 1a we compare the analytical and numerical solutions of p′ at t = 49.3 µs. For 

reference, We plot the components of the numerical solution of p′ that emanate from the 

mass and the momentum sources in Fig. 1b and c, respectively. The results show that the 

numerical solution agrees well with the analytical solution. As expected, in the right-going 

part of the numerical solution, the component from the mass source, identified as a 

monopole, has the same amplitude and sign with those of the component from the 

momentum source, thus they get amplified with each other. In the left-going part, the 

component from the mass source and that of the momentum source have the same amplitude 

but opposite sign, thus they cancel with each other.

4.2. Simulation of a spherical sinusoidal pulse

Secondly, we simulate a one-way, sinusoidal acoustic pulse in water propagating inward 

from a uniform acoustic source distributed on a spherical shell with its center located at the 

origin, and with the radius of r0 = 15 mm. The expressions used for the source terms are 

ΩΓ(ξ, t) = [ f (t), gz(ξ, t), gr(ξ, t), c0
2 f (t)/(γ − 1)], where, with angular frequency ω = 2πfs,

f (t) =
pa
c0

sin(ω(t − t0)) +
pa
r0

(Gg(ω(t − t0)) + C), (52)

gz(ξ, t) = − pasin(ω(t − t0))cosξ . (53)

gr(ξ, t) = − pasin(ω(t − t0))sinξ . (54)
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The spherical shell is represented as an upper hemi-circle in the z − r coordinate plane. ξ is 

defined as the polar angle that parametrizes the arc of the hemi-circle; ξ ∈ ℝ : ξ ∈ [0, π] 

and X(ξ) = [r0cosξ, r0sinξ]. The geometrical components of the mass source Gg(t) and C are 

expressed as

Gg(t) = − sin(ωτ)dτ = 1
ωcos(ωt), (55)

C = − Gg(0) = − 1
ω . (56)

We take pa = 10 Pa, fs = 3.0 × 105 Hz, and t0 = π/(2f) s. The simulation domain is z ∈ [−20, 

20] and r ∈ [0, 20] mm. We evolve the simulation with the initial condition given by (ρ, u, p) 

= (1000, 0, 101325), where the density, velocity and pressure are in kg/m3, m/s and Pa, 

respectively. The simulation is evolved with a constant time-step, Δt = 20 ns. 800×400 

uniform computational grids are used.

In Fig. 2(a) we compare the distribution of the analytical and numerical solutions of the 

pressure scaled by the radial coordinate, rp′/r0, on the r-axis at t = 5.12 µs. The numerical 

solution with and without the geometric component in the source term, G(t), are plotted. The 

result shows that the numerical solution with G(t) agrees well with the analytical solution, 

while that without G(t) does not. Fig. 2(b) shows the error defined as 

E = r((pAnal′ − pNumel′ )/ pa)/r0 for the numerical solution with and without G(t). The 

difference between the two errors corresponds to the wave excited by G(t) in the numerical 

solution. The difference in the error is composed of an incoming and outgoing component of 

the same form and amplitude. This observation agrees with the result of our modeling that 

the geometrical component of the momentum source corresponds to monopole excitation. 

Finally, a convergence study is performed on the pressure. Fig. 2(c) shows L1,2,∞-norm of 

the error between the analytical solution and the numerical solution with G(t), both of which 

are shown in Fig. 2(a), as a function of the grid size. The result indicates that the numerical 

solution is first-order accurate. While the underlying finite-volume scheme being used is 

second-order accurate (for smooth solution), our regularization of the singular source on the 

scale of the grid spacing strands a first-order error in the source representation [23].

4.3. High-Intensity Focused Ultrasound

Next, we simulate a focused ultrasound field generated by a medical transducer studied by 

Canney et al. [13]. The transducer is composed of a single element of spherically focused, 

piezoceramic crystal with a characteristic frequency of 2.158 MHz. Following the linear 

analysis of a focused acoustic field by Canney et al., we define the aperture and radius of 

curvature of the transducer as 42.0 mm and 44.4 mm, respectively. On the z − r coordinate 

plane, we define the source as the arc of the circular section with its center located at the 

origin, radius r0 = 22 mm and central angle α/2. ξ is defined as the polar angle that 

parametrizes the arc of the circular section; ξ ∈ ℝ : ξ ∈ [0, α/2] and X(ξ) = [r0cosξ, r0sinξ]. 
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Definition of the source follows equation (58–54). The simulation domain is z ∈ [−0.6, 68.4] 

and r ∈ [0, 24] mm. The initial condition is given by (ρ, u, p) = (1, 0, 101325), where the 

density, velocity and pressure are in kg/m3, m/s and Pa, respectively.

