A RATIONALE FOR RESTRICTIVE RULES

Keith Krehbiel
Congressmen often claim to dislike restrictions on their opportunities to offer amendments to legislation in the Committee of the Whole. Yet restrictive rules of various forms not only are quite common but often are voted into existence explicitly or implicitly. Whenever a modified closed rule from the Rules Committee receives a majority vote, members explicitly accept the restrictions that such rules place on amendments. Whenever a bill is passed under suspension of the rules, the requisite two-thirds vote is an implicit acceptance of restrictions, because the vote has the effect of not only passing the legislation, but passing it unamended. The frequency with which such procedures are used in the House of Representatives suggests that restrictions on the ability to amend are not abhorred after all.¹

Thus the question: why do members of a democratic and decentralized legislature tolerate, indeed choose, restrictive rules?

This paper addresses the question with a simple theoretical model based on a large class of empirical situations. The central argument is that restrictive rules are effective institutional devices for congressmen to initiate and maintain pareto optimal outcomes in areas of policy where, in the absence of such rules, initiation and maintenance of policies would be difficult.

I. RATIONALES FOR AND AGAINST RESTRICTIVE RULES

Consider first the reasons for expecting members to oppose restrictive rules. In the simplest case of a unidimensional jurisdiction for a committee with monopoly proposal power, a majority on the floor will never prefer a closed to an open rule. The open rule yields a median voter outcome (Black, 1948), but under a closed rule there may exist situations that are ripe for sophisticated placement, allowing a sophisticated committee to report a bill that its majority prefers to the sole alternative under the pure closed rule, namely the status quo point.²

To a majority on the floor, the objectionable consequence of the restrictive rule is a policy loss equal to the distance between the bill and the median voter's ideal point.

(figures 1)

Theoretically grounded opposition to restrictive rules is less common (or less frequently voiced) than opposition based on normative principles, in which case the procedures in question often are dubbed "gag rules" (Gallaway, 1946; Robinson, 1963). Examples of opposition to such rules abound, a recent case of which was Rules Committee Chairman Richard Bolling's response to the relatively closed procedure that culminated in President Reagan's successful use of reconciliation in the 1981 budget process. Bolling called it "an attempt to tyrannize a whole Congress, a whole people..." (LeLoup, 1982).³
But an empirical fact undermines, if not contradicts, arguments against restrictive rules: congressional procedures that restrict members' floor strategies are common, especially in the House (Bach, 1981a,b), and especially for legislation originating from the House's "power committees" -- in particular Ways and Means.⁴ The conventional wisdom is that the special cases are attributable to "complexity of the issues" (Robinson, 1963; Manley, 1973; Fenno, 1973; Reese, 1980), and the common supporting evidence is Howard Smith's often quoted claim that "it is impossible to write a tax bill on the floor" (Congressional Record, 76th Congress, 3rd Sess., p.11233). But such accounts for restrictive rules are not persuasive in light of similarly complex legislation that originates from other committees and is not protected by restrictive rules.⁵

The model presented below focuses on types of policies that are empirically associated with restrictive rules -- namely taxes and tariffs -- and shows how given the likely configurations of preferences on such policies, the association may not be spurious. In particular, contrary to what members say and what unidimensional models show, restrictive rules often yield outcomes that are majority-preferred (and under some conditions unanimously preferred) to outcomes that would result under more open procedures. Consequently, in the spirit of Mayhew's (1973) macro assessment of the design of the contemporary Congress, restrictive rules can be interpreted as instances of optimal institutional design in micro, bill-specific settings.⁶
II. A MODEL OF PARTICULARISTIC POLICY-MAKING

To simplify exposition, a three-actor, three-dimensional model is designed to reflect distributive or particularistic politics. Although illustrations rather than theorems are presented, the examples are usually special cases of general results. Some have been proved elsewhere and others can be proved even for situations of more actors and less restrictive preferences. The modest objective of this relatively informal treatment is to draw attention to potentially important but theoretically overlooked institutions, thereby suggesting that generalization is worthwhile.

Consider a multidimensional jurisdiction in which individual dimensions are provisions for particularistic policies: benefits for such programs are concentrated in constituencies and costs are dispersed throughout the polity. Examples include pork barrel projects, special tax provisions, and perhaps protectionist measures for trade. Assume that members have pure particularistic preferences over possible outcomes: each member has a unique ideal point at which only his constituency (district, primary interest group, major industry in his district, etc.) is conferred a benefit, for which the cost is shared by taxpayers or consumers in the three districts. As illustrated in figure 2 for two actors with ideal points x^1 and x^2, indifference curves are assumed to be convex and separable. One would expect them to be elliptical, too, reflecting the extreme sensitivity of an MC's utility to changes in project levels for his district.

(figure 2)
For the three-dimensional case it is useful to partition the set of possible outcomes as shown in figure 3. The origin represents no projects and is denoted x^0. M is the pareto surface of a minimal winning coalition of members (a contract curve for any two members in figure 3), and U is the pareto surface on which special projects are universally distributed. Thus $M \cup U$ is the entire pareto surface, P. Finally, I is the set of (interior) points between x^0 and P, while E is the set of (exterior) points beyond P with respect to x^0. Notice that for any $x \in I$, it is possible to move to an $x \in P$ that benefits someone and hurts no one. That is, there are cost-free gains from project expansion. In contrast, for $x \in E$, pareto improvements can be made by reducing the scale of a project or projects.

