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One of the challenges in testing gravity with cosmology is the vast freedom opened when extending
General Relativity. For linear perturbations, one solution consists in using the effective field theory of dark
energy. Even then, the theory space is described in terms of a handful of free functions of time. This needs
to be reduced to a finite number of parameters to be practical for cosmological surveys. We explore in this
article how well simple parametrizations, with a small number of parameters, can fit observables computed
from complex theories. Imposing the stability of linear perturbations appreciably reduces the theory space
we explore. We find that observables are not extremely sensitive to short time-scale variations and that
simple, smooth parametrizations are usually sufficient to describe this theory space. Using the Bayesian
information criterion, we find that using two parameters for each function (an amplitude and a power-law
index) is preferred over complex models for 86% of our theory space.
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I. INTRODUCTION

With many large scale structure surveys, such as
WFIRST [1], LSST [2], DESI [3], SPHEREx [4], and
EUCLID [5], coming online in the close future, our chances
of understanding what is causing the accelerated expansion
of the Universe are improving drastically. While a cosmo-
logical constant is still consistent with the data, it is
informative to see how deviations from our standard
cosmological model Lambda Cold Dark Matter(ΛCDM)
could be constrained with these upcoming experiments.
It was shown in the broad framework of the effective

field theory of dark energy (EFT of DE) [6–8] that to
describe modifications of gravity involving a single extra
degree of freedom (DOF), such as a scalar field, only five
free functions of time are needed.1 In particular, they can be
used to describe known models such as Horndeski theories
[10] and their extensions [11–13]. The case of Horndeski
only requires four out of the five functions of time, and they
have been expressed in an insightful and convenient way in
Ref. [14]. The addition of beyond Horndeski theories to the
notation of Ref. [14] was presented in Ref. [15]. Note that,
recently, the formalism was extended to include also the
possibility of modifications of gravity including additional
vectors and tensors [16,17].
When used in the context of a specific model, these

functions of time are not free but can be computed once the
parameters of said model are given. Doing so requires
solving the background equations to get the associated time
evolution so that in principle the EFT of DE can be used as
a proxy for specific models. However, no clear candidate

stands out as a promising alternative to General Relativity
(GR), which means that one should probably not focus only
on these models.
The EFT of DE then becomes particularly critical; there

is no need to specify a given model, since the appearance of
these five functions of time arises generically when
allowing the presence of a scalar field. The framework
allows one to thoroughly and systematically explore the
theory space around ΛCDM and let observations highlight
which regions of this theory space are the most favored.
The efforts for building models could then be focused to
these particular regions. The difficult part there is that one
has to deal with free functions of time, which are difficult to
constrain with the limited observations that we have.
The goal of this paper is to try and see if, given the

sensitivity of future surveys, one can approximate the
complicated landscape of the arbitrary time dependences
by a much simpler theory space, only given by a few
parameters. We summarize our method in Fig. 1.
In Sec. II, we briefly review and expose the features of the

EFTofDE that are relevant for our analysis. Then, in Sec. III,
we present the way we are going to explore the theory space
and howwe are going to estimate the performance of simpler
parametrizations. The results are then detailed in Sec. IV, and
final conclusions are drawn in Sec. V.

II. FRAMEWORK

The EFTof DE formalism has been carefully reviewed in
Ref. [15]. For our purposes, the key conclusion is that,
assuming the background is fixed, the evolution of pertur-
bations is, in principle, determined by five free functions of
time. In Ref. [14] and later Ref. [15], those functions were
expressed in a way that highlighted their effects on the
theory space and are written as fαK; αB; αT; αM; αHg:

1More functions are needed if the weak equivalence principle
is broken, i.e., dark matter and baryons are coupled to different
metrics [9].
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(i) αK parametrizes the kinetic energy of the extra
degree of freedom and is the simplest extension to
GR. Setting all the other functions to zero will
capture simple dark energy models (i.e., with no
modifications to gravity except the presence of an
extra fluid).

(ii) αB is linked to so-called braiding scalar-tensor
models [18] in which part of the kinetic energy of
the scalar is sourced through a coupling to gravity,
resulting in deeper modifications of gravity.

(iii) αT controls the deviation of the speed of tensor
perturbations from that of light, which is allowed
when going outside of GR. It could, in principle,
be measured independently using gravitational
waves [19].

(iv) αM is nonzero when the Planck mass, denoted MðtÞ
and defined as the coupling between gravity waves
and matter, is not constant in time. In scalar-tensor
theories, this happens when the scalar field couples
directly to the Ricci scalar.

(v) αH vanishes for theories that belong to the Horndeski
class [10], in which terms with more than two
derivatives are forbidden from the equations of
motion. However, a proper interpretation of Ostrog-
radski’s theorem [20] indicates that higher deriva-
tives are not necessarily synonymous with
instabilities. What is important is that the actual
degrees of freedom, once constraint equations are
solved, obey second-order differential equations.
This is the case in theories dubbed beyond Horn-
deski [11–13] (see also Refs. [21–25]) and leads
to αH ≠ 0.

