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ABSTRACT

The detection of targets moving in an environment dominated by “noise” is addressed from
the perspective of nonlinear dynamics. Sensor data are used to drive a Korteweg-deVries (soliton)
equation, inducing a resonance-type phenomenon which indicates the presence of hidden target
signals. The algorithm is implemented in terms of a novel neural architecture, which we have
named “spectral network”, which can easily be implemented in optoelectronic hardware.
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1. INTRODUCTION

Long-range detection of the motion of a target in an environment dominated by noise and
clutter is a formidable challenge. Target detection problems are generally addressed from the per-
spective of the theory of statistical hypothesis testing[1l]. So far, existing methodologies usually
fail when the signal-to-noise ratio, in dB units, becomes negative, notwithstanding the sophis-
ticated but complex computational schemes involved. In this paper, we propose to explore the
possibility of using the phenomenology of nonlinear dynamics, not only to filter out the noise,
but also to provide precise indication on the position and velocity of the target. Specifically, we
introduce a new class of neural networks, to be referred to as “spectral” networks, which exhibit
a remarkable spatial organization, and yield a dramatic enhancement of the signal to noise ra-
tio. Rapid advances in analog VLSI technology in general, and in charge domain computing in
particular, provide a strong incentive to implement the corresponding neural algorithms in elec-
tronic circuit architectures, to achieve unprecedented levels of performance for this hard signal
processing problem.

2. SPECTRAL NETWORKS

To simplify the discussion, and with no loss of generality, we will consider in the sequel only
motion in ®! space. We have carried out the following computational experiment. An array of N
motion-detector “neurons” is fed signals from an array of N sensors. Both arrays are linear, with
equally spaced elements. Let u,(t) denote the temporal response of the n-th neuron. We will
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assume that two overlapping synaptic arrays, T and T4, fully interconnect the network, which
obeys the following system of coupled nonlinear differential equations

Un(t) = —asun(t) Y Temtm(t) = b° Y Tmtim(t) + Salt) (1)

The nomenclature is as follows. Spatial organization will be considered over the interval [0, 2~].
The scaling factor s = 7/L relates the spatial variable *z in the detection interval [—L,+L] to
the spatial variable z in the computational interval via

z=s ["z+1I] (2)
The actual positions of neurons and sensors are given by the discrete values z, = n A, (n =
0,--- N — 1), with resolution A, = 27 /N. Thus, u(z,,t) is written as u,(t). For convenience,

we will assume that N is even. The sensor inputs to the network are denoted by S,(¢). Finally,
a and b are constants, specified at the numerical implementation stage.

A critical feature of this novel neural network architecture is the form taken by the synaptic
interconnections. The matrices T and T9 are defined as

Tu = F~ {ik * F[u]} (3)

and
T4 = F~1{—ik® * F[u]} (4)

In the above expressions, the symbol * denotes the Schur-Hadamard product of the two N x 1
matrices, while F' and F~! refer to the forward and inverse Fourier transforms. The matrix k
captures the spectral resolution. Initial conditions for the network are defined as u,(0) = 0, for
all neurons.

3. SIMULATIONS

The results of the experiment are illustrated in Figures 1-3. Each figure includes four plots.
The lower left corner shows the sensors input to the network. Since data are simulated, the con-
tributions from the target and background noise are plotted separately, for illustrative purposes,
eventhough the network actually receives only their combined value. The Fourier spectrum of the
total signal is given in the upper left corner. The network’s output is plotted in the lower right
corner. Finally, the solution in absence of noise is shown in the upper right side.