(figure 3)

The model is a special spatial case of those formalized or discussed in several other works on distributive politics, including Tullock (1970), Weingast (1979), Shepsle and Weingast (1981), Ferejohn, Fiorina and McKelvey (1983), and Koford (1985). Institutional modifications eventually turn out to be significant, but a first step is to reconsider some earlier results in the context of particularistic policy.

Unpredictability in Institution-Free Settings

A well-known general result applicable to the configuration in figure 3 is:

(2.1) Under pure majority rule (PMR) and myopic voting (MV), an equilibrium "almost never" exists.

(figure 3)

Figure 3
Pure Particularistic Preferences in Three Dimensions and Sample Points in the Space

KEY

$x^0 = (0,0,0)$

$M = \{x: x$ is pareto optimal and a minimal majority receives benefits$\}$

$U = \{x: x$ is pareto optimal and all members receive benefits$\}$

$P = M \cup U = $ the set of pareto optimal points

$I = \{x: x$ is between the pareto surface and the origin$\}$

$E = \{x: x$ is beyond the pareto surface with respect to x^0\}
Suppose the status quo is at the origin, \(x^0 \). Then many positive changes of policy along two dimensions will be supported by two members (such as \(b^1 \) in figure 3), and many positive changes along all three dimensions will be unanimously preferred to \(x^0 \) (such as \(b^2 \)). Similarly, for any \(x \in I \), many increases in any two or all three provisions will attract majority or unanimous coalitions, respectively. Thus there seems to be a natural tendency for loopholes, pork, and protection, at least until a point on the pareto surface is selected.

But the chaos theorems state that in all but the most extreme circumstances (Plott, 1967), no such points are stable, not even those unanimously preferred to \(x^0 \). Alternatively stated, for any given point \(x \), its "majority win set" \(W(x) \) -- defined as the set of points that can defeat \(x \) (Shepsle and Weingast, 1984a) -- is almost surely nonempty. Therefore, temptations for majority coalitions to upset even pareto allocations are omnipresent.

These results are not necessarily harbingers of chaos, as McKelvey shows by proving that a uniquely sophisticated agenda setter could design an agenda that would guarantee selection of his ideal point. But for the most part the set of assumptions responsible for such results is congressionally implausible. Congressmen probably are not myopic; they often have and use knowledge about the sequence of forthcoming votes; and such votes are ordered in a variety of ways (one bill at a time, one section at a time, at most four proposals on the floor at a time, etc.). How, then, might the basic institution-free spatial model be adapted for more realistic congressional applications?

Stability of the Origin under Minimal Institutionalization

A mild alteration of assumptions is sufficient to induce stability. Suppose first that the rules of the House permit amendments that change policy in only one dimension at a time. Define this procedure as an *unidimensionally open rule* (UOR). UOR can be thought of as voting one issue at a time, and resembles amendments that are sometimes offered to particularistic legislation, such as to terminate funding for the Clinch River breeder reactor or to exempt tuna from free trade provisions. The result is:

\[
(2.2) \text{ Under myopic voting (MV) and unidimensionally open rule (UOR), } x^0 \text{ is an equilibrium.}
\]

If actors are myopic, then any permissible motion to initiate a particularistic project fails, since with pure particularistic preferences only one member supports the project while everyone else opposes it. This result is illustrated in figure 4, a two-dimensional example with three actors' ideal points. Point \(x \) is the intersection of the dimension by dimension median ideal points. The shaded petals denote points that can be reached from point \(x \) by majority vote. Notice, however, that no such points can be reached in a unidimensional move, because the intersection between \(W(x) \) and the two lines passing through \(x \) parallel to the axes contain only \(x \) itself. (figure 4)
Figure 4
Stability at the Intersection of Medians Under UOR

The same result can be visualized in three dimensions for the case of pure particularistic preferences. The analogous intersection of medians is the origin \(x^0\), and the set of permissible amendments to \(x^0\) under UOR is represented by the three axes. In three dimensions, \(W(x^0)\) has the shape of a fat cigar. Because its only point of intersection with an axis is at the tip of the cigar that touches \(x^0\), \(x^0\) is stable under myopic voting.

Not only is \(x^0\) stable; it also exhibits properties of attraction. Suppose \(x \in I\). Again, any and all single-project increases fail, but in contrast any proposed decrease passes. And the same would be true for \(x \in P\) or \(x \in E\). Thus the minimal imposition of institutional structure in the form of UOR, reverses the initial, institution-free results: now there is order where previously there was chaos, and now particularism is nonexistent where previously it was rampant (albeit unstable).

The same result -- stability at the origin -- can be attained with a different and more realistic set of assumptions when the model is considered as a special case of that studied by Kramer (1972).

\[(2.3)\] Under sophisticated voting (SV), a unidimensionally open rule (UOR), and an exogenous agenda (ExA), \(x^0\) is a unique equilibrium.

Although Kramer's model is more general than the model of pure particularistic preferences, the essential similarities are that UOR and ExA in the present model are consistent with Kramer's formulation of bills. Each of Kramer's bills concerns "a single issue or
"dimension", and bills are "voted on independently, one at a time, in some specified order which is given in advance" (p. 168). In turn, his characterization guarantees that "In extensive form the game can be represented as a tree" (p. 169).