The advantage of using this set of functions (instead of the
original set of Refs. [6–8]) is that if any of them were
measured to be nonzero it would directly point toward one
specific aspect of modified gravity. For a shorthand
notation, we will denote this set by fαXg.
Using these functions, one can derive the modified

Einstein equations as well as an evolution equation for

the extra degree of freedom. If one further supplements
them with the conservation of the matter stress-energy
tensor, the system can be solved to obtain the evolution of a
(linear) matter overdensity. However, even if the functions
fαXg are taken to have simple and known time depend-
ences, the system of equations can only be solved numeri-
cally. Different groups have developed codes in order to do
so, such as EFTCAMB [26], Hi-Class [27], or COOP [28].
Here, for the sake of simplicity, we will look at the simpler
case of the extreme quasistatic (EQS) limit, which is
justified when looking at overdensities on scales much
smaller than the sound horizon of the extra DOF [29]. To
make this more quantitative, let us explicitly introduce the
metric in Newtonian gauge (which is convenient for
phenomenological studies). The line element reads

ds2 ¼ −ð1þ 2ΦÞdt2 þ aðtÞ2ð1 − 2ΨÞdx⃗2: ð1Þ

Since this analysis is limited to linear perturbations, it is
easier to go to Fourier space. Taking the EQS means
looking at wave numbers k ≫ c−1s aH, where cs is the speed
of sound of the extra DOF (that can be expressed in terms
of the fαXg) and the Hubble rate is defined asH ≡ _a=a. We
will also limit ourselves to the case αH ¼ 0 to keep
expressions simpler. In this limit, one recovers a growth
equation for matter overdensities δm that is similar to that of
GR, given by (omitting the explicit time dependences for
brevity)

δ̈m þ 2H _δm ¼ 3

2
ΩmH2μeffδm; ð2Þ

μeff ≡ ð1þ αT þ β2ξÞ; ð3Þ

where we have defined

Ωm ≡ ρm
3H2M2

; βξ ≡
ffiffiffi
2

p

csα1=2
½αBð1þ αTÞ þ αT − αM�:

ð4Þ

α≡ αK þ 6α2B is the total kinetic energy of the scalar field,
and its speed of sound is given as

c2s ≡ −
2

α

�
ð1þ αBÞ

�
_H
H2

− αM þ αT þ αBð1þ αTÞ
�

þ _αB
H

þ 3

2
Ωm

�
: ð5Þ

Stability conditions impose that both α > 0 (no-ghost
condition; see Ref. [30]) and c2s > 0 (no gradient insta-
bility), ensuring that βξ is real. Even in the absence of any
anisotropic stress, modified gravity models do not have
Φ ¼ Ψ as for GR in the Newtonian gauge. This is
important, as weak lensing measurements are sensitive to

FIG. 1. Representation of the method used in this paper. We
will compute observables (galaxy and weak lensing power
spectra) from complex EFT of DE functions after imposing
stability conditions. They will be fitted to simplified versions of
these functions. Then, we will use model comparison tools to
assess whether the complexity (i.e., the size of the circle) of the
original functions is actually transferred to the observables or if
simple functions are enough capture the physical features. In this
diagram, this essentially corresponds to comparing the size of the
dark blue and the orange circles. Moreover, we want the orange
circle on the right to be the same size as the middle one; i.e., the
simple functions have to explain the whole observable space.
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the so-called lensing potential, ΨþΦ. In terms of the
fαXg, this potential can be written as

Φþ Ψ ¼ −
3a2H2

k2
Ωmμlightδm; ð6Þ

μlight ≡ 2þ αT þ ðβξ þ βBÞβξ
2

; βB ≡
ffiffiffi
2

p
αB

csα1=2
: ð7Þ

If αT ¼ αM ¼ 0, then one finds that Φ ¼ Ψ, but otherwise,
they are different.
Thus, to get the power spectrum at a given redshift, one

needs, in principle, the whole evolution of the fαXg. If we
had perfect knowledge of the evolution of the matter field
from high redshifts to today, one could create a fine binning
in redshift and associate a parameter for each function in
each bin. For realistic surveys, however, it would be better
if those free functions of time could be fixed in terms of a
few constant parameters. This is why a number of groups
[14,31–34] have decided, for a first attempt, to parametrize
the functions of time as proportional to 1 −Ωm. Indeed,
under the assumption of a spatially flat Universe,Ωm ¼ 1 if
the Universe contains only matter and is smaller if there are
other components. Therefore, 1 − Ωm controls the density
of what is causing the accelerated expansion of the
Universe.2 This is why it is pretty natural to assume that
deviations to ΛCDM would trace this quantity.
Of course, the time evolution could be a more compli-

cated function of 1 − Ωm, and it could be different for every
function fαXg. There have been attempts to see whether
this simple parametrization reproduces known models,
such as Galileons [35], with some indicating reasonable
agreement [36] with others claiming the opposite [37].
Since it is not clear whether they probed the same part of
the theory space, this is not necessarily a contradiction.
However, Galileons are not necessarily representative of the
full theory space that we are trying to explore. Nor are they
the most motivated candidates from a cosmological point of
view, having trouble with some observations such as void
lensing [38] and the Integrated Sachs–Wolfe (ISW) effect
[39] (see also Ref. [40] for a more detailed analysis).
Therefore, even if simple parametrizations turned out to not
be working very well for these models, that would not
undoubtedly mean that they should be thrown away.
In this paper, we argue that whether a simple para-