To validate the source model for the transducer, we first simulate a focused acoustic field in 

the linear regime with a source amplitude of pa = 1.0×104 Pa to obtain the axial and focal 

scan of the pressure, for which an experimental measurement and analytical solution are 

available. The simulation is evolved with a constant time-step, Δt = 6.75 ns. 3250×1200 

uniform computational grids, with a cell size of Δx = Δy = 20 µm, are used. In Fig. 3 we 

compare the results. The present simulation agrees very well with the analytical solution, 

and relatively well with the experimental measurement. We also note that the gain of the 

transducer obtained in the simulation is Ga = 48, where Ga = pf/pa and pf is the focal 

pressure. The value of the gain agrees with that of both the measurement and analytical 

solution. The discrepancy between the experimental measurement, notably seen in the pre-

focal regions on the axis, can be explained by a non-uniform velocity distribution on the 

piezoceramic plate of the real transducer, that are not considered in the simulation and the 

analytical solution.

Next we simulate focused acoustic fields in nonlinear regimes with a source amplitude of pa 

= 1.0 × 105 Pa using uniform grids with a cell size of Δx = Δy = 20 µm, and pa = 2.9 × 105 

Pa using two distinct resolutions of uniform grids with a cell size of Δx = Δy = 20 µm and 

Δx = Δy = 12.5 µm, respectively. In Fig. 4 we compare the focal pressure evolutions 

obtained from the present simulations and the experimental measurement conducted by 

Canney et al. The corresponding solutions of the KZK equation presented in Canney et al 
are also plotted. In the case with pa = 1.0 × 105 Pa, shown in Fig. 4a, the result of the 

simulation agrees very well with the measurement as well as the solution of the KZK 

equation. The acoustic field in the focal region is in a weekly nonlinear regime. The 

amplitude of the positive peak is 6 MPa, while that of the negative peak is 4 MPa. The wave 

form is not largely distorted from a sinusoidal form. In the case with pa = 2.9 × 105 Pa, 

shown in Fig. 4b, the wave form obtained by the simulations agrees well with the 

measurement. The maximum pressure obtained by the simulation with coarse grids is 

slightly lower than that of the others, shown in the inset of Fig. 4b. This is due to numerical 

dissipation that reduces the amplitude of the sharp peak formed by nonlinear sharpening. As 

shown by the result of the simulation using fine grids, this dissipation can be reduced by 

refining the grid.

Fig. 5 shows the flooded pressure contour of the simulated acoustic fields with pa = 2.9 × 

105 at t = 20 µs and t = 70 µs. The waves generated on the source plane propagate and get 

focused toward the focal region. Waves propagating outward from the source plane are 

canceled.

4.4. Multi-array transducer

Finally, we simulate a focused acoustic field generated by a medical, multi-array transducer 

in a linear regime using the one-way spherical source, and validate the simulation with an 

experimental measurement. The purpose of this case is to demonstrate the feasibility of the 

proposed source models for applications to a non-trivial source geometry.
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Fig. 6a shows an image of the multi-array transducer. The transducer is composed of 18 

circular elements made from a ring-shaped piezo-ceramic plate with an outer diameter of 

38.1 mm and an inner diameter of 12.7 mm. Each of the elements is designed to generate a 

spherical wave front, with a radius of 150 mm, that propagates inward to the center 

corresponding to the focal point. The detailed design of the transducer is reported by 

Maxwell [14]. Fig. 6b shows the modeled source surfaces. Unlike the single-element 

transducer considered in section 4.3, the source geometry of the multi-array transducer is not 

fully axi-symmetric. Therefore we use an x-y-z Cartesian coordinate system in this case of 

simulation. To model the element, we distribute the one-way spherical source on a ring-

shaped portion of a spherical surface with a radius of 150 mm with its center located at the 

origin. Correspondingly, using a smeared delta function, the strength of the source is 

regularized onto three-dimensional grid cells neighboring the surface.