Result (2.3) is difficult to represent spatially, but in the following section it is examined more closely using a decision tree. At present, however, it suffices to note that the behavioral motivation for the result stems from members' knowing and understanding the myopic case (result 2.2). Specifically, they know that \(x^0 \) is uniquely stable and that selection of any other point would not be stable. They then consider these facts simultaneously with some known agenda containing \(x^0 \) and only unidimensional changes. Kramer proved that under such circumstances sophisticated voters always select \(x^0 \) -- an outcome that is particularly counterintuitive in the case of particularistic preferences.

Thus theory suggests that either of two sets of conditions induce stability: MV and UOR; or SV, UOR, and ExA. When congressionally motivated and applied, these results are both encouraging and problematic. The encouraging implication -- elegantly presented elsewhere (Shepsle, 1979; Riker, 1980) -- is that the formal consideration of institutions bodes well for a science of politics that focuses on prediction of stable outcomes. But the problem is severe in terms of the fit between the theories and congressional decision-making. In short, theory yields either no equilibria or bad equilibria -- chaos in PMR models and empirically unsatisfying outcomes in UOR models. Regarding the latter, we do not observe zero allocations of pork (Maass, 1951; Ferejohn, 1974; Weingast, 1979), nor do we observe a tax code without special provisions (Surrey, 1957; Manley, 1970; Reese, 1980). And although in the post-Depression years there has been a tendency towards lower tariffs, it may be offset by the concomitant increase in nontariff protection, such as quotas and direct subsidies (Spero, 1985; Pastor 1980).

The remainder of the paper focuses on the policy issues in which the prediction of \(x^0 \) is incorrect. Related questions fall into two categories which are the subjects of sections III and IV. The first question -- How are such policies initiated? -- is spatially equivalent to moving away from the origin. The second question -- How are such policies maintained? -- is spatially tantamount to finding a stable point, preferably on the pareto surface. All subsequent demonstrations presume that congressmen have pure particularistic preferences. The primary focus is on institutional features that illuminate the rationale for restrictive rules.

III. INITIATING PARTICULARISTIC POLICIES

Suppose that the legislature has a unidimensionally open rule and that the initial policy is no projects, where "projects" is a generic term for particularistic policies. As demonstrated above, under myopic voting there exists no permissible motion that can receive a majority. But suppose that after a few failing attempts to pass legislation MCs attempt to devise a way to pass a majority-preferred program without violating UOR. What strategies or institutions might
they adopt or employ? Cooperative behavior and logrolling are plausible strategic answers. The committee system is the basis for an institutional answer.

Cooperative Behavior and Logrolling

Logrolling is a seemingly reasonable explanation for initiation of particularistic policies (Tullock, 1970; Riker and Brams, 1973; Schwartz, 1977). For example, members 1 and 2 may agree to exploit the taxpayers in 3's district by passing a law that confers benefits to districts 1 and 2 but not to district 3, whose members nevertheless pay a portion of the bill. But there are some hidden problems with this explanation. First, under UOR, an agenda is required for the logroll to be constructed. In this example the agenda might be to vote for an increase in x_1 first and then to vote for an increase in x_2 (or vice versa). But if members 1 and 2 indeed decide to logroll, then the separate votes would provide a strong temptation for the representative of the initially funded district to renege, leaving $x = (x_1, 0, 0)$, with $x_1 > 0$. Indeed such behavior violates Kramer's assumption of sophisticated voting, which of course is a noncooperative strategy. Implementation of a logroll under UOR therefore seems to require some form of cooperative behavior.

Theoretical accounts of when cooperation emerges typically incorporate long-term costs and benefits and the possibility of repeated play. Axelrod (1982) shows that cooperation is an effective strategy in repeated play two-person prisoner's dilemma games when players' discount rates are sufficiently small. Enelow (1985) focuses more specifically on legislatures, showing how, under UOR and the possibility of revoting, a special type of risk-averse rational expectations legislators can implement stable logrolls.

The incorporation of long-term considerations is theoretically useful and legislatively plausible, but a scientific problem accompanies these explanations. How can the theories be falsified? For example, if cooperation is observed, the inference is that discount rates are indeed sufficiently small, so the theory is not rejected. If cooperation is not observed, the inference is that discount rates are too large, but the theory is still not rejected. Falsification, then, seems to depend upon measuring a phenomenon (discount rates) which is not easily measured using existing techniques. Granted, if repeated observations turn up no instances in which cooperation or logrolling attempts failed, then there is implicit reason to believe that discount rates are indeed low and/or legislators are indeed of the posited rational-expectations form. Strictly speaking, however, a single instance of a cooperative agreement failing, such as the gutting of a particularistic bill on the floor, demonstrates that the necessary conditions are not always met. For example, when the House considered domestic content legislation (H.R. 1234) in 1982, amendments to dilute the particularistic provisions were proposed and the bill was indeed gutted (Hansen, 1985). Thus cooperative explanations for implementing particularistic policies appear valid only sometimes, and it is difficult empirically to determine when.
Finally, suppose it could be verified that the conditions of such theories are empirically common, even if not universal. Still, if at any given time the conditions were perturbed beyond a critical point, the instability problem returns immediately. Whenever project renewal is considered, the opportunity to break the prior agreement presents itself anew. Member 3, for example, can offer 1 a significantly larger allocation in exchange for a relatively small one. As shown in figure 5, for a sufficiently large increment, δ, member 1 would almost surely join a hopeful 3 in voting for \(x = (x_1 + \delta, x_2, 0) \), after which he would kiss good-bye his erstwhile bedfellow, 2, supporting (again with 3) \(x = (x_1 + \delta, 0, 0) \). Then he would perhaps reward 3 with a final, unidimensional change to \(x = (x_1 + \delta, 0, x_3) \). If instead he were to refuse to complete the deal, there can be little doubt what the next motion would be: \(x = x^0 = (0, 0, 0) \). To summarize:

(3.1) Logrolls are sufficient for initiation of particularistic policies, but they require additional sets of conditions that guarantee cooperative behavior (such as Axelrod's) or cooperative-looking outcomes (such as Enelow's).