metrization can reproduce the complete, detailed evolution
of the fαXg coming from complicated models is not the
most relevant question. Indeed, it is not obvious the
potential short time-scale features in the fαXg are actually
observable. For instance, their effect on the growth is
integrated, as seen in Eq. (2), so one might guess that sharp
features are smoothed out. Instead, we would rather see

whether the difference between simple and complicated
evolution of the fαXg can actually be measured.
To try and answer this question, we will do the follow-

ing: take the fαXg to be random, different functions of time
and compute the corresponding power spectra, for galaxies
and weak lensing. Then, we will try and see if we can fit the
observables using the simple parametrizations and mini-
mizing the χ2 for said observables. This differs from
previous analyses in three major ways. First, because we
take the functions to be random, the exploration of the
theory space is not biased toward a specific model. Second,
for each value of fαXg today, we will take many different
realizations of the random functions so that we can make
quantitative statement about how often the parametrization
fails. Finally, the comparison and fitting will be at the level
of the observables, not of the functions fαXg nor μeff;light,
which are not directly measurable.

III. SETUP

We want to explore the theory space of the fαXg and see
if it can be approximated by a simple, finite-dimensional
parameter space. To do so, we can start from a very large
space, essentially mimicking the infinite-dimensional
space, and see if the simple parametrization allows us to
recover the features of this complex parameter space that
are relevant for cosmological surveys, i.e., those conveyed
to the observables.
Before detailing the exact procedure, let us note that,

within the approximations that we have described in the
previous section, particularly the EQS, only three functions
fαB; αT; αMg have an effect. We set αH ¼ 0, and αK does
not appear in the equations. For each of the three remaining
functions, we will parametrize the “true” theory space as

αtrueX ðzÞ ¼ αX;0ð1þ zÞ−qX
�
1þPimax

i¼1 nX;iz
i

1þPimax
i¼1 dX;iz

i

�
; ð8Þ

where X ∈ fB;T;Mg. We express the time variable as the
redshift z ¼ aðtÞ−1 − 1, and αX;0 is the value of αX today
(z ¼ 0). The choice of the factor ð1þ zÞ−qX is to ensure that
αX goes to zero in the past, because we want the effect of
modified gravity to only become manifest in the late
Universe, not during matter domination (z ≫ 1). This is
also a generic feature of Horndeski models, as pointed out
in Ref. [37]. Finally, the last part of this function allows for
complicated evolutions. The choice of a rational function
and not of a polynomial is because typically the fαXg are
defined as ratios of functions that involve the extra degree
of freedom (see, e.g., Ref. [15]). Moreover, this covers a
larger portion of the theory space that we want to explore
and does not exclude the possibility of divergent fαXg, just
as expected from Ref. [15].
We have checked that this form can fit the case of

k-essence [41], in which only αK is nonzero, and goes as
2The density of radiation is negligible in the recent Universe,

so it can safely be ignored from 1 −Ωm.

PARAMETRIZING MODIFIED GRAVITY FOR … PHYSICAL REVIEW D 96, 063516 (2017)

063516-3



1 − Ωm [14]. It also works for more involved cases, such as
Galileon models [42]. To check that, we numerically solved
the full background equations,3 computed the fαXg, and
fitted Eq. (8) to them. We found that with imax ¼ 8 one
could fit the fαXg from the Galileon models to better than
10−5 accuracy. Wewill thus assume this value from now on.
The procedure is then as follows. We first choose a triplet

fαB;0; αT;0; αM;0g for αX;0 ∈ ½−1; 1�. This is a way to
enforce an observer’s prior, excluding models potentially
ruled out by current observations. For each triplet, we
choose at random the three fqXg, between [2, 6], and the
6 × imax parameters fdX;i; nX;ig between ½−100; 100�. If the
corresponding c2sα computed from Eq. (5) crosses zero
anytime between z ¼ 0 and z ¼ zini ¼ 20, we discard this
realization. Otherwise, we compute the evolution of δm,
setting the initial conditions in matter dominance (z ¼ zini).
Since we choose our functions to decay, in principle, at
least as ð1þ zÞ−2 for z ≫ 1, their effect is negligible, and
we have the usual solution δmðz ≫ 1Þ ¼ ð1þ zÞ−1. We
summarize the choice of priors in Table I.
The final cut that we make on the theory space is that, for

each redshift bin, we compute σ8 for the matter power
spectrum (its amplitude in a sphere of radius 8h=Mpc) and
μlightσ8, the one associated to weak lensing. The current
errors on σ8 from redshift-space distortions and weak
lensing are of order 15% [43,44]. Therefore, if the σ8
and μlightσ8 that we find are not within 25% (to be
conservative) of those computed in ΛCDM, we reject
the realization. This is to be consistent with the fact that
no deviation from ΛCDM has been observed. Then, we
want to know if the observables produced with the
complicated fαXg in Eq. (8) can be fitted with simple
parametrizations. Within the representation of Fig. 1, this
means checking that the two orange circles are the same
size. To do this, we will fit the true model to given
parametrizations by minimizing the χ2 for the combination
of two probes, galaxy clustering and weak lensing tomog-
raphy, and then compute the associated Bayesian informa-
tion criterion (BIC), defined as

BIC≡ χ2min þ k lnN; ð9Þ

with k the number of parameters to be fitted and N the
number of data points. The last term is to penalize models
with unnecessary complexity.