The results are plotted after 10 time steps (using A; = 0.005), and were obtained using
a 64-element sensor array. Figure 1 indicates that when only noise is fed to the network, no
spurious result emerges. Figure 2 illustrates the spectral network’s detection capability for a
target moving in a noise and clutter background characterized by a per pulse signal-to-noise
(SNR) ratio of approximately -0dB. Conventional detection methods usually reach their breaking
point in the neighborhood of such SNR ratios[2]. Finally, Figure 3 presents results for a case
where the SNR drops below -10dB. We would like to emphasize that the above SNR is by no way
the limit of our procedure, as can be inferred from the still excellent quality of the detection peak.
Furthermore, multiple layers of the spectral neural architecture provide a “space-time” tradeoff

for additional enhancement. Next, we attempt to provide a physical explanation of the detection
phenomenon.
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4. NEURAL NETWORKS WITH SPATIAL ORGANIZATION
AND SOLITON DYNAMICS

Passing to the limit A, — 0, we see that Eq. (1) can be rewritten in terms of the state
variable u(z,t) as

Ut+auug+buzg, =S (5)

where u; and u, denote partial derivatives with respect to time and space. If we select the
constants a and b as taking the values 6 and 1 respectively, we recognize the left hand side of Eq.
(5) as the Korteweg-de Vries (KdV) equation.

The discovery of solitons(3] - nonlinear solitary wave solutions to the KdV equation - has enabled
many advances in areas such as plasma physics or fluid dynamics. The computational experiment
described in this note reports on a new property for a forced KdV equation, namely its exploitation
for information processing.

Applications of nonlinear dynamics phenomenology for information processing is a relatively
new field. So far, the most powerful tools developed have been associated with finite-dimensional
dissipative nonlinear dynamical systems, and, in particular, with the concept of attractors. Sur-
prisingly, the driven KdV equation (which is non-dissipative) is found to possess a remarkable
property: it allows one to detect a uniformingly moving target in a noisy background.

How can we interpret the observed detection phenomenon? Let us assume that the sensor
input to the network consists of two parts: (1) n(z,t), space-dependent random oscillations; and
(2) a “target” 6(z,t), the value of which is nonzero only over a few “pixels” of the sensor array.
Notice that, since the KdV equations are non dissipative, and energy is pumped into the system
via the S(z,t) term, active steps have to be taken to avoid unbounded growth of the solutions.
Furthermore, if we denote by v the target’s velocity, we have

8(z,t) = 6(z — vt) (6)

Thus, based upon the properties of the usual (i.e., homogeneous) KdV equation[4], we postulate
that the target signal 6(z,t) “resonates” with the “eigen-solitons” of the homogeneous equation.
Hence, it will be amplified, while the random components 7(z,t) will be dispersed. Furthermore,
such a “resonance” should not depend on the target velocity, since the velocity of the “eigen-
solitons” of the KdV equations are not prescribed. In other words, the proposed methodology
can detect targets over a wide range of velocities. This has been confirmed through our computer
experiments.

5. ELECTRONIC HARDWARE IMPLEMENTATION

In the above mathematical development, a formalism was proposed for detecting moving
objects deeply buried in clutter with negative signal-to-noise ratios. A set of coupled nonlinear
differential equations was obtained, which describes how the state variables of the motion detector
neurons respond and change with time under the influence of the external stimulii induced by
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targets. This formalism can be cast into the “language” of electronic neural networks by straight-
forward extension. Essentially, one possible idea would be to model the set of coupled differential
equations by considering the analogous electrical circuit whose currents or voltages obeys the
same set of differential equations. Typically, the array of motion detector neurons could be im-
plemented by operational amplifiers, with feedback or feedforward variable strength connecting
circuits consisting of wires, resistors, and capacitors organized to represent the architecture of the
spectral network. Large scale analog neuroprocessor architectures can be directly synthesized by
tapping into a library of VLSI “building block” chips developed at JPL by the Neuroprocessing
and Analog Computing Devices group[5,6]. These building block chips include a wide spectrum of
cascadable, programmable, synaptic and neuronal chips with tailorable functional characteristics.
The template for the synaptic chips consists of a fully connected 32 x 32 array of variable strength
connection elements fabricated using standard 2 micron bulk CMOS process. The synaptic con-
nections vary from simple binary to fully analog designs with a dynamic range exceeding 11-bits
of resolution. In addition, a variety of high speed neuron chips have been fabricated, designed
specifically to provide nonlinear functional transfer characteristics. The template for this family
of chips consists of a 32 x 1 linear array of devices. A typical system configuration is illustrated
in Fig. 4.