(figure 5)

If these additional conditions are not met, the substantive implications are clear: particularistic policies are likely to unravel back to the origin. The strong tendency towards this outcome is easily illustrated by pure particularistic preferences. No matter which coalition forms to gain benefits, a motion to strip or reduce a single provision always has a natural majority of N-1. Thus, for the coalition to hold together, cooperation somehow must be induced from
approximately half the members, on every such vote. This seems unlikely to occur. But perhaps institutional features of Congress facilitate behavior which, if not cooperative, at least results in cooperative-looking outcomes.

Committees and Commodity Bundling.

In addition to the empirically elusive assumptions required for explanations for implementing particularistic policies, several cooperative theories are also limited in terms of predicting outcomes. They predict that coalitions of a certain size forms (e.g., Riker 1962, Weingast 1979, Shepsle and Weingast, 1981), but neither which coalition forms nor what its members receive. In contrast, an institutional explanation based on standing committees and the associated jurisdictional system in Congress does not suffer from this problem.

The institutional explanation for implementing particularistic policies is theoretically analogous to the second form of Mackay and Weaver's (1983) commodity bundling in which an agenda setter proposes to a set of voters a "bundle" that specifies a budget level and mix. Although under UOR no such bundle may be proposed in a single step, bills reported to the parent body by congressional committees may be interpreted as such. When the House takes up the question of special provisions in the tax code, for example, the starting point is not the origin, as in Figure 5, after which individual provisions are proposed sequentially. Rather, a bill will have been reported by the Ways and Means Committee calling for the adoption of several such provisions.

No individual could propose such a bill on the floor as an amendment to the status quo, since it would violate the unidimensionality restriction in UOR. Nor could a member offer an alternative bundle as a rider to a substantively distinct piece of legislation, as is often done in the Senate. To do so would violate the House's germaneness rule and thus be subject to a point of order. In contrast, if the committee's bill is the starting point and the special rule assigned to legislation is not closed, then members could offer amendments to increase, decrease, maintain, terminate or initiate single particularistic provisions.

Theoretically, this is a foolproof way to move from the origin without the additional assumptions required for institution-free logrolling. There is no a priori cooperative agreement from which to renge when considering a commodity bundled bill, nor is there an incentive for members whose districts receive projects to oppose the movement from the origin (assuming the commodities in the committee's jurisdiction were appropriately bundled). Furthermore, it is potentially possible to define committee-sophisticated commodity bundling and to predict committee behavior, at least when the rule on the floor is fully restrictive (i.e. PCR). Suppose member 2 represents the committee that has jurisdiction (monopoly proposal and veto power) over the three-dimensional space. His objective is to maximize his utility subject to the constraint that his proposal receives a majority on the floor. His solution is represented in Figure 6 by bills (or bundles) \(b_3 \) and \(b_4 \). These policies are barely
preferred to \(x^0 \) by members 3 and 1, respectively, and therefore can be implemented. Thus the noncooperative answer to the problem of initiation:

(3.2) Commodity bundling by committees (CBC) is sufficient for initiating particularistic policies.

(figure 6)

Commodity bundling by standing committees is not only a theoretically sufficient but also an empirically plausible institution-based strategy for initiating particularistic policies. But although CBC can ensure a majority (or possibly unanimous) vote on an \(x \in P \), there is nothing in the present model to guarantee that such an \(x \) is resistant to subsequent amendments.

IV. MAINTAINING PARTICULARISTIC POLICIES

Suppose a CBC bill reaches the floor. Existing theory says one of two things will happen, neither of which conforms with observations of Congress. First, in the absence of rules restricting amendments, outcomes will be unstable. Second, in the presence of minimal restrictions, such as UOR, policy will gravitate to the origin, \(x^0 \). The basis for the latter result (2.3 above) is worth restating: the existence and uniqueness of an equilibrium at the intersection of medians means that under UOR and sophisticated voting over an exogenous agenda on which \(x^0 \) appears, \(x^0 \) is the outcome. This section addresses the puzzle of why this theoretical result is empirically rare. More precisely, why do the assumptions of Kramer's model...
necessitate "no project" outcomes, and in what important respects do congressional consideration of particularistic policies differ from the model?

The Theoretical Attractiveness of x^0.

The assumptions of UOR, SV, and ExA in result (2.3) are all important, of course, but which one can be most realistically and productively adjusted? The multi-stage game representation used by McKelvey and Niemi (1978) not only helps to illustrate the result and emphasize its counterintuitiveness, but also ultimately isolates its main empirical shortcoming. Consider figure 7 in which projects are dichotomous. The initial alternative under consideration is the universal allocation, denoted (111), where 1 indicates the presence of a project for a district. The agenda, under UOR, is to strip projects 1, 2, and 3, respectively. (The outcome would be no different if the starting point were a nonuniversalistic allocation and the agenda also contained motions to add projects.) By assumption, members envision the entire tree and examine the possibilities working from the bottom up, computing "sophisticated equivalents" at each division (see McKelvey and Niemi, 1978). Sophisticated voting, then, amounts to sincere choices among sophisticated equivalents (shown in square brackets) at each node -- not among the sincere or myopic alternatives (in parentheses).