A. Simple parametrizations

The procedure described above will be applied to
different parametrizations, with an increasing level of
complexity; at the end, they will be compared to the true
model, as well as each other:

(i) With a wCDM model (all the fαXg ¼ 0) and
w ∈ ½−1.02;−0.92�, using prior knowledge from
distance measurements [45]. This is to check
whether one really needs modified gravity or if dark
energy could explain the observables.

(ii) With a parametrization given by

αX ¼ αX;0
1 − Ωm

1 − Ωm;0
; ð10Þ

where Ωm;0 is the current value of the density
parameter “Ωm.” We will label it “Ωm.” This one
has been commonly used in forecasting papers
[14,31–34]. Note that there are two assumptions
behind it: that all of the fαXg have the same time
dependence and that time dependence is fixed.

(iii) With a parametrization given by

αX ¼ αX;0ð1þ zÞ−q; ð11Þ

with the same q for all the fαXg. We will label it
“1i”, for one index. Here, we relax the assumption of
a fixed time dependence but keep all of the fαXg
proportional to the same function.

(iv) With a parametrization given by

αX ¼ αX;0ð1þ zÞ−qX ; ð12Þ

with a different qX for each αX. We will label it “3i”,
for three indices. We have relaxed the two assump-
tions of the case Ωm. We only impose that the
functions have this simple redshift dependence,
which gets negligible at high redshifts.

In every parametrization, the background is a wCDM, with
w determined by the fitting procedure. More precisely, its
range w is increased to ½−1.2; 0.8�. This is to be
conservative, since, in principle, a nonzero αM (i.e., a
time-varying Planck mass) changes the expansion history,
inducing degeneracies in the determination of w from
distance measurements. Finally, the parameters fαX;0g
are allowed to vary between ½−50; 50�, and the indices
fqXg vary between [0, 6].

TABLE I. The choice of (linear) priors on the parameters of Eq. (8). For the theory priors, we impose that both σ8
and μlightσ8 are within 25% of the ΛCDM value.

αX;0 qX fdX;i; nX;ig Theory priors

½−1; 1� [2, 6] ½−100; 100� c2sα > 0 and jðμlightÞσ8=σΛCDM8 − 1j < 0.25

3Using a python script generously provided by Alexandre
Barreira.
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To compare with the true model, we need to compute its
BIC. However, since we are just interested in quantifying
whether the complexity of Eq. (8) is necessary, we will only
keep the second term in Eq. (9), k lnN. Note that, in
principle, even if the Universe were given by Eq. (8), the
measurements would have noise, which means that the BIC
computed with the true model would also receive a χ2min
contribution (it would roughly be of order the number of
measurements; see, e.g., Ref. [46]). This can only increase
the BIC, so we deliberately choose not to include that term
and focus on the second one to be extremely conservative.
This is an irreducible theoretical floor for the BIC, which
encodes the size of the theory space described by Eq. (8). In
the context of Fig. 1, this is a proxy for the size of the dark
blue circle.

B. Galaxy clustering

For galaxy clustering, we assume a spectroscopic red-
shift survey of 15000 squared degrees, sliced in eight
equally populated redshift bins (we take the galaxy dis-
tribution as given by Ref. [47] with a limiting flux placed at
4 × 10−16 ergs−1 cm−2) between z ¼ 0.5 and z ¼ 2.1, as in
Ref. [32]. These characteristics are similar to those
expected in DESI [3] or EUCLID [5]. We then compute
the χ2 for a model M,

χ2PS;M ≡X
k;i

½Ptrueðk; ziÞ − PMðk; ziÞ�2σ−2k;i ;

σ2k;i ≡ 2N−1
k;iPtrueðk; ziÞ2; ð13Þ

where Nk;i ≡ k2Vi
2π2

Δk is the number of modes in a k bin
½k; kþ Δk� for a redshift bin centered around zi, the volume
of which is Vi ¼ VðziÞ. Ptrueðk; zÞ is the power spectrum at
redshift z and wave number k, computed with a given
realization of Eq. (8), and PM is the one computed with a
model M, where the fαXg are given by wCDM or either
one of Eqs. (10)–(12).
In the EQS approximation, the k dependence of the

linear power spectrum is not modified by the deviations to
ΛCDM. Thus, it drops out of the χ2, and the sum over the k
modes just gives an overall factor that depends only on
the details of the survey—which sets VðziÞ—and on the
maximum wave number in the analysis, kmaxðziÞ. The latter
is chosen as the minimum between the linear scale and the
scale where the shot noise starts to dominate. This
guarantees that our linear description is consistent and that
we can safely ignore the shot noise in σk;i.
In principle, the minimum wave number included in our

analysis is set by the range of validity of the EQS.
Typically, this means kmin ≫ H−1

0 , with the specific value
depending on the fαXg (see Ref. [29] for more details).
However, because of the scale independence of our
modifications to the linear power spectrum, the signal to
noise in a k bin goes as k2Δk and thus peaks close to kmax.