Concomitantly to the JPL effort, charge domain VLSI circuits are being developed at Caltech
to perform high speed vector-matrix multiplications[7-9]. The vector-matrix multiplier consists
of a matrix of CCD cells having an architecture inspired by charge injection device (CID) imager
pixels, in that one of the cell’s gates is connected vertically from cell to cell forming a column
electrode, while another gate is connected horizontally forming a row electrode. The charge
stored beneath the row and column gates encodes the matrix, with the column and row electrodes
representing the input vector and the output vector, respectively. In its most basic configuration,
shown in Fig. 5, such a circuit computes the product of a binary input vector and an analog matrix
of charge. The computation done by each CCD cell in the matrix is a multiply-accumulate in
which the charge, Q;;, is multiplied by a binary input vector element, U}, encoded on the column
line and this product is summed with other products in the same row to form I;. Multiplication
by a binary number is equivalent to adding or not adding the charge at a particular matrix
element to its associated row line. Since all column electrodes are pulsed at the same time,
and the associated voltage changes are then capacitively summed on the row lines in parallel,
the entire vector-matrix multiplication is accomplished in one clock cycle. Many improvements
have been incorporated into this basic structure, the most important being the ability to handle
digital (instead of binary) input with 2" levels, and digital output using novel, compact A/D
designs. A 256x256 element circuit is currently being fabricated, which is expected to exceed 102
operations/second/bit of precision.

It is important to realize that a number of open problems must be addressed, before a reliable
microelectronic implementation of our target detection algorithms can be achieved. For instance,
how can the intrinsic computational speed of the existing, low precision (typically 10-12 bit)
devices be practically “traded” for more accuracy in the calculations? Furthermore, since current
neural hardware simply involves a basic matrix-vector multiplication scheme, only linear partial
differential equations can, at this stage, be considered for implementation. Thus, more advanced
architectures, enabling the modeling of nonlinear terms such as the expression u; D i Tij uj,
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which appears in the KdV equations, must be developed.
6. TARGET TRACKING

To provide precise indication on the position and velocity of the targets, one can build upon a
unique new methodology we recently developed for supervised neural learning of time dependent
trajectories[10-11]. It exploits the concept of adjoint operators[12-13] and teacher forcing. The
resulting algorithms enable computation of the gradient of an objective functional with respect
to the various parameters of the network architecture in a highly efficient manner. Specifically, it
combines the advantage of dramatic reductions in computational complexity inherent in adjoint
methods, with the ability to solve the equations forward in time. Not only is a large amount of
computation and storage saved, but the handling of real-time applications becomes also possible.
Our preliminary results[13] show that learning time is reduced by one to two orders of magnitude
in comparison to the best previously published results, while trajectory tracking is significantly
improved. Our methodology also makes hardware implementation of temporal learning very
attractive.

7. CONCLUISONS

A novel neural architecture, named “spectral network” is being proposed for detecting targets
in motion in a cluttered background. In preliminary computer experiments, the method has
proven successful at very negative signal-to-noise ratios, and over a wide range of target velocities.
Results can be interpreted in terms of resonances in driven KdV equations. As a corollary, we have
proposed a framework for solving an important class of partial differential equations efficiently
using novel neural network architectures, which can easily be implemented in hardware.
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Figure 4. Neural Analog Network Board: basic configuration
(Courtesy: A. Thakoor, JPL)
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connected together by row and column electrodes. The matrix values
are encoded as charge packets that sit underneath these gates in the
silicon substrate. The computation occurs when the charges are
transferred from the column gates to the row gates which perform a
capacitive sum operation. (Courtesy, C. Neugebauer, Caltech).
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