(figure 7)

Applied to pure particularistic preferences, Kramer's result means that whenever $x^0 = (0,0,0)$ is on the agenda, sophisticated
select it. Realize, however, that the process is not restrictive, actors are foresightful, yet the outcome is highly undesirable. In the case of three actors and dichotomous issues, any two-project bundle is majority-preferred, and the universal omnibus may be unanimously preferred to the theoretically inevitable Kramer-McKelvey-Niemi sophisticated outcome. What, then, is the catch?

When contemplating the key conditions in Kramer's result -- sophisticated voting, exogenous agendas and UOR -- skeptics of applications of formal theories to legislatures are most likely to challenge the assumption of sophisticated voting. But this is not productive in the present setting because myopic voting also leads to \(x^0 \) (recall result 2.2 and see figure 7). Consequently, the problem of maintaining particularistic policies is addressed by jointly examining agendas and rules.

Agendas and Rules.

In theory, sophisticated voters must be fully informed about the decision tree, which is the formal representation of the agenda. In practice this is tantamount to knowing the order and contents of amendments that are considered on the floor. In the contemporary House, the Rules Committee often determines the form and contents of the amendment tree. The tools in its institutional bag of tricks are limited only by what a majority of members will approve.\(^{11}\)

Historically, the most extreme form of what members would approve is the pure closed rule (PCR). Result (3.2) was that commodity bundling is sufficient for initiation of a pareto policy. In the context of the agendas in the Kramer model, it is easy to see why PCR is an effective device for policy initiation. Under PCR there is no confusion about the agenda. The outcome is either the bill or the status quo, and even if the status quo is \(x^0 \), a properly packaged bill passes. (Notice also that the vote on the rule passes for precisely the same reason the bill passes. Thus the endogeneity of actual rule making in the House does not necessarily undermine the theory.)

But the result is more powerful than presented above. Extended to multiple sessions of decision-making, PCR also ensures stability of the outcome, the substantive equivalent of which is maintenance of the policy. Given a winning bill on the pareto frontier at time \(t \), one of two things happens during the next session, \(t+1 \). If the status quo is \(x^0 \) (projects cease to be funded if a new bill is not passed), then the committee re-reports a similarly or identically bundled bill at \(t+1 \), \(t+2 \), and so on. Changes occur only as a function of changes in preferences of committee members and/or members on the floor whose preferences are taken into account during committee decision-making. Alternatively, if the status quo is the last-passed bill, such as with the federal tax code which does not expire, the committee obstructs subsequent legislation. In either case stability is achieved. If additionally either of these processes produced an \(x \in P \), the problem of nonpareto outcomes under nonrestrictive rules is solved, too. Thus:
Commodity bundling by committees (CBC) and the pure closed rule (PCR) are sufficient for maintaining pareto particularistic policies.

But PCRs are considered brutal solutions to the problem. Indeed, opposition to such rules prompted Democrats to make a rules change in 1973 that permits the Democratic Caucus to instruct the Democratic members on the Rules Committee to permit floor consideration of specified amendments. The corresponding theoretical question is whether it is possible to relax the assumption of PCR without returning to UDR and its associated problems, but nevertheless to maintain stability? Again, the clue for the useful theoretical modification comes from the Rules Committee. The relevant institutional device is a modified closed rule (MCR). The Rules Committee has made frequent use of MCRs for several reasons, the most common of which are overlapping jurisdictions and multiple referrals resulting from reforms of the early '70s. Normal features of such rules include:

1. specification of permissible amendments,
2. specification of members who may offer the amendments,
3. prohibition of second degree amendments,
4. requirement that amendments be printed in the Record,
5. specification of the order of amendments,
6. permission that committee amendments be offered en bloc, and
7. prohibition of motions to divide the question.

Provisions 1-5 make plausible the argument that under a sufficiently specific MCR members have the necessary information to behave as if they correctly envision the agenda tree. Provisions 6 and 7 also refine their expectations insofar as amendments offered en bloc restrict the number of branches of the agenda tree, and exclusion of motions to divide the question ensures that the tree stays relatively neat. In sum, aside from their restrictiveness, the common element of the provisions in modified closed rules is the certainty they impose on the amendment process. Carefully constructed MCRs make it possible for members to envision the entire agenda tree and thus to vote sophisticatedly. Knowing this, Rules Committee members can predict outcomes associated with various MCRs and, in conjunction with leaders from the reporting committee, select an MCR that yields a pareto outcome. But importantly, under a well-constructed MCR, votes on amendments may occur on the floor with minimal danger of retreat to x^0. Although such rules are somewhat restrictive they can hardly be called "gag rules." Furthermore, they are potential solutions to the puzzle of maintaining pareto policies.

But since no assumption in the Kramer model has been violated yet, MCRs have not been shown to be theoretically sound solutions to the problem introduced in section II. It is increasingly evident, however, that if a solution with an empirically plausible basis exists, it is likely to be found by looking more closely at the rules of the House.