Therefore, the precise choice of kmin is irrelevant, as long as
kmin ≪ kmax, which is guaranteed for kmin ∼ 10H−1

0 .
To simplify the analysis further, we will assume the same

galaxy bias in every model so that it cancels out of Eq. (13).
Moreover, we will not take into account redshift space
distortions because theoretically they probes the same
quantity, the linear growth, so that we do not expect
differences in the final results.

C. Weak lensing

For weak lensing, we consider lensing tomography [48].
The angular cross-correlation spectra of the lensing cosmic
shear for a set of galaxy redshift distributions niðzÞ is
given by

PWL
ij ðlÞ ¼ l

4

Z
∞

0

dz
HðzÞ

WiðzÞWjðzÞ
χ3ðzÞ k3lðzÞPΦþΨ½z; klðzÞ�;

ð14Þ
where χðzÞ≡ R

z
0 dz=HðzÞ is the comoving distance and the

lensing efficiency in each bin is given by

WiðzÞ≡ χðzÞ
Z

∞

z
d~znið~zÞ½χð~zÞ − χðzÞ�=χð~zÞ; ð15Þ

with each galaxy distribution normalized to unity,R
∞
0 dzniðzÞ ¼ 1. Moreover, PΦþΨðkÞ is the power spectrum
of ΦþΨ. Using Eq. (6), it is related to the matter power
spectrum by

PΦþΨðz; kÞ ¼
�
3a2H2Ωmμlight

k2
δmðzÞ

δmðz ¼ 0Þ
�

2

P0ðkÞ; ð16Þ

where P0ðkÞ is the power spectrum at z ¼ 0. Finally, we
define klðzÞ≡ l=χðzÞ as the wave number that projects
into the angular scale l, which we will take to vary between
[10, 1000], restricting to linear scales. Furthermore, we
follow, e.g., Ref. [34] and assume a photometric survey of
15000 squared degrees in the redshift range 0 < z < 2.5,
with a redshift uncertainty σzðzÞ ¼ 0.05ð1þ zÞ and a
galaxy distribution nðzÞ ∝ z2 exp ½−ðz=z0Þ1.5� [49], where
z0 ¼ zm=

ffiffiffi
2

p
and zm is the median redshift, assumed to be

zm ¼ 0.9 [50,51]. Then, we divide the survey into 12
equally populated redshift bins. For each bin i, we define
the distribution niðzÞ by convolving nðzÞ with a Gaussian
of which the dispersion is equal to the photometric redshift
uncertainty σzðziÞ, zi being the center of the ith bin (see also
Refs. [52,53]). Adding a diagonal term to account for
intrinsic ellipticity of galaxies (see, e.g., Ref. [54,55]), we
find

CijðlÞ≡ PWL
ij ðlÞ þ δijσ

2
ϵ n̄−1i ; ð17Þ

where n̄i ¼ 3600 × ð180=πÞ2nθ=Nbins is the average num-
ber of galaxies per radian2 per bin, assuming a total number
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of galaxies per arcmin2 nθ ¼ 30 and Nbins equally popu-
lated bins. The intrinsic ellipticity is characterized by σϵ,
which we take to be 0.22 (EUCLID-like characteristics;
see, e.g., Ref. [34]). We then assume a Gaussian likelihood,
with covariance given by

Ctrue
ij ðlÞ≡ PWL;true

ij ðlÞ þ δijσ
2
ϵ n̄−1i ; ð18Þ

so that the χ2 is given by

χ2WL;M ≡ fsky
Xlmax

lmin

2lþ 1

2

× Tr½ðCM
l − Ctrue

l Þ · ðCtrue
l Þ−1

· ðCM
l − Ctrue

l Þ · ðCtrue
l Þ−1�; ð19Þ

where fsky ¼ 0.36, lmin ¼ 10, and lmax ¼ 1000. Contrarily
to the case of galaxy clustering, the scale dependence of the
power spectrum does not factor out of the χ2. Thus, we
need to fix P0ðkÞ in Eq. (16). To do so, we use CAMB [56]
to compute the power spectrum in ΛCDM at z ¼ 0, PΛCDM

0 .
Then, since the scale dependence is not changed in our
scenario, we have

PM
0 ðkÞ ¼ PΛCDM

0 ðkÞðδMm =δΛCDMm Þ2ðz ¼ 0Þ; ð20Þ

where δMm is the linear growth computed in the modified
gravity model M and δΛCDMm the is the linear growth
in ΛCDM.

IV. RESULTS

Even before trying to fit the parametrizations of
Sec. III A, taking many realizations of Eq. (8) allows us
to make general statements about the theory space itself,
which we will explain in Sec. IVA. Then, we will go into
the details of how the parametrizations perform in
Sec. IV B. While for both sections the detailed and
quantitative results depend on the exact form chosen in
Eq. (8), the qualitative interpretation should not change too
much, provided the form of fαXg is general enough.