The expressions used for the source terms are

ΩΓ(ξ, η, t) = χ(X)[ f (t), gx(ξ, η, t), gy(ξ, η, t), gz(ξ, η, t), c0
2 f (t)/(γ − 1)], (57)

where, with angular frequency ω = 2πfs,

f (t) =
pa
c0

sin(ω(t − t0)) +
pa
r0

(Gg(ω(t − t0)) + C), (58)

gx(ξ, η, t) = − pasin(ω(t − t0))cosξcosη, (59)

gy(ξ, η, t) = − pasin(ω(t − t0))cosξsinη, (60)

gz(ξ, η, t) = − pasin(ω(t − t0))sinξ . (61)

1ξ and η are defined as the polar and azimuthal angle that parametrize the spherical section; 

ξ, η ∈ ℝ : ξ ∈ [0, π], η ∈ [− π, π], and X(ξ, η) = [r0cosξcosη, r0cosξsinη, r0sinξ]. χ is an 

indicator function that takes a value of 1 when Lagrangian point X(ξ, η) is within the region 

of the defined ring-shaped transducer surfaces, and 0 elsewhere. Gg and C follow equations 

(55) and (56), respectively.

1Note that we set ξ = [ξ, η]T in equation (46). For regularization of the singular sources, we use the second-order, three-dimensional 

Gaussian function: δh(h) = 1
( 2πσ)3

e
− 1

2
h2

σ2
.
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To validate the source model, we simulate a focused acoustic field in a linear regime with 20 

cycles of a sinusoidal form of pressure waves with a frequency of 340 kHz and a source 

amplitude of 10 Pa. The spacial configuration of the source and the resulting acoustic field 

are symmetric along the x–y and x–z planes that intersect the x-axis. To reduce the 

computational cost, we simulate a domain of x ∈ [−160, 60], y ∈ [0, 100] and z ∈ [0, 100] 

mm, with symmetry boundary conditions applied along the x–y and x–z planes. Non-

reflecting boundary conditions are applied on the other domain boundaries. The simulation 

is evolved with a constant time-step, Δt = 36.7 ns. 1320×600×600 uniform computational 

grids are used.

Fig. 7 shows the scans of the pressure field around the focal point along the coordinate axes 

obtained from the simulation and a corresponding experimental measurement using a 

capsule hydrophone reported by Maxwell [14]. The present simulation agrees well with the 

measurement along all the axes, except for the region around x = 30–40 mm on the x-axis. 

The discrepancy on the x-axis could be reduced by improving the accuracy of measurements 

and/or using more accurate geometric parameters of the source in simulations (e.g. the size 

of the piezo-ceramics plates). We note that the linear gain of the transducer obtained from 

the present simulation was Ga = 27.

Fig. 8 shows the pressure iso-contours of the simulated acoustic fields with the contour level 

of −200 Pa (blue color) and 200 Pa (red color), respectively. The train of waves generated at 

each element overlaps with each other as they propagate, then converges toward the focal 

point. As shown in Fig. 8d, at t = 120 µs, the leading part of the train of waves diverge after 

passing the focal point.

5. Conclusion

In this paper, we have constructed simple, general models of source terms for the Euler/

Navier-Stokes equations that generate unidirectional radiation from one face of an arbitrary, 

smooth surface. The models are built on a singular distribution of simple monopole and 

dipole sources that are regularized on the computational grid. The models were verified by 

simulation of one-way Gaussian wave in air and spherical waves in water, solved using a 

numerical method consisted of a finite-volume WENO scheme. We applied the scheme to 

simulate focused ultrasound fields generated by a HIFU transducer on 2D axi-symmetric 

grids and a multi-array transducer on 3D grids. For the HIFU transducer, the obtained 

ultrasound fields on the central axis and focal axis in a linear regime as well as the focal 

pressure evolutions in a non-linear regime agreed well with those of experimental 

measurements reported by Canney et al [13]. For the multi-array transducer, simulated focal 

scans of the ultrasound fields in a linear regime agree well with experimental measurements 

reported by Maxwell [14]. The source models for a plane, cylindrical and spherical one-way 

waves presented can be used as building blocks to construct a source distributed on a surface 

with arbitrary geometries and strength. In addition to acoustic waves in a pure fluid, the one-

way source models can be also adapted to various hyperbolic systems. The fields of 

applications can include medical acoustics, aeroacoustics, seismology, astrophysics, and 

elastic solid mechanics.
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Appendix

One-way cylindrical wave solution

It is widely known that cylindrical wave equation does not have a closed form of solution. 