MCRs as Solutions to the Problem of Nonpareto Policies.

Given that MCRs can define tidy agendas, the final missing link concerns the status quo, more specifically, whether or not it is x^0.
(no projects) and where and how it enters the formal agenda. In the case of the House, the latter question has a cleaner answer which can be stated generically as voting the status quo last (VSQL). With few exceptions, the final stage in the legislative process consists of implicitly comparing the status quo with the bill (if and as amended). Examples include the motions to table or to strike the enacting clause (either of which kills the bill), the motion to recommit (which can have a variety of effects but at minimum defers further consideration), and, most drastically, the motion to adjourn sine die (which ends the session and kills all bills). Associated with these procedures are two theoretical possibilities. First, if \(x_0 \) is not the status quo (suggesting that the last-passed law will not expire upon failure to pass the present one), then \(x_0 \) easily can be excluded from the agenda. The Rules Committee simply writes an MCR that does not provide for a vote on "no projects." In contrast, if the practical effect of not passing a bill is no projects, such as when funding for particularistic policies expires in the absence of a new appropriation, then VSQL along with an appropriately constructed MCR has the effect of giving the members a chance to choose explicitly between its amended bill and the alternative of no projects. Thus,

\[(4.2)\] Voting the status quo last (VSQL) and a modified closed rule (MCR) are sufficient conditions for maintaining pareto particularistic policies.

Figure 8 illustrates the significance of the motion to recommit as an instance of VSQL. The agenda is identical to that of figure 7, except that a motion to recommit is in order at the terminal node. (MCRs sometimes designate a member, usually from the reporting committee, to make such a motion.) When recommital is tantamount to killing the bill and leaving intact the non-\(x_0 \) status quo -- such as on trade and tax legislation -- it can effectively nullify departures from the pareto surface. Suppose that in this case members were indeed Kramer-McKelvey-Niemi sophisticated and predictably ended up at \(x_0 \). The motion to recommit would then be offered and passed, leaving present policy unchanged. In sum, added to the simplicity of the agenda attributable to the MCR, the motion to recommit reverses the Kramer result and makes possible maintenance of a pareto policy.

(figure 8)

Of course, if members can compute sophisticated equivalents, then so too can they incorporate VSQL into such strategies. When this occurs, the outcome is agenda-specific. But in any agenda that contains a proposal in which at least a majority of members receive allocations, \(x_0 \) cannot win. To see why, examine the VSQL sophisticated equivalents shown in brackets in figure 8. In this simple case of dichotomous projects, the result is indeterminate, but with a noteworthy regularity. All VSQL sophisticated equivalents at the top of the tree are minimal winning allocations, consistent with the general results of Ferejohn, Fiorina and McKelvey (1983). As they note, this prediction does not conform particularly well with congressional policy. But prior models that yielded minimal winning coalition results either were silent about formal agendas (e.g. Riker,
Figure 8
Sophisticated Voting with the Optional Motion to Recommit
(Reversion point = (111))

motion to recommite the bill
(example of VSQL)

KEY

() myopic (sincere) motions
[] sophisticated equivalents
. . . sophisticated voting without VSQL
() VSQL sophisticated equivalents

1962) or provided for relatively unrestricted amendment processes (Kramer, 1972; Ferejohn et al., 1983). Modified closed rules, in contrast, provide for a wealth of alternative strategic opportunities, principally for the Rules Committee. For example, the Rules Committee easily can write an MCR that yields a pareto outcome. If the status quo is not x^0, then the Rules Committee can write an MCR that keeps x^0 off the agenda. Or, if the status quo is x^0, the Rules Committee can write an MCR in which UOR is violated at the final division in the formal agenda tree. In either case, not only is the Kramer result precluded, but the agenda setting opportunities of the Rules Committee make possible greater than minimal winning, or even universalistic, allocations something that we regularly observe but that noncooperative models have not yet yielded.

Thus far the argument in this section has rested on strong informational assumptions. These are not necessarily bothersome if MCRs restrict and order the number of amendments so that members can anticipate various contingencies and vote accordingly. But in a less tidy world members sometimes make mistakes or, due to constituency pressures, are not free to vote sophisticatedly even if they know how to (Denzau, Riker and Shepsle, 1985). VSQL is also useful here, apart from its aforementioned effect on calculation of sophisticated strategies in settings of precisely defined agendas, perfect information, and no constituency constraints. Its secondary function is that of a corrective device. Suppose that an MCR provides for several amendments and that the floor procedure becomes more
complicated than anticipated. On the way down the tree several amendments pass unexpectedly. By the time the penultimate node is reached, the bill is gutted. For the bill to become law, it is still necessary for the Committee of the Whole to rise and vote on final passage. But at this stage a motion to table would kill the bill, as of course would a negative vote on final passage. In either case the status quo is restored, and, if the status quo is restoration of past policy as opposed to reversion to no projects, a point on the pareto surface is maintained.

Similarly, but with less finality, a motion to recommit (perhaps with instructions) sends the gutted bill back to committee and keeps alive the possibility for reconsideration in the same session. The reporting committee and the Rules Committee are then free to repack the legislation and rewrite the rule such that unraveling is less likely to occur the second time around. In short and in sum, Congress not only has methods such as MCRs that facilitate the initiation and maintenance of pareto policies; it also has institutional escape hatches to minimize the damage when the primary devices fail.