A. From theory to observables

The first thing that should be noted is that imposing the
stability condition c2sα > 0 drastically reduces the size of
the parameter space. We illustrate this in Fig. 2, where we
summarize the distribution of evolutions for the fαXg for
104 realizations of three cases. The lines show where 95%
of the curves lie. In dark purple, no conditions are imposed.
In orange, we restrict realizations to c2sα > 0. Only ∼0.15%
of the functions satisfies this condition with linear priors on
all the parameters in Eq. (8). Finally, in light green, we
restrict to c2sα > 0 and to having σ8 and μlightσ8 within 25%
of the ΛCDM value, to be consistent with past surveys,

which represents ∼0.1% of the functions. For comparison,
we plot also the cases in which the fαXg are given by
Eq. (10) (black dotted-dashed curves) and by a quintic
Galileon model (red dashed curves) with fc2¼ 3.8;c3 ¼
2;c4 ¼−1.3×10−3;c5 ¼−4.7×10−1;cg ¼ 0.0;c0¼ 0;xi ¼
2.8×10−14g in the notation of Ref. [42], which yields the
same set fαB;0; αT;0; αM;0g ¼ f−0.3; 1;−0.9g.
One can see that already the condition c2sα > 0 signifi-

cantly reduces the parameter space. It also makes the
functions much smoother than the naive expectation. αB
is somewhat special; it enters in a complicated, nonlinear
way (it is also the only function that appears with a
derivative) in c2s , and imposing c2sα > 0 is not as con-
straining as for the other parameters; see the top right panel
of Fig. 2. On the other hand, the same argument means that
wildly varying αB does not necessarily lead to strong
features in μeff , as seen in the bottom left panel of Fig. 2.
To each point fαB;0; αT;0;αM;0g is associated nruns ¼ 200

random realizations of Eq. (8), which all satisfy c2sα > 0 for
the whole redshift range we consider. For each realization,
we compute the matter growth as well as lensing potential,
in order to get the galaxy and weak lensing power spectra.
The second thing that we notice here is that, even if the
complex evolution of the fαXg leads to strongly varying
μeff and μlight, this is not completely transferred to the
observables, as seen in Fig. 3.

FIG. 2. Comparisons of the distribution of redshift evolution of
αT (top left), αB (top right), αM (bottom left), and μeff and μlight
(bottom right) for fαB;0; αT;0; αM;0g ¼ f−0.3; 1;−0.9g. The lines
delimit where 95% of the curves resides. In dark purple is the case
in which there is no restriction on c2sα. In orange is the parameters
taken only if the corresponding c2sα is positive. Finally, in light
green is the case in which c2sα > 0 and σ8, as well as μlightσ8, are
within 25% of the ΛCDM value. The black dotted-dashed lines
correspond to the fαXg evolving according to Eq. (10), while the
red dashed lines are for a quintic Galileon model with a the same
set fαX;0g, fixed by the model parameters (see the main text for
details).
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This is because to get the growth one has to integrate
Eq. (2), which means variations in μeff are not directly
transferred to variations in the power spectrum. For weak
lensing, μlight appears explicitly, and one might think that
the effects should be more apparent. However, to get the
lensing power spectrum in Eq. (14), one has to integrate
over the window functions, which also smooths the
variations in μlight. To estimate the deviations in the weak
lensing power spectra, we use the quantity

hðCtrue − CMÞ · ðCtrueÞ−1iðziÞ

≡
P

l½ðCtrue
l − CM

l Þ · ðCtrue
l Þ−1�ii

lmax − lmin
; ð21Þ

where zi is the middle of the redshift bin i.
Schematically, what we have explained in this section is

the left half of Fig. 1: the full space of functions (light blue)
is larger than the one of stable functions (dark blue), which
in turn is larger than the space of observables (orange). To
explain the other half of that figure, we will try and fit the
simple parametrizations of Sec. III A to the observables.

B. Fitting the observables

Here, we minimize χ2M ≡ χ2WL;M þ χ2PS;M, assuming the
model M is given by either wCDM, the parametrization
“Ωm”, or the parametrizations “1i” and “3i”as detailed in
Sec. III A. From there, we can compute the BIC (9) and see
which model is favored (the one with the lowest BIC). We
show the results in Fig. 4, where we have restricted our
analysis to cases in which the probability of an observed χ2

being larger than χ2min;wCDM is smaller than 1%. This is to
focus on cases that would lead to a detection of modified
gravity, not simply a different equation of state for dark
energy.
For most realizations, the simple parametrizations do

better than the full model (8) in terms of the BIC. Having
a lower BIC does not necessarily mean being a good fit. For
those with a BIC lower than the true model’s, however, one
finds that they are always a reasonable fit to the observables.4

Quantitatively, we find that, compared to the true model,
“Ωm”, in light purple, is highly favored (ΔBIC < −10) 54%

FIG. 3. We plot the relative difference of μeff and μlight w.r.t. their LCDM values (dashed) compared to the relative difference in the
corresponding observables (same color, full line), respectively the galaxy power spectrum and the Cij averaged over l. The five colors
are for five different random realizations of Eq. (8). For weak lensing, the crosses indicate the center of the redshift bins. While μeff and
μlight vary on a short time scale and by significant amounts (more than 200% for μeff ), the observables are much smoother, and the
deviations are much smaller.