Model of one-way cylindrical source in a simple form is therefore not available, unlike the 

planer or spherical one-way source. Instead, we can obtain an approximate solution in a 

closed form by solving the following inhomogeneous wave equation in terms of xp, in 

analogous to equation (31):

1
c0

2
∂2( xp)

∂t2
− ∂2( xp)

∂x2 = x
∂S1
∂t − ∇ · S2 . (62)

This approximation is valid for a cylindrical wave with a characteristic wave length much 

smalelr than the radius of the cylindrical source plane[25]. The solution of equation (62) is 

readily available using the Green’s function:

p(x, t) = 1
2

c
x 0

t
dτ

−∞

∞
dζH(c(t − τ) − |ζ − x | ) ζ(

∂S1
∂t − ∇ · S2) (63)

= 1
2

x0
x

cf (t −
|x0 − x|

c ) + g(t −
|x0 − x|

c )sgn(x0 − x) (64)

− c
x0

(Gg(t −
|x0 − x|

c ) + C(x)) . (65)

It is straight forward that defining
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f (t) = 1
c g(t) + 1

x0
(Gg(t −

|x0 − x|
c ) + C(x)) (66)

makes the following one-way wave solution:

p(x, t) =
x0
x

H(x − x0)g(t −
|x0 − x|

c ) . (67)
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Research highlights

• A source term that generates unidirectional acoustic waves is derived for the 

Euler and Navier-Stokes equations.

• The acoustic source is defined on an arbitrary, smooth surface in three-

dimensional space.

• The source model is numerically implemented in the Euler equation.

• Ultrasound fields generated by piezo-ceramic transducers are simulated

• Simulations are validated with experimental measurements.
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Figure 1. 
The pressure distribution on the z-axis at t = 49.3 µs. (a) The analytical (−) and numerical 

(◦) solutions are compared. The components of the numerical solution that emanate from (b) 

the mass source (□) and (c) momentum source (×) are plotted for reference
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Figure 2. 
(a) The distribution of the scaled pressure rp′/r0 on the r-axis at t = 5.12 µs. The analytical 

(−) and numerical (◦) solutions are compared. The numerical solution with and without the 

geometric component in the source term, G(t)), (×) are plotted. One of every five data points 

are shown for the numerical solutions. (b) The magnitude of the scaled error between the 

same analytical and numerical solutions, E = r((pNumel′ − pAnal′ )/ pAnal′ )/r0, on the r-axis at t = 

5.12 µs. The error in terms of the numerical solution with the geometric component (◦) and 

without the geometric component (×) in the source term are plotted. (c)L1,2,∞-norm of the 

error between the analytical solution and the numerical solution at t = 5.12 µs as a function 

Maeda and Colonius Page 23

Wave Motion. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the grid size (2N × N). Reference slopes for the first and second order convergence are 

included.
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Figure 3. 
The (a) axial and (b) focal scans of the pressure field in water by the SEA hydrophone for p0 

= 1.0 × 104 Pa. The result of the direct numerical simulation (−), and SEA hydrophone 

measurement by Canney et al., [13] (◦), and O’Neal analytic solution (- -) [24] are 

compared.
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Figure 4. 
The focal pressure evolutions in water with (a) pa = 1.0 × 105 and (b) pa = 2.9 × 105. In the 

plot (a), the result of the direct numerical simulation (−), FOPH measurement by Canney et 
al (◦) [13], and analytical solution calculated with the KZK equation presented in Canney et 
al [13] (- -) are compared. In the plot (b), the results of the direct numerical simulation with 

a cell size of Δx = Δy = 12.5 µm (- -) and Δx = Δy = 20 µm (−) are compared with FOPH 

measurement and analytical solution calculated with the KZK equation.
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Figure 5. 
Flooded pressure contour of the simulated acoustic fields with pa = 2.9 × 105 at (a) t = 20 µs 

and (b) t = 70 µs. The contour level is ±1 MPa
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Figure 6. 
Multiarray transducer with 18 elements considered in the present study. (a) Real transducer. 

The ring-shaped piezo-ceramic elements are covered by acoustic lenses. (b) Modeled source 

distribution used in the simulation. The length unit used in the figure is mm. Each element is 

modeled as a ring-shaped source plane aligned on a spherical section with a radius of 150 

mm.
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Figure 7. 
The scans of the pressure field around the focal point generated by the multi-array 

transducer along the (a) x-axis, (b) y-axis, and (c) z-axis, respectively. Results obtained in 

the present simulation and the hydrophone measurement are compared.
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Figure 8. 
Pressure iso-contours of the simulated acoustic fields with the contour levels of −200 Pa 

(blue color) and 200 Pa (red color) at (a)0, (b)40, (c)80 and (d)120 µs.
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