V. SUMMARY AND IMPLICATIONS

The primary objective of this essay was to propose an answer to the question of why congressmen tolerate and often choose restrictive rules. A spatial model of particularistic policy-making was used to address the question by focusing on conditions under which particularistic policies can be implemented and maintained. Restrictive rules were shown to be sufficient conditions under specified congressional institutional arrangements. The puzzling popularity of restrictive rules therefore may be attributable to their effects on policy outcomes.

The particular form of restrictive rules (MCRs) discussed rather informally in section IV is likely to have a more rigorous theoretical basis than is suggested by the simple results from the spatial model. If indeed modified closed rules are empirically important cases of theoretical agendas, then continued study of MCRs should reveal a close connection between alternatives in the uncovered set (Miller, 1980; Shepsle and Weingast, 1984b; McKelvey, 1986) and the strategic possibilities of the Rules Committee using MCRs. For example, Shepsle and Weingast prove the following:

(5.1) The uncovered set is contained in the pareto optimal set. (proposition 3, p. 65)

(5.2) There exists an agenda that can get from y to x if and only if x is uncovered by y, i.e. \(-y \sim x\). (theorem 3, p. 59)

(5.3) Commencing at y, for any point that is the sophisticated agenda equilibrium (SAE) of some k-step agenda, there is an agenda with at most two steps possessing the same SAE. (corollary 3.1, p. 62)

The theoretical merging of sophisticated voting and the uncovered set has implications for (and indeed establishes) some of the informal assertions in this paper about restrictive rules. Consider a commodity bundled bill in the uncovered set, which, by (5.1), is also on the pareto surface. Result (5.2) guarantees the existence of an agenda that makes it possible to depart from any y (such as \(x^0\) in the
preceding discussion) to an x in the uncovered and pareto optimal sets, thereby establishing result (3.2). Furthermore, (5.3) guarantees that the Rules Committee can write an MCR to do the job quickly. If in practice the Rules Committee is reluctant to impose such severe restrictions, then it becomes important that uncovered alternatives have the property of rising to the top of the agenda as sophisticated equivalents. Under SV one such alternative is sure to survive through all the votes of even a multi-stage agenda. A well-designed MCR, then, can do the job of a PCR but without the restrictiveness of the latter.

A remaining empirical question is whether congressmen understand and exploit rules to the degree that the theoretical results suggest is possible. Although direct empirical tests for the theoretical propositions implicit in this paper have not been conducted, there is some related evidence about the degree of institutional sophistication in the legislative arena. A study of tax legislation in the 93rd Congress provides empirical support for the hypothesis that political and economic actors understand the effects of special rules on outcomes (Gilligan and Krehbiel, 1985). A test of a theory of the congressional budget process indicates that congressmen also understand the effects of alternative budgetary institutional arrangements (Ferejohn and Krehbiel, 1985). And a study of MCRs in particular illustrates their use by the Rules Committee to confer nonpolicy benefits in the form of "position-taking opportunities" (Hansen, 1985). For example, liberal Democrats who are excluded from the committee's bundle can be permitted to offer amendments that add provisions for their districts. Similarly, conservative, anti-pork Republicans may be designated to offer stripping amendments. But if the MCR is constructed to allow members to see (figuratively) to the end of the tree, a pareto outcome (often greater than minimal winning) results. Furthermore, if the preferences of members remain constant over time and the strategies of the Rules Committee are not erratic, the result is stable.

As discussed in section III, alternative sets of conditions under which particularistic policies may be passed include cooperative behavior and rational expectations logrolling. This paper made no attempt to reject these explanations nor to offer an exclusive account for particularistic policies. Rather, its primary and narrower aim was to expose a rationale for restrictive rules. If future studies are to address these theories comparatively and empirically, however, three points and a hypothesis should be considered. First, because the theories are motivated by different substantive interests (e.g. rules, logrolling, cooperation), they are not readily comparable. Their major if not sole common feature is that the outcomes of collective decision-making will appear as if cooperative behavior occurred. Second, although the theoretical accounts of such outcomes are distinct, the set of conditions in any given legislative setting is likely to contain some elements of each theory. Therefore, the theories are not strictly competing. Third, this raises a new question. Which of the various sufficient conditions for
implementation and maintenance of particularistic policies are most important, and when? On the basis of the models presented or reviewed in this paper, a potentially testable hypothesis emerges. Ceteris paribus, failure of cooperative agreements (or of logrolls) is more common in the absence of restrictive rules than in their presence. \(^{20}\) Empirical support for this hypothesis would substantiate an interpretation of restrictive rules as institutional protectors of ostensibly cooperative outcomes.

A final implication of this rationale for restrictive rules is that the Rules Committee, and agenda setting generally, should be reexamined from a more benign perspective. Theoretical studies of agenda power are helpful, and upon first glance their findings are consistent with the argument here that MCRs provide the Rules Committee with great opportunities for setting the agenda to obtain policies that its members want. But such theoretical results are easy to overinterpret. \(^{21}\) MCRs in Congress should not be regarded as blunt dictatorial instruments, even though they may have that theoretical potential. The contrasting empirical fact is that the contemporary Rules Committee is constrained, even to the point of being considered an “arm of the leadership” (Oppenheimer, 1977). To the degree that leaders in turn are constrained by the backbenchers who elected them, a principal-agent chain from backbenchers to leaders to Rules Committee members can be envisioned. Reconsideration of the Rules Committee as an agent helps reinforce the central point of this paper. Special rules in general exist and are selected by congressmen to help obtain outcomes with properties congressmen value. Restrictive rules in particular are designed by agents of congressmen because they are effective devices for initiating and maintaining pareto optimal particularistic policies.
FOOTNOTES

1. On the frequency of restrictive rules in the House, see Bach (1981a,b) for special rules and Drew (1978) for suspension of the rules. Similar procedures occur in the Senate, principally through the use of unanimous consent agreements. This paper focuses on the House, however.