FIG. 4. Histogram of the BIC values for “Ωm” (light purple),
“1i” (green), and “3i” (dark orange), compared to the true value
(pink line). The last one corresponds to a perfect fit χ2 ¼ 0 with
Eq. (8) but is penalized in the BIC due to its high number of
parameters. Most (93%) of the time, at least one simpler model
has a significantly lower BIC (ΔBIC < −10) than true, meaning
it is preferred over the complex model. In the corner, we show the
percentage of times when a given model has the lowest BIC. 4We have about 360 measurement points in our analysis.
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of the time, and for “1i” (green) this rises to 78% and for “3i”
to 86% (dark orange). That is to say, the high complexities of
the fαXg are not transferred into the observables, at least at
the sensitivity level of next-generation surveys. As a conse-
quence, simple parametrizations are able to capture the
behavior of modified gravity in the galaxy and weak lensing
power spectra. Note that when doing the analysis with the
galaxy power spectrum only then “Ωm” is doing the best job
50% of the time. Adding lensing makes it harder to fit both
observables with this fixed time dependence, making “3i”
more adequate.
One could rightfully argue that “3i” comes out as the best

parametrization because of the exact form of Eq. (8), which
has the same factor ð1þ zÞ−qX. This is certainly true, but
this adds to our argument that short time-scale variations—
encoded in the rational function of Eq. (8)—are not
observable, only smooth behaviors can be measured.
We show in Fig. 5 the evolution of the fαXg as well as

the relative difference in the power spectrum5 andCl [given
in Eq. (21)] for the different modelsM, in two cases. With
dashed lines, we show a case in which the simple para-
metrizations fail at reproducing the observables (all the
ΔBICM−true > 10), and in full lines, we show a case in
which they succeed (all the ΔBICM−true < −10).
As in Fig. 3, the strong features in the fαXg are much

smoother in the observables. In the successful case, in
which αT exhibits sizeable variations (top left panel), the
observables are well reproduced by the smooth fαXg of the

simple parametrizations (bottom right panel). As we have
noted after Fig. 2, the effect of αB on the observables is not
as simple as for the other functions, meaning that very
complicated evolution such as the ones on the top right
panel of Fig. 5 are not problematic for fitting simple
parametrizations to observables. In the successful case
for αM, note that, indeed, the “1i” and “3i” capture its
general behavior quite well but miss the short time-scale
variations. For the bottom right panels, the three curves for
the successful case are on top of each other and have a
relative difference with the true observables that is
less 0.3%.

V. DISCUSSION AND CONCLUSIONS

The possibility of an additional degree of freedom in
gravity opens a vast theory space, described conveniently at
the level of linear perturbations within the framework of the
EFTof DE [15]. Formally, this theory space is infinite, as it
depends on free functions of time fαXðzÞg, not parameters.
Therefore, it is not clear at first sight how one can use the
EFT of DE to constrain modified gravity in upcoming
surveys. In this article, we explored whether approximating
this infinte-dimensional space by a finite one is sufficient to
describe observables. This way,cosmological analyses can
be reduced to actual parameters, not functions of redshift.
One approach that has been used in previous studies was

to explore specific models, in which the fαXg are derived
from the evolution of the background field and the
parameters of the model. Their evolution is thus known,
and one can try to see whether they can be approximated by
simple functions that one could then use as templates for
analyzing data. While, in principle, this is certainly a
promising way to go, we see it as limited in the context
of modified gravity. The main reason is that, up to now,
these studies have only focused on a small number of
models, and a small number of parameters within those
models, leading to contradicting results [36,37]. The
problem is that, since there are no outstanding candidates
for modified gravity, there is no reason to choose one
particular model over another. Therefore, one should
explore the whole model space (e.g., that of Horndeski
theories [10]).6 This is similar to what has been done at the
level of the background expansion in Refs. [57,58].
However, this approach does not take full advantage of
the powerful potential of EFT of DE to explore the large
theory space systematically.
Thus, rather than explore the models, we take a more

agnostic approach and directly explore the fαXg. To do so,
we choose a convoluted form for their time dependence,
Eq. (8), which allows a vast range of different evolutions.
We have checked it can reproduce known models such as

FIG. 5. Evolution of the fαXg as a function of redshift for the
true model (pink), “Ωm” (purple), “1i” (green), and “3i” (orange).
The dashed lines represent a case in which the simple para-
metrizations all failed at reconstructing the observables, while
they all succeeded for the full lines. The bottom right panel shows
the relative difference in the observables between the simple
models and the true ones in a percentage. The crosses indicate the
center of the redshift bins in the weak lensing measurement.

5This is shown as a function of z and not k because the scale
dependence is not modified in our approach.