2. Throughout the paper, the *status quo* (sometimes called a reversion point) is the outcome that results if no alternative receives a requisite number of votes. A *pure closed rule* (PCR) is one that prohibits all amendments on the floor; a *pure open rule* (POR) permits any amendments. Situations that are ripe for sophisticated placement or ripe for obstruction by a standing committee are defined for unidimensional situations in Krehbiel (1986). The closed rule portion of that model resembles Romer and Rosenthal's (1978), while open and closed rule parts are very similar to Denzau and Mackay's (1983) model. Other definitions and abbreviations are introduced as the discussion proceeds.

3. Interestingly, a year later Bolling made a strong plea for a restrictive rule for a budget resolution that contained reconciliation instructions. However, in 1982 it was the Democrats' resolution.

4. The tendency for the Ways and Means Committee to receive closed rules diminished somewhat immediately following the reforms of the early 1970s, but the reaction of several members was that the restrictions were needed after all. See Rudder (1977).

5. See Fiorina (1982, pp. 15-17) for an analogous argument against complexity as a rationale for congressional delegation.

6. Mayhew's exact passage is:

 If a group of planners sat down and tried to design a pair of American national assemblies with the goal of serving members' electoral needs year in and year out, they would be hard pressed to improve on what exists (pp. 81-82).

7. The pareto surface in the model is "political" rather than "economic" in the sense that the ideal points need not be generated from a utility function whose only arguments are economic costs and benefits to the district. Rather than attempt to resolve the question of how best to generate legislator's preferences (see, for example, Aranson and Ordeshook, 1978; Shepsle and Weingast, 1984a; Niou and Ordeshook, 1985), I simply posit the preferences and note that an $x \in P$ in this model need not be economically efficient.

8. See Plott (1967) for the exceptional case and McKelvey (1976) for a generalization and implications.

9. Only exogenous agendas are considered in this paper, even though in the classic case of particularistic policy -- namely, pork barrel legislation -- an endogenous agenda model may be more
appropriate. Theoretical guidance on endogenous agendas is sparse, however, especially if by "endogenous" one means that the offering of amendments and the voting on amendments are intermixed (as opposed to constructing the agenda in one stage and voting on it in a separate, subsequent stage).

10. This example does not generalize straightforwardly to more actors. With multiple committee members the optimally commodity bundled bill is more difficult to define. Various arguments have been made to circumvent this predicament, none of which are entirely satisfactory. Examples include: committees are small groups and thus can come to agreement on bills even in the absence of a core; committees have chairmen who are in effect dictators; and committee members typically have homogeneous preferences. Regrettably, the anthropomorphism implicit in the example cannot be denied.

11. The flexibility of the Rules Committee in devising "special orders" (rules) is comprehensively conveyed in Deschler and Brown (1982), Chapter 21, sections 18-21 and Chapter 27, section 2, and in Bach (1981a,b).

12. See Bach (1981b) for a richly illustrated discussion of the increasing use of "restrictive complex special rules," of which modified closed rules are examples.

13. Not every modified closed rule has all of these provisions, but most seem to have two or more. Deschler and Brown's (1982) Procedure lists several examples of "rules open in part or closed in part" in chapter 21, section 19, paragraphs 27-46.

14. My VSQL is similar to Shepsle and Weingast's (1984b) "backward built agendas." In each case the final vote pairs the status quo against the bill (possibly as amended). In my case, however, nothing is assumed about the ordering of alternatives prior to the final division, whereas in backward-built agendas alternatives are voted on in the exact reverse order in which they were proposed.

15. Their projects are not dichotomous, and their result is that the cheapest MWC will form.

16. Recommital with instruction to report forthwith was instrumental in the Senate during its consideration of the fiscal 1986 Budget Resolution. See various COs and Congressional Records throughout April and May, 1985 (but be warned that it is complicated).

17. The binary covering relation, C, is the basis for the uncovered set. For all proposals x and y, y is said to cover x if and only if y is in the set of alternatives that beats x, and the set of alternatives that beats y is contained in the set of alternatives that beats x. Formally, for all x, y, y C x iff (1) y ∈ W(x), and (ii) W(y) ⊆ W(x). See Shepsle and Weingast (1984b), p. 58.
18. These are designated "position-taking" amendments because formally they should not pass. A majority of N-1 opposes an amendment to add a project in which only one member benefits and all others pay.

19. These amendments are probably more common for classic pork barrel legislation, which tends not to be considered under restrictive rules. This raises the theoretically challenging question of why public works legislation passes. See footnote 9, supra, and the following works: Aranson and Ordeshook (1978), Ferejohn Fiorina and McElvee (1983), Koford (1985), Niou and Ordeshook (1985), Shepsle and Weingast (1981a), and Weingast (1979, 1985).

20. Due to the endogeneity of rules in Congress, the ceteris paribus qualifier is critical. A satisfactory test would have to confront this complexity.

REFERENCES