6This would be a good first step, but as recent developments
have shown [21–25], it is not clear Horndeski is the full picture of
scalar-tensor theories.
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the k-essence [41] and Galileons [35] to better than 10−5

accuracy.
The first thing that we notice is that the function space is

actually smaller than expected because the fαXgmust obey
stability conditions (namely, a positive kinetic term and
positive sound speed). This drastically reduces the number
of possible functions, by about a factor of 400 [with our
uniform priors on the parameters of Eq. (8)]. This can be
visualized in Fig. 2. If we then propagate the complex
evolution of the fαXg to the matter growth and lensing, one
can see in Fig. 3 that strong variations in the fαXg lead to
strong variations in the modified gravitational couplings
μeff and μlight but that those variations are damped when
looking at observables. This is one of the key points of this
paper; it seems difficult to have access to short time
variations of the fαXg because observables are not very
sensitive to them. Going back to the schematic representa-
tion of Fig. 1, this shows that the orange circle is indeed
smaller than the dark blue one. Therefore, we anticipate that
it is legitimate to use simple parametrizations to look for
deviation to GR, even though they are much smoother than
one might expect from models.
This is what we explore in the rest of the article. We

compare how three different parametrizations could repro-
duce observables coming from a theory with complicated
fαXg. In the first one, dubbed “Ωm”, all the fαXg are
proportional to 1 − Ωm, a common choice in the literature.
For the second one, referred to as “1i”, all of the fαXg are
proportional to the same function ð1þ zÞ−q, where q is
allowed to vary between [0, 6]. Finally, the last one, called
“3i”, allows for more freedom, each fαXg being propor-
tional to ð1þ zÞ−qX , with a different index ∈ ½0; 6� for each
function. The functions fαXg with those parametrizations
do not exhibit sharp features, but since those are not
observable, they can still be used to fit the galaxy and weak
lensing power spectra rather well. In a sense, the complexity
in Eq. (8) is not demanded by the observables because we
cannot have access to it and therefore it is not relevant (at least
naively, with the sensitivity of future experiments). To
classify the performance of models while penalizing unnec-
essary complexity, we choose to use the BIC.
The results are shown in Fig. 4. Each parametrization is

compared to the true case, i.e., the original model governed
by Eq. (8), which fits the data perfectly but introduces 18
parameters for each fαXg. In 93% of the cases, one of the
three simple parametrizations has a lower BIC, meaning the
data do not need the introduction of the full complexity of
Eq. (8). Our results show that, even though very high
complexity is not necessary, taking all of the fαXg with the
same time dependence might be too simplistic. The model
that performed best is the one with two parameters to
describe each fαXg: an amplitude and power-law index.
The quantitative results of Fig. 4 are dependent on the

exact form of Eq. (8) and the choice of the priors on the
parameters. However, the fact that short time-scale

variations of the fαXg are not observables is more robust.
This is also the case when using a rational function of N ¼
− log½1þ z� instead of z in Eq. (8) while increasing the
prior on fdX;i; nX;ig to ½−104; 104�. This can reproduce
known models to better than 10−5 as well, and the
qualitative behavior described in Sec. IVA is very similar.
There are some differences, for example, the number of
stable functions represents ∼0.4% of all functions instead
of ∼0.2% in Sec. IVA. The differences in the actual
numbers of Sec. IV B (e.g., those of Fig. 4) are more
minor: “Ωm” does better than true 55% of the time instead
of 54%, “1i” does better 83% of the time instead of 78%,
and “3i” does better 90% of the time instead of 86%.
We have focused here on how well parametrizations can

fit complex models, and we did not say much about actually
constraining the fαXg. Indeed, with our simple approach in
the EQS limit, the degeneracies are too strong to be broken
with only galaxy clustering and weak lensing, as noted
already in Ref. [32]. Therefore, the constraints would not
really be meaningful. To get a sense, however, one can look
at a simplified case in which αM is fixed to zero. The
degeneracies are not as strong in this case, and one can use
Monte Carlo Markov chains (with only fαX;0; qXg as free
parameters) to forecast the constraints, assuming a wCDM
fiducial with w ¼ −0.95. With “Ωm”, we get σðαXÞ ∼ 0.03.
With “1i”, this number is about ten times larger, and “3i”
(which is rather “2i” here) gives results comparable to “1i”.
Thus, the constraints do degrade, but not by many orders of
magnitude. It would be interesting to see how these numbers
changewith a more comprehensive analysis, such as the one
with Hi-Class [27]. Indeed, this code uses the full equations
(no quasistatic approximation) so that Ref. [33] was able to
put constraints on all the fαXg. The authors used a para-
metrization similar to Ωm (but with an additional constant
parameter) as well as more complicated time dependences.
The optimal way to parametrize the functional freedom

of the EFTof DE remains to be determined. We have shown
that using simple parametrizations should do an adequate
job. Another way to go could be to assign a different value
to the fαXg in each redshift bins. However, in that case, it is
not clear how to enforce the stability conditions. Moreover,
this would bring a very large number of parameters, which
would considerably weaken the constraints, although one
could use a principal component analysis (PCA) approach
to extract the most constrained directions in the parameter
space (see, e.g., Ref. [34]). The advantage of the three
parametrizations that we explored here is that they are
simple and somewhat physically motivated; the effects go
to zero in matter domination. Plenty of other functions
satisfy those two criteria, and we leave for future work a
more comprehensive investigation.